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QUASI-ORTHODOX SEMIGROUPS
Miyuki Yamada

Shimane-University-

As generalizations of groups, there are two important basic
classes of regular semigroups. One is the class of inverse
semigroups, and the other is the class of completely simple
semigroups. The structure of inverse semigroups has been firstly
investigated by Vagner [1952] and Preston {19541, and successi-
vely many papers concerning this class have appeared. On the
other hand, a structure theorem for completely simple semigroups
has been established by Rees [1940 1. He has shown that every
completely simple semigroup can be obtaingd, up to isomorphism,
as a matrix semigroup called a Rees matrix semigroup over a
group. These two classes are generalized to the class of ortho-
dox semigroups and the class of completely regular semigroups
respectively, and quite a lot of papers concerning these two
classes have appeared during the last two decades (for example,
see Hall [1969, 1970a, 19711 and the author [1967c, 1970b1 etc.
for orthodox semigroups; and Clifford 119411, Petrich [1967b]
and Lallement [1967a] etc. ‘for completely regular semigroups).
As a class containing both the class of drthodox semigroups and
the class of completely regular semigroups, we introduce the
class of quasi-orthodox semigroups in this paper and discuss the
structure of these semigroups. Throughout this paper, we
shall use the following notations and terminology: For a com-
pletely regular semigroup M, the notation M«aZ{Mx: AEEA} means

that M is a semilattice A of completely simple semigroups'{MA:
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XEA } (that is, M ~ Z{M}\ : A€ A} means thestructure decom-

)

position of M). Hereafter, the term a completely regular
semigroup M I{M N A €A} " means that M is a completely regular
semigroup and has M ~v Z{MX: A& A } as the structure decom-
position. If an inverse semigroup Y has A as the semilattice

of idempotents of Y, we shall denote it by Y(A). For a regular
semigroup S, the notation E(S) denotes the set of idempotents.of

S. 1In particular, if S is an orthodox semigroup then E(S) de-

notes the band of idempotents of S.

1. Basic properties

First, we shall give the definition of a quasi-orthodox

semigroup.

Definition 1. Let S be a regular semigroup. If there exist
an inverse semigroup Y(A) and a surjective homomorphism ¢: S—=>Y(A)
such that A¢—l = SA is a completely simple subsemigroup of S

for each A& A , then S is said to be quasi-orthecdox. 1In this

case, it is obvious that M =(J{Sx: A€M} is a completely regular
subsemigroup of S, and the structure decomposition of M is M~

r{S AE AT,

A
T. E. Hall has shown the following result (see the author

[1979]1): A regular semigroup S is quasi-orthodox if and only if

the subsemigroup < E(S) > of S generated by E(S) is completely

regular.

Now, we have the following results concerning quasi-orthodox

semigroups:
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Proposition 1.1. Any homomorphic image of a quasi-ortho-

dox semigroup is a quasi-orthodox semigroup.
dox s 2

Proposition 1.2. If o is a congruence on a quasi-orthodox

gsemigroup, then S/p is a quasi-orthodox semigroup.

Hereafter, for any element a of a regular semigroup S,

v(a) denotes the set of inverses of a.

Proposition 1.3. Let A and B be regular subsemigroups of

a quasi-orthodox semigroup S. If

(1.1) ANB#0 and AN BD a implies a*€A N B for some

a*e V(a) )

then AN B 1is a quasi-orthodox subsemigroup of S.

Definition 2. Let R and T be regular semigroup, and f: R—
T a homomorphism. If the condition

(1.2) for any a€R and for any (af)*&V(af), there exists
a*eV(a) such that a*f = (af)*

is satisfied, then f is called *-homomorphism.

Proposition 1.4. Let S and T be quasi-orthodox semigroups,

and f: S— T a surjective *-homomorphism. For any regular sub-

semigroup K of T, Kf"1 is a regular subsemigroup of S. Hence,

-1

Kf = is a quasi-orthodox subsemigroup of S.

If every H-class of a semigroup‘S consists of a single ele-

ment, then S is said to be H-degenerated.

Proposition 1.5. An H-degenerated quasi-orthodox semi-




54

group is an orthodox semigroup.

