goooboooogn

0 396 O 1980 O

310-318

310

Notes on List Marking Algorithms

Using Constant Workspace

Hiroshi Hasegawa

Computer Science Division

Electrotechnical Laboratory

1-1-4 Umezono, Sakura-mura
Niihari-gun, Ibaraki Pref., 305

JAPAN
Key Words and Phrases : list processing,
marking, Lisp, linear time, space
complexity, constant workspace,

input-restricted deque, 1ink permutation,
link reversal.

Abstract

The problem considered here 1is to mark an arbitrary
Lisp-style list structure under the constraint of constant
workspace. This constraint requires that marking can be done
in constant working storage without the use of a stack or
any other working storage whose siie depends on the size or
complexity of the 1list to be marked. The only storage
avallable is that occupied by the -original 1ist structure
(and the constant-size auxiliary storage independent of the
structure), separéte from a fixed number of program
variables., Marking requires that the original structure. may
not be permanently destroyed and each cell of them must be
marked.

Algorithms for marking list structures using constant
workspace have Dbeen given by Schorr and = Waitel[2],
Wegbreit[3] and Lindstrom[5]. Schorr and Waite's algorithm
uses the 1link rgversal technique to traverse - the 1list and

runs in time O(n) - to mark arbitrary n-cell structure,

assuming that each cell of the 1list has both a mark bit and .

an auxiliary tag bit. Wegbreit showed that Schorr and

Waite's algorithm can be improved by. using a bit table

instead of an auxiliary bit of each cell. Although Schorr .

and Waite's algorithm and Wegbreit's run in time O0(n), their
speed is comparatively slower than the algorithm which wuses
the auxiliary stack and only a mark bit. On the other hand,

Lindstrom showed that arbitrary mn-cell structure can be

31

312

marked without auxiliary tag bits, depending on the link
permutation method[4], but his algorithm runs in time
O(hlogh),

This paper reports two new algorithms for marking an
arbitrary Lisp-style list structure using constant
workspace. The first algorithm M1l does not require auxiliary
tag bits, i.e., requires only a mark bit in each cell and
runs almost in linear time at practical cases. It 1is based
on the lihk permutation method (the pointer rotation
technique) '‘and utilizes the count of mark bits of the cells
being processed in order to guide the traversal of the 1list
structure correctly. While the algorithm M1l traverses the
list by the 1link permutation method, the algorithm M2 does
it by the 1ink reversal technique based on the same
vprinciple as the one of the algorithm Ml. The second
algofiﬁhm M3 assumes an auxiliary tag bit in each cell in
addition to a>mark bit and runs dlmost in the same speed as
the algorithm which uses an auxiliary stack_and only a mark
bit. Its speed 1is due to the combination of the 1link
reversal method and the usage of the small constant size of
input-restricted deque, the so-called bottomless stack,
independent of +the size or complexity of the list to be
marked.

Moredver, it 1is also possible that the combined
approach of +the first algorithm Ml or M2 and the second M3
éan mark the list structure. That is, marking can be done in

pracical speed by assuming that there is a mark bit in each

cell and a constant-size input-restricted deque, depending

on the link permutation or reversal method.

References

(1) Knuth, D. E. The Art of Computer Pfogramming, Vol.1l :
Fugdamental Algorithms. Addison-Wesley, Reading, Mass.,
1969.

(2) Schorr, H., and Waite, W. M. An efficient
machine-independent procedure for garbage collection in
various 1list structures. Comm.ACM 10, 8 (Aug. 1967),
501-506.

(3) Wegbreit, B. A space-efficient 1list structure tracing
algorithm. IEEE Trans. Comp. C-21, 9 (Sept 1972), 1009-1010.

(4) Lindstrom, G. Scanning list structures without stacks or
tag bits. Inf.Proc. Letters 2, 2 (June 1973), 47-51.

(5) Lindstrom, G wCopying' list strucﬁufés using bounded
workspace. Comm.ACM 17, 4 (Apr. 1974), 198-222,

313

314

Algorithm M1 : marking list structures without stacks or

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

tag bits by the link permutation method.

1 (Initialize)
If ROOT is atomic, halt. Otherwise, set P=-1, C=ROOT
and ALL=0,

2 (Start of marking in preorder)
Set S=C and D=car(3).

