RIGHT SELF-INJECTIVE SEMIGROUPS ARE ABSOLUTELY CLOSED

Kunitaka Shoji

Hinkle [3] has shown that the direct product of columnmonomial matrix semigroups over groups is right self-injective. The author [12] has shown that the full transformation semigroup on a set (written on the left) is right self-injective and so every semigroup is embedded in a right self-injective While absolutely closed semigroup has been regular semigroup. first studied in Isbell[7]. In Howie and Isbell [5] and Scheiblich and Moore [8] it has been shown that inverse semigroups, finite cyclic semigroups, totally division-ordered semigroups, right [left] simple semigroups and full transformation semigroups are absolutely closed. In Section 1 we shall show that every right [left] self-injective semigroup is absolutely closed. This will give another proof of that right [left] simple semigroups, finite cyclic semigroups and full transformation semigroups are absolutely closed. Using a result of [5] we shall show that the class of right [left] self-injective [regular] semigroups has the special amalgamation property. In Section 2 we shall show that a commutative separative semigroup is absolutely closed if and only if it is a semilattice of abelian groups. As its result we will obtain that every self-injective commutative separative semigroup is a semilattice of abelian groups. Using a characterization of self-injective inverse semigroups [9] we shall give a structure theorem for self-injective commutative separative semigroups. The complete proofs are omitted and will be given in detail elsewhere. Throughout this paper we freely

use the terms "right S-system", "S-homomorphism", "right self-injective" and so on, which are referred to [12].

§1. Right self-injective semigroups. Let A, B be semigroups such that A is a subsemigroup of B. Then by Isbell [7] the set $\{b \in B \mid f(b) = g(b) \text{ for all semigroups C and for all homomorphisms f, g: B <math>\longrightarrow$ C such that $f|A = g|A\}$ is called the dominion of A in B and is denoted by $Dom_B(A)$. A semigroup S is called absolutely closed if $Dom_T(S) = S$ for all semigroups T containing S as a subsemigroup.

Result 1. ([4, Isbell's zigzag theorem]) Let T be a semigroup and S a subsemigroup of T. Then for each $d \in T$ $d \in Dom_T(S)$ if and only if $d \in S$ or there exist S_0 , S_1 , ..., $S_{2m} \in S$ and S_1 , ..., $S_{2m} \in S$ and S_1 , ..., $S_{2m} \in S$ and S_2 , ..., $S_{2m} \in S$ and S_1 , ..., $S_{2m} \in S$ and S_1 , ..., $S_{2m} \in S$ and S_2 , ..., $S_{2m} \in S$ and S_1 , ..., $S_{2m} \in S$ and S_2 , ..., S_2 , ..., S

Theorem 1. Every right [left] self-injective semigroup is absolutely closed.

The next result follows from Theorem 1, and Corollary 1,2 of [12].

Corollary 1. I. ([8, H. Scheiblich and K. Moore]) Full transformation semigroups are absolutely closed.

II. The direct product of column [row]-momonial matrix semigroups over groups is absolutely closed.

According to [11] a semigroup S with 1 is called <u>completely</u>

<u>right injective</u> if every right S-system is injective. It is clear
that all the homomorphic images of a completely right injective

semigroup are completely right injective, of course, right selfinjective.

Thus we have

Corollary 2. All the homomorphic images of a completely right injective semigroup are absolutely closed.

Remark 1. It easily follows from Isbell's zigzag theorem that a semigroup S is absolutely closed if and only if S_0 [S 1] is absolutely closed, where S_0 [S 1] denotes the semigroup obtained from S by adjoining a zero [an identity]. If a semigroup S is right simple, then S_0^1 (= $(S_0)^1$) is completely right injective. Thus it follows from Corollary 2 and the above that S is absolutely closed. Also if a semigroup S is finite and cyclic then we can show that S_0^1 is a self-injective semigroup (see[12]). Hence it follows from Theorem 1 and the above that S is absolutely closed. These results have been obtained by Howie and Isbell[5].