Proposition 1.6. A regular subsemigroup of a completely

regular semigroup is completely regular.

Definition 3. Let S be a regular semigroup. A completely

regular subsemigroup G rv Z{S)\: r& A} is called a kernel normal

system of S if G D E(S) and if there exists a congruence ¢ on S
such that each S, (&€ A) is a complete o-class. In this case,

such a congruence ¢ is unique and is called the congruence

determined by G ~ I{ S,: x& A} . Of course, ¢ is an inverse
semigroup congruence on S. If p is an inverse semigroup con-
gruence on a quasi-orthodox semigroup S such that ep is a comp-
letely simple subsemigroup of S for each e&E(S), then G =

U{ep : e€E(S)} is a kernel normal system of S and has GNZ{SA:
A € A} as its structure decomposition (where each S)\ is a p-
class). In this case, the kernel normal system G ~~ Z{SX:XEA}

is called the kernel normal system determined by p, and con-

versely p is called an inverse semigroup congruence with kernel

normal system (abbrev., k.n.s.). The completely regular subsemi-

group M ~ Z{SA: A€M} in Definition 1 is a kernel normal system,

which is called the kernel normal system determined by ¢.

Let S be a quasi-orthodox semigroup. Let Ge be a subgroup
(of S) containing e for each e&E(S) such that G = U{Ge: e€
E(S)} is a subsemigroup of S. 1In this case, G ~ Z{SX:AGA} is
not necessarily a kernel normal system of S. However, at least

we have the following:
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Proposition 1.7. Let S be a regular semigroup, and Ge a

subgroup (of S) containing e for each e€E(S). If G = U{Ge:

e€E(S)} is a subsemigroup of S, then there exists a kernel

normal system M ~ Z{S,: A€A} of S such that MD G. According-

ly, S is a quasi-orthodox semigroup.

Definition 4. Let S be a regular semigroup, and M, a
maximal subgroup (of S) containing e for each e€E(S). If M =
V) {Me : e €E(S)} is a subsemigroup of S, then S is said to be

natural regular. By the result above, a natural regular semi-

group is quasi-orthodox.

For the kernel normal systems of a quasi-orthodox semi-

group, we have the following result:

Proposition 1.8. Let S be a quasi-orthodox semigroup, and

N~ 2{S,: X&€A} a kernel normal system of S. Let A be a -

regular subsemigroup of S, and put A' = {A&E A: s,yNA #0171,

Then, ANN ~ {ANS,,: A'&A"} is a kernel normal system of

A

Definition 5. Let S be a regular semigroup. Let MNZ{M)\:
LE A} be a completely regular semigroup, and Y(A) an inverse
semigroup. If
(1) M is a subsemigroup of S, and
(2) there exists a surjective homomorphism f: S Y(A) such

1

that Af ~ = M, for each A € 4,

then S is called a regular extension of M~ :{ M, :)X€A} by Y(A).

A
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Next, we shall show some characterizations of a quasi-

orthodox semigroup:

Theorem 1.9. For a regular semigroup S, the following

five conditions are equivalent:

(1) S is a quasi-orthodox semigroup.

(2) The subsemigroup < E(S) > is completely regular.

(3) There exists a completely regular subsemigroup C of S

such that S D C D E(S).

(4) S is a regular extension of a completely regular semi-

group M ~ Z{SA: A€E A } by an inverse semigroup Y(A).

(5) S has a kernel normal system; accordingly, there exists

an inverse semigroup congruence (on S) with kernel normal

system.

Now, we can infer from the results in this section that an
analogue to the process used in Hall-Yamada theory [1967c,
1969, 1970b, 1971] concerning the structure of orthodox semi-
groups will be applicable for the study of quasi-orthodox semi-
groups. In the following sections, we shall discuss the stru-

cture of quasi-orthodox semigroups under this direction.

2. 1Inverse semigroup congruences with k.n.s.

Proposition 2.1. The least inverse semigroup congruence

ng on S is an inverse semigroup congruence with k.n.s.

Let o be an inverse semigroup congruence on S with k.n.s.,

and put CO(S) = { p: p 1is an inverse semigroup congruence on



37

§ with k.n.s. such that p>0c }. On the other hand, let IG(S)
be the set of all idempotent separating congruences on S/o |

Then,

Theorem 2.2.