3 (At S, unprocessed)
Set MARK(S)=1 and V=car(S). If V is atomlec, go to
step 4. Otherwise, set car(S) =cdr(S), cdr(S)=P, P=S,
S=V and ALL=ALL+l. If S=-1, go to step 6. Otherwise,
1f MARK(S)=1, set Q=P and go to step 5. Otherwise,
repeat this step.

4 (Descend to right)
Set C=cdr(S). If C is atomic or MARK(C)=1, go to step
14, Otherwise, set cdr(S)=car(S), car(S)=P, P=S and
go to step 2.

5 (Find S between P and C)
If @=S, go to step 12. Otherwise, 1f Q=C, go to step
6. Otherwise, set Q=cdr(Q) and repeat this step.

6 (Prepare to search From C)
Set Q=cdr(C) and CYCLE=1,

7 (Search. up)
If Q==1, go to step 12. Otherwise, if MARK(Q)=0, go
to step 8. Otherwise, if Q=S, go to step 12.
Otherwise, if cdr(Q) is atomic, go to step 8.
Otherwise, if Q=D, set X=0, Q=S and go to step 9.
Otherwise, if Q=C, go to step 1ll. Otherwise, set
Q=cdr(Q), CYCLE=CYCLE+l and repeat this step.

8 (Search up to left)
Set Q=car(Q) and go to step 7.

9 (Count up to ROOT)
If Q=-1, set X=ALL-X-CYCLE, ALL=ALL-X and go to step
10. Otherwise, i1f MARK(Q).=0 or cdr(Q) is atomic, set
Q=car(Q) and repeat this step. Otherwise, set
Q=cdr(Q), X=X+1 and repeat this step.

10 (Back nodes)
Set MARK(P)=0, V=cdr(P), cdr(P)=car(P), car(P)=S,
S=P, P=V and X=X-1. If X=0, go to step 12. Otherwise,
repeat this step.

11 (Back nodes to C)
Set MARK(P)=0, V=cdr(P), cdr(P)=car(P), car(P)=S,

4

Step

Step

Step

Step

Step

3=P, P=V and ALL=ALL-1., If 8S=C, go to step 15.

Otherwise, repeat this step.

12 (Process right descendant)

Set ALL=ALL-1 and C=car(P). If C is not atomic or
MARK(C)=0, set MARK(P)=0, car(P)=cdr(P), cdr(P)=S and

go to step 2. Otherwise, set V=cdr(P),
=car(P), car(P)=3.

13 (Go up)
Set S=P and P=V.

14 (Done?)
If P=-1, halt.

15 (Up from right or left)

cdr(P)

If MARK(P)=0, set MARK(P)=1 and go to step 16.
Otherwise, if cdr(P) i1s not atomic, go to step 12.

16 (Go -up from right)
Set V=car(P), car(P)=cdr(P), cdr(P)=S and go to
13. ' :

step

315

316

Algorithm M2 : marking list structures without stacks or

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

tag bits by the link reversal method.

1 (Initialize)

If ROOT is atomlc, halt. Otherw1se, set P=-1, C=ROOT
and ALL=0,

2 (Start of marking in preorder)
Set S=C and D=car(S)

3 (At S, unprocessed)
Set MARK(S)=1 and V=car(S). If V is atomic, go to
step 4, Otherwise, set car(S)=P, P=3S, S=V and
ALL=ALL+1l. If MARK(S)=1l, set Q=P and go to step 5.
Otherwise, repeat this step.

4 (Descend to right)
Set C=cdr(S). If C is atomic or MARK(C)=1, go to step
14. Otherwise, set cdr(S)=P, P=S and go to step 2.

5 (Find S between P and C)
If Q=S, go to step 12. Otherwise, 1f Q=C, set
Q=car(C), CYCLE=1 and go to step 6. Otherwise, set
Q=car(Q) and repeat this step.

6 (Search up)
If Q=-1, go to step 12. Otherwise, if MARK(Q)=0, go
to step 7. Otherwise, 1f Q=S, go to step 12.
Otherwise, if car(Q) is atomic, go to step 7. Other-
wise, if Q=D, set X=ALL-CYCLE, V=-1 and go to step 8.
Otherwise, if Q=C or Q=P, go to step 1l. Otherwise,
set Q=car(Q), CYCLE=CYCLE+l and repeat this step.