Let $\mathcal X$ be any class of algebras. According to Hall [2], if for some index set I, $\{S_i:i\in I\}$ is an indexed set of algebras from $\mathcal X$ having a common subalgebra U also in $\mathcal X$, then the list $(S_i:i\in I:U)$ is called an amalgam from $\mathcal X$. If there exist an algebra W and moromorphisms $\phi_i:S_i\longrightarrow W$ (i\in I) such that $\phi_i|U=\phi_j|U$ and $\phi_i(S_i)\cap\phi_j(S_j)=\phi_i(U)$ for all distinct i, $j\in I$, then the amalgam $(S_i:i\in I:U)$ is said to be strongly embeddable in W. If an amalgam of the form (S,S:U) from $\mathcal X$ is strongly embeddable in an algebra from $\mathcal X$, then U is said to be closed in S (within $\mathcal X$). If U is closed in S within $\mathcal X$ for all U, $S\in \mathcal X$ with $U\subseteq S$, then $\mathcal X$ is said to have the special amalgamation property. If every amalgam from $\mathcal X$ is strongly embeddable in an algebra from $\mathcal X$,

then α is said to have the strong amalgamation property.

Result 2. ([4, theorem 2.4]) Let U, S be semigroups such that U is a subsemigroup of S. Then U is closed in S (within the class of semigroups) if and only if $Dom_{S}(U) = U$.

This follows from Theorem 1, Result 2, and Corollary 3 [12].

Theorem 2. The class of right [left] self-injective [re-gular] semigroups has the special amalgamation property.

The following example shows that the classof right [left] self-injective [regular] semigroups does not have the strong amalgamation property. This is constructed from an example in Imaoka [6].

Example. Let $U = \{0, e, f, g, 1\}, V = \{0, e, f, g, h, 1\}$ and $W = \{0, e, f, g, x, y, 1\}$ be semigroups whose multiplicative tables are:

U	0	е	f	g	1	V	0	е	f	g	h	1		W	0	e	f	g	x	У	1
0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
e	0	е	f	g	е	e	0	e	f	g	f	e		е	0	e	f	g	x	У	е
f	0	е	f	g	f	f	0	е	£	g	f	f		f	0	е	f,	g	x	У	f
g	0	е	f	g	g	g	0	е	f	g	g	g		g	0	е	f	g	x	У	g
1	0	е	f	g	1	h	0	е	f	g	h	h		x	0	x	У	x	x	У	x
						1	0	e	f	g	h	1	. •	У	0	x	Ÿ	x	x	У	У
														1	0	е	f	q	х	У	1

By [11] U, V and W are completely right injective, of course, right self-injective and regular. Suppose now that the amalgam (V, W:U) is embeddable in a semigroup S. But in S we have xh = (xe)h = x(eh) = xf = y and xh = (xg)h = x(gh) = xg = x. This is a contradiction. Hence the amalgam (V, W:U) can not be embedded in any semigroup.

§2. Commutative separative semigroups. Let S be a commutative separative semigroup. Then by [1, Theorem 4. 18] S is uniquely expressible as a semilattice Λ of archimedean cancellative semigroups S_{α} ($\alpha\in\Lambda$) and S can be embedded in a semigroup T which is the same semilattice Λ of abelian groups G_{α} ($\alpha\in\Lambda$) where G_{α} is the quotient group of S_{α} for each $\alpha\in\Lambda$, i.e. every element of G_{α} can be expressed in the form ab $^{-1}$ with a and b in S_{α} .

Let ξ,ψ be homomorphisms of T to any semigroup W such that $\xi|S=\psi|S$. Then for each G_{α} , $\xi(G_{\alpha})$ and $\psi(G_{\alpha})$ are contained in a subgroup H of W. Hence $\xi(a^{-1})=\psi(a^{-1})$ for all $a\in S_{\alpha}$. Because that both $\xi(a^{-1})$ and $\psi(a^{-1})$ are inverses of $\xi(a)$ in the group H. Then it is clear that $\xi|G_{\alpha}=\psi|G_{\alpha}$. Therefore we have $\xi=\psi$. This implies that $\text{Dom}_T(S)=T$. Thus we have

Theorem 3. Let S be a commutative separative semigroup. Then S is absolutely closed if and only if S is a semilattice of abelian groups.