(1) For any p & CG(S), the congruence p defined by
(2.1) %0 p yo if and only if x o y

is an element of IG(S).

(2) For any 1 EEIO(S), the congruence 1 defined by

(2.2) . x 1 y if and only if xo T yo

is an element of CO(S).

(3) The mapping Vy: CO(S) - IO(S) defined by o9 = p is a

order-preserving bijection (where ordering in each of CO(S)

and IO(S) is given by the set-inclusion).

In particular, consider the case where o = Then, ¢ in

’ﬂs-‘
Theorem 2.2 is an order-preserving bijection of the set of all
inverse semigroup congruences on S with k.n.s. onto the set of
all idempotent separating congruences on S/nS. Hence, if ES
is the greatest idempotent separating congruence on S/nS then
Tg given by (2.2) is the greatest inverse semigroup congruence
on S with k.n.s.

Next for A C:Cn (S), put oA =N{p: p€A }. Then pAECn (8).

S S
Accordingly, if ocUp is defined by ouUp ={\{T65Cn (S): t>o0,p}
v'S
for o,p € Cn.(S) then Cn (S) is a complete lattice with res-
S S

pect to N ,U. Similarly, I, (S) is a complete lattice with
S

respect to the ordering defined by the set-inclusion.
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Theorem 2.3. The complete lattices Cn (S) and In (S) are

S

S
lattice isomorphic.

Remark. It can be easily seen from Theorem 2.2 that a
regular semigroup S is quasi-orthodox if and only if S is a
regular extension of a completely regular semigroup M~V Z{SA:

AEN } by a fundamental inverse semigroup.

3. Construction

In this section, we shall consider the construction of
aquasi-orthodox semigroups. A construction theorem for general
quasi-orthodox semigroups has been given by the author [1974],
but it is given in a somewhat complicated form and we omit to
show it in this paper. We shall only consider the construction
of some special quasi-orthodox semigroups called

(A) an upwards [downwards] directed quasi-orthodox semi=- -
group, and

(B) a splitting quasi-orthodox semigroup.

First, we introduce the concept of a partial chain as
follows:

Definition 6. Let A be a semilattice, and Tk a semigroup
for each & A. If a partial binary operation ¢ is defined in

T = 3{ TA: A€ A} (disjoint sum) such that

(1) »>1t , a €T, and bETT imply that aeb [boa] is defined
and aocb [boal & TT,
(2) a,pbeE Tk implies a ob = ab (the product of a,b in Tk),and

3) r=zt=53, aeT, ,beT and cE T imply ae(boec) =
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(aeb)ec [(cob)oa=co(boa) ],

then the resulting system T(e) is called a lower [upper] par-

tial chain A of { T,: A€A }. We denote it by T = LP{ T,:

rE A ; e} [T = UP{ T)\ : AE A ;o) 1.

First, we consider the construction of all LP{ TA:AEA ;0}
for a given semilattice A and for given right reductive semi-
groups {T)\ : A E A}, If G is a right reductive semigroup,
the inner left translation semigroup AO(G) of G is a left ideal
of the left translation semigroup A(G) of G and the mapping ¢:
G =» A(G) defined by a¢ = Xa (where Aa is the inner left trans-
lation of G induced by a) is an injective homomorphism. Here-
after, D(G) denotes an isomorphic copy of A(G) such that D(G)
contains G as its left ideal and there exists an isomorphism

¢G: D(G)~> A(G) satisfying aqu = >‘a for a&C.

Theorem 3.1. Let A be a semilattice, and S, a right reduc-

tive semigroup for each A€&€A. For every pair (a,B) of a,8 € A

with o 2B, let cbu : SOL—>D(SB) be a homomorphism such that the

B
family_'{<ba g a,B€ A,a2R} satisfies the following (3.1)-(3.2):

(3.1) ¢y , is the identity mapping on S, for each &1 ,

(3.2) (a¢u,8*b>¢6,y = (a(boc,y)*(b(bs,‘{) for azB>v, aESu_-and

bES6 , where % denotes the multiplication in D(ST) (te ),

then S = I{ S,: A& A } becomes a lower partial chain A of { S,:

A€ A } under the partial binary operation o defined by

(3.3) acb = (ap, o)*kb for axf, a&S,, bES,.