7 (Search up to right)
Set Q=cdr(Q) and go to step 6.

8 (Prepare to back)
Set Q=cdr(P)

9 (Back a node)
If Q=V, set MARK(P)=0, V=car(P), car(P)=S, S=P, P=V,
X=X-1 and ALL=ALL-1, If X=0, go ¢to step 12.
Otherwise, set V=3 and go to step 8.

10 (Count up nodes)
If MARK(Q)=0 or car(Q) is atomic, set Q=cdr(Q) and go
to step 9. Otherwise, set Q=car(Q), X=X-1 and go to
step 9.

11 (Back nodes to C)
Set MARK(P)=0, V=car(P), car(P)=S, S=P, P=V and
ALL=ALL-1. If S=Q, go to step 15. Otherwise, repeat
this step.

317

Step 12 (Process right descendant)
Set ALL=ALL-1 and C=cdr(P). If C is not atomic or
MARK(C)=0, set MARK(P)=0, cdr(P)=car(P), car(P)=S and
go to step 2., Otherwise, set V=car(P) and car(P)=3.

Step 13 (Go up)
Set S=P and P=V,.

Step 14 (Done?)
If P=-1, halt.

Step 15 (Up from right or left)
If MARK(P)=0, set MARK(P)=1 and go to step 16.
Otherwise, if car(P) is not atomic, go to step 1l2.

Step 16 (Go up from right)
Set V=cdr(P), cdr(P)=S and go to step 13.

Algorithm M3 : the combined algorithm of stack and link
reversal for list marking.

Use STACK[A], STACK[A+1),, STACK[B]J(A¢B)

Step 1 (Initialize) :
If ROOT is atomic, halt. Otherwise, set P=-1, S=ROOT,
BOTTOM=TOP=A and COUNT =0, L 7

Step 2 (Start of marking 1n preorder)
Set X=S. '

Step 3 (At X, unprocessed)
Set MARK(X)=1 and V=car(X). If V 1is atomic or
MARK(V)=1, go to step 6. Otherwise, if stack-full(),
set Y=STACK(BOTTOM]. Otherwise, go to step 5.

Step 4 (Release the bottom of the stack)
If S=Y, set AUXBIT(S)=1, V=car(S), car(S)=pP, P=S,
S=V, release() and go to step 5. Otherwise, set
AUXBIT(S)=0, V=cdr(S), cdr(S)=P, P=S, S=V and repeat
this step.

Step 5 (Descend to left)
Push(X), set X=car(X) and go to step 3.

7

318

Step

Step

Step

Step

(Descend to right) '
Set X=cdr(X). If X is atomic or MARK(X)=1, go to step
7. Otherwise, go to step 3.

(Pop up the stack) ,
If stack-empty(), go to step 9. Otherwlse, set
X=pop() and go to step 6.

(Go up)
Set S=P and P=V,

(Done?)
If P=-1, halt.

Step 10 (Go up from right or left descendant)

Set V=cdr(P). If AUXBIT(P)=0, set cdr(P)=S and go to
step 8. Otherwise, if V 1s atomic or MARK(V)=1, set
V=car(P), car(P)=S and go to step 8. Otherwise, set
AUXBIT(P)=0, cdr(P)=car(P), car(P)=S, S=V and go to
step 2.

Auxiliary Functions and Predicates

push(X) : Set STACK[TOP)=X and COUNT=COUNT+1l. If
TOP=B, set TOP=A. Otherwise, set TOP=TOP+1,.

pop() : Step 1. If TOP=A, set TOP=B. Otherwise, set
[TOP=TOP-l° Step 2. Set COUNT=COUNT-1 and return STACK
TOP].

release() : Set COUNT=COUNT-1. If BOTTOM=B, set
BOTTOM=A. Otherwise, set BOTTOM=BOTTOM+1.

stack-full() : If TOP=BOTTOM and COUNT=0, return
TRUE. Otherwilse, return FALSE.

empty() : If COUNT=0, return TRUE. Otherwise, return
FALSE.