In [10] we studied self-injective non-singular semigroups and showed that every self-injective non-singular semigroup is a semilattice of groups and every commutative non-singular semigroup is separative.

More generally by Teorem 1,3 we have

Theorem 4. Every self-injective separative commutative semigroup is a semilattice of abelian groups.

In [9] B. Schein characterized self-injective inverse semi-groups as follows: Let S be an inverse semigroup and E_S the set of idempotents of S. A subset B of S is compatible if for

each b \in S there is $e_b \in E_S$ with $be_b = b$ and $be_c = ce_b$ for all b, $c \in B$. Define an order \leq on S by a \leq b (a, b \in S) if and only if $a \in bE_S$. S is complete if every compatible set B of S has the least upper bound $\forall B$ relatively to \leq . S is infinitely distribute if $(\forall B)a = \forall Ba$ for any compatible set B of S and for any $a \in S$. S is E_S -reflexive if $st \in E_S$ implies $st \in E_S$.

Result 3. ([9, 2.3 Theorem]) Let S be an inverse semigroup and E_S the set of idempotents of S. Then S is self-injective if and only if S is complete, infinitely distribute and E_S -reflexive.

Here we can obtain the following:

Theorem 5. Let S be a commutative semigroup. Then S is self-injective and separative if and only if S is a semilattice Λ of abelian groups G_{α} ($\alpha \in \Lambda$) satisfying the followings: (1) Λ is self-injective, (2) for any set $\{g_{\alpha}\}_{\alpha \in X}$ such that $g_{\alpha}e_{\beta} = g_{\beta}e_{\alpha}$ (α , $\beta \in X$, $g_{\alpha} \in G_{\alpha}$, $g_{\beta} \in G_{\beta}$, e_{α} , e_{β} are identities of G_{α} , G_{β} , respectively) there exists $g \in S$ such that $ge_{\alpha} = g_{\alpha}$ for all $\alpha \in X$.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vol. 1(1961), Amer. Math. Soc., Providence, R. I..
- 2. J. E. Hall, Amalgamation and inverse and regular semigroups, Trans. Amer. Math., 246(1978), 395-406.
- 3. C. Hinkle, Jr., General semigroups of quotients, Trans. Amer. Math., 183(1973), 87-117.
- 4. J. M. Howie, An introduction to semigroup theory, London Math.

- Soc. Monographs No.7, Academic Press, London & New York, 1976.
- J. M. Howie and J. R. Isbell, Epimorphisms and dominions, II,
 J. Algebra, 6(1967), 7-21.
- 6. T. Imaoka, Free products with amalgamation of bands, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 10(1976), 7-17.
- 7. J. R. Isbell, Epimorphisms and dominions, "Proc. conference on Categorical algebra, La Jolla, 1965", Springer-verlag, 1966.
- 8. H. E. Scheiblich and K. C. Moore, $\widetilde{J}_{\rm X}$ is absolutely closed, Semigroup Forum, 6(1973), 216-226.
- 9. B. M. Scein, Injective monars over inverse semigroups, Colloquia Math. Soc. Janos Bolyai 20, Algebraic theory of semigroups, Szeged (Hungary), 1976, 519-544.
- 10. K. Shoji, Self-injective non-singular semigroups, Proc. of the 3rd Sym. on Semigroups, Atinter-university seminar house of Kansai, 1979, 69-78.
- 11. _____, Completely right injective semigroups, Math. Japonicae. 24(1980), 601-607.
- 12. _____, The injective hull of right reductive semigroups as right S-systems. In preparation.

Department of Mathematics
Shimane University
Matsue, Japan