SOME REMARKS ON REGULAR * SEMIGROUPS

Teruo IMAOKA

A semigroup S is called to be <u>fundamental</u> if its only one congruence contained in the Green's relation \mathcal{H} on S is the trivial one. In his paper [2], Hall gives us the construction of a fundamental regular semigroup which is the generalization of [1] and [3]. In this paper, we shall study a fundamental regular * semigroup.

A semigroup S with a unary operation $*: S \rightarrow S$ is called a * semigroup if it satisfies

$$(i) \qquad (x^*)^* = x,$$

(ii)
$$(xy)^* = y^*x^*$$
.

Let S and T be * semigroups. A mapping $\phi: S \to T$ is called a * homomorphism if ϕ is a (semigroup) homomorphism and $x*\phi = (x\phi)*$ for all x in S. A relation ν on S is called a * relation on S if $(x,y) \in \nu$ implies $(x*,y*) \in \nu$. A * semigroup S is called a regular * semigroup if it satisfies (iii) xx*x = x.

An idempotent e in S such that e* = e is called a <u>projection</u>.

The following result due to Nordahl and Scheiblich is an important property of a regular * semigroup.

RESULT 1 ([4]). Let S be a regular * semigroup. Then each & -class and each & -class in S contain one and only one projection. Let e and f be projections in S. Then ef is an idempotent in S.

Hereafter, a regular * semigroup S(P) means that S is a

regular * semigroup with the set of projections P.

LEMMA 2. Let S(P) be a regular * semigroup, and let E be the set of idempotents in S. Then $E = P^2$. More precisely, for any idempotent e, there exist projections f and g such that $e \mathcal{R} f$, $e \mathcal{L} g$ and e = fg.

LEMMA 3. Let S be a regular * semigroup. For any element a and any projection e, a*ea is also a projection.

A [*] congruence ν on a regular [*] semigroup S is called an idempotent-separating [*] congruence if $\nu \in \mathcal{H}$.

THEOREM 4. Let μ [μ '] be the maximum idempotent
separating [*] congruence on a regular * semigroup S(P). Then $\mu = \mu$ ' = {(a,b) ϵ S×S: a*ea = b*eb and aea* = beb* for all e ϵ P}.

Let S(P) be a regular * semigroup. For any element a in S, let ρ_{a} and λ_{a} be mappings of P into P defined by

$$e\rho_a = a*ea,$$
 $e\lambda_a = aea*.$

It is clear that $\rho_{ab} = \rho_a \rho_b$ and $\lambda_{ab} = \lambda_b \lambda_a$. Let A, B be subsets of P. A mapping $\alpha \colon A \to B$ is called a <u>partial isomorphism</u> if α is bijective and for a_1, a_2, \ldots, a_n in A, $a_1 a_2 \ldots a_n \in A$ implies $(a_1 \alpha) (a_2 \alpha) \ldots (a_n \alpha) \in B$ and $(a_1 a_2 \ldots a_n) \alpha = (a_1 \alpha) (a_2 \alpha) \ldots (a_n \alpha)$. If there exists a partial isomorphism $\alpha \colon A \to B$, we say A is partial isomorphic to B, and denote it by $A \stackrel{D}{=} B$. For each e in P, let $\langle e \rangle = \{f \in P \colon f \leq e\} = ePe$. Let $\mathcal{U} = \{(e,f) \in P \times P \colon \langle e \rangle \stackrel{D}{=} \langle f \rangle \}$ and for each $(e,f) \in \mathcal{U}$, let $T_{e,f}$ be the set of all partial isomorphisms of $\langle e \rangle$ onto $\langle f \rangle$. Let $T_{e,f} = \bigcup_{(e,f) \in \mathcal{U}} \{(\rho_e \alpha, \lambda_f \alpha^{-1}) \colon \alpha \in T_{e,f} \}$. For convenience, we shall

denote $(\rho_e^{\alpha}, \lambda_f^{\alpha^{-1}})$ simply by $\phi(\alpha)$. It is clear that $T_p \in \mathcal{T}_p \times \mathcal{T}_p^*$, where \mathcal{T}_p^* is the dual semigroup of \mathcal{T}_p .

THEOREM 5. (i) Define a unary operation *: $T_P \to T_P$ by $\phi(\alpha)$ * = $\phi(\alpha^{-1})$. Then T_P is a regular * subsemigroup of $\mathcal{T}_P \times \mathcal{T}_P^*$. Moreover, the set of projections of T_P is $\{(\rho_e, \lambda_e): e \in P\}$, and it is partial isomorphic to P.

(ii) For each a in S, (ρ_a, λ_a) is an element of T_p .

Let ξ be a mapping of S into T_p defined by $a\xi = (\rho_a, \lambda_a).$

Then ξ is a homomorphism whose kernel is the maximum idempotent-separating congruence on S.

- (iii) For any (e,f) in \mathcal{U} , $\alpha \in T_{e,f}$ and $g \in P$, $\phi(\alpha) * (\rho_{g}, \lambda_{g}) \phi(\alpha) = (\rho_{e,f}) \alpha * (e,f) \alpha * (e,f).$
- (iv) $T_p = \underline{is} \ \underline{a} \ \underline{fundamental} \ \underline{regular} \ \star \ \underline{semigroup}$.

REFERENCES

- [1] Hall, T. E., On orthodox semigroups and uniform and anti-uniform bands, J. Algebra, 16(1970), 204-217.
- [2] Hall, T. E., On regular semigroups, J. Algebra, 24(1973), 1-24.
- [3] Munn, W. D., <u>Uniform semilattices and bisimple inverse</u> semigroups, Quart. J. Math. Oxford (2), 17(1966), 151-159.
- [4] Nordahl, T. E. and H. E. Scheiblich, Regular * semigroups, Semigroup Forum, 16(1978), 369-377.

Department of Mathematics,
Shimane University
Matsue, Japan