Further, every LP{ S,:AEA; °} can be obtained in this way.
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Dually, we can construct every UP{ SA: A€ A;0} for a given

semilattice A and left reductive semigroups {SA: AEAT.

(A) The construction of upwards [downwards] directed quasi-
orthodox semigroups.
Definition 7. Let S be a quasi-orthodox semigroup, and G

~ Z{S)\: A€M } a kernel normal system of S. If
(3.4) E(S)E(S) CE(S,) [ E(SDE(S,)C E(S,) 1 for A<,

then S is said to be upwards [downwards] directed.

It is easily verified that this concept is independent
from the selection of a kernel normal system of S.

It should be noted that orthodox semigroups and completely
simple semigroups are of course upwards [downwards] directed
quasi-orthodox semigroups. Now, let Y(A) be a (fundamental)
inverse semigroup, L[A] a lower partial chain A of left groups
{ Ly: A& A} , and R[A] an upper partial chain A of right zero
semigroups {Rx: A€ A}. Assume that E(LA)(\R)\ = {u}\} for each
rE N . For every pair (v,8) of y,s & Y(p), let

f X L

: R
Ly, 8> Y—lY 56—1

~—> L and

vo(ys) !

g R ., xL . = R _
< 8> Y lY 5671 (v$) 1Y5

be mappings such that the family A = {f v,8€Y(A) T U

&y, 8>°

{g<Y 5y Y,8§ € Y(A)} satisfies the following (3.5):
*(l) TFor aclL _10 e€R 1 o bel -1 feRr -1
YY Y Y 86 s 78
cE€L and heR ,
-1 -1
TT T T
a(e,b((f,C)f<5’T>))f<Y,5T>' =
(3.5) <

al(eb)f y o) (el y 5, F 0 fye, 05

10
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(2) For a&€l -1 and e€R 1 e there exist b

YY Y Y
€L , and f€R _; such that
Y Y YY )
,b) -1 f,a)f, -~ € E(L .
(e,b) <Y,y T2 (£,a) <ry 1~,Y> ( W-l)
This A is called a factor set of {L[A],R[A] } belonging to Y(A).
Now, S = {(x,v,e): x&€L -1 eER -1 ,YEY(A)} Dbecomes a
B YY Yy
quasi-orthodox semigroup under the multiplication defined by

x,v,e)(y,8,8) = (x(e, )y 55078, (708, 450)

This S is called the regular product of {L[A],Y(A), R[A]} deter-
mined by A , and denoted by |
(3.6) S = R(LIAITRY(A)XRIA] ;A ).

Now, we have the following:

Theorem 3.2. If A above satisfies the following condition:

(upwards directed condition)

(u,z)f<)t’)\>EE(L)\), .(v,w)f<u’u>EE(Lu) and A<y - imply

((u,w)go\,]ov, z(u,w)f<x’u>)f<)\’DEE(L}\),
then 8 = R(L[AIXY(A) XR[A];A ) is an upwards directed quasi-

orthodox semigroup. Further, every upwards directed quasi-

orthodox semigroup can be constructed in this way.

(B) The construction of splitting quasi-orthodox semigroups.

Definition 8. Let T be a quasi-orthodox semigroup. If
there exist an inverse semigroup I(A), a homomorphism ¢: I(A)->
T and a surjective homomorphism y: T —> I(A) such that

(1) M)_l is a completely éimple subsemigroup of T for each
A€ A , and
(2) ¢y = I (the identity mapping on I(A)),

11
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then T is called split.

RIAT;

Theorem 3.3. In the regular product S = R(L[A]X Y(A)X

A) in (3.6), if wu, =u in R[A) and u uy = u,y ig LIA)

A

for A<t and if A satisfies the following condition:

(split condition) for v, € Y(A),

d

(g uaa-l)f<v,6> = Uys(ysyt and

Y Y

u "lY , uda‘l)g<v,6> - u(YG)'lYG ,

Y
then S is a splitting quasi-orthodox semigroup. Further,

every splitting quasi-orthodox semigroup can be constructed in
this way.
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