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Department of Chemistry, Ochanomizu University, Tokyo

Haruo Hosoya

§1 Introduction

The present author has defined the topological index Z

VA =

c p(G,k), (1)

I ~13

k=0

GI

for characterizing a graph G as the sum of the non-adjacent

number, p(G,k), which is the number of ways for choosing k
disjoint lines from G, or the number of k-matchings in G.l

The set of numbers p(G,k)'s can easily be obtained by the

- aid of the Z-counting polynomial

m k
QG(X) = 2 P(ka) x\r (2)
k=0
for which several recursion relations have been found.l’z)'
With this polynomial Z, can be expressed as
Zo = Qe (1). _ (3)
These guantities, ZG' p(G,k), and QG(X), have been
shown to be closely related to a number of chemical and
1l,3-6)

physical properties of certain series of molecules.

They can also be applied to the coding and classification

7 It was pointed out that the Z_. values of

of molecules. G
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path graphs {Pn} and cycle graphs {Cn}, respectively, form

1,2) These series of numbers

the Fibonacci and Lucas numbers.

have been known to be associated with the Chebyshev poly-

nomial, one of the most typical orthogonal polynomials.
Recently several authors have independently proposed

*
the matching polynomial

m
Mox) = 3 (-DF pee,k) x™72K

k=0

(4)

by using the p(G,k) numbers for a given graph both from

chemical and graph-theoretical points of view.s-lo) It is
obvious, however, that
M (x) = x™ Q. (-x"2) (5)
M. G
Qg (%) = (iR M, (i/YE). (6)

The matching polynomial for a tree graph is identical to

the corresponding characteristic polynomial

P (x) (-1)" det(n - XE) (7)
= MG(x). «3eitree) (8)

Note also that

M, (1) = i Zg (9)

8)

* Aihara calls MG(x) as the reference polynomial, while

Gutman et al.g'll)

prefer to use the term acyclic poly-
nomial. The term "matching polynomial" is due to the

suggestion by Harary.
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for all graphs, i.e., the sum of the absolute values of the
coefficients of the matching polynomial is equal to the
topological index.

Recently Gutman discovered that the matching polynomials
of certain series of graphs are closely related to some of
the orthogonal polynomials, such as Hermite, Laguerre, and

12) All these findings are

associated Laguerre polynomials.
the outcomes of the important features of the non-adjacent
numbers, p(G,k)'s. In this report the graphical and combina-

torial aspects of several orthogonal polynomials will be

surveyed.
§2 Recursion Relations

Two different kinds of subgraphs of a given graph G

are defined as follows:z’s)

A

G G-4 Got
G-% is obtained from G by deleting a given line R,‘and GO
is obtained by deleting f together with all the lines ad-
jacent to .
The inclusion-exclusion principle ensures the following

relation,
p(G,k) = p(G-%,k) + p(GOL,k-1). (10)

It is straightforward to get the recursion relations;



(x) (11.1)
Z. =12 + Z (11.2)

MG(x) (x) (x). - (11.3)

=M -
Moy Mo

Next consider the following three graphs in which the
numbers of the lines joining the subgraphs A and B are,

respectively, three, two, and one, as

G(n) G(n-1) G(n-2)

The subgraphs A and B may be joined each other to give C as

&y © =

G(n) G(n-1) G(n-2)

For these series of graphs we get the following relations,

Qs (n) &l = Qg (n-1) XL + XQg o) &) (12.1)
ZG (n) ~ ZG(n—l) + ZG(‘n-z) (12.2)
(12.3)

Mg (n) 1 = ¥ Mg (1) ) = Mg () (XD -

Consider a graph with a wheel structure as
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where more than two lines radiate from a point p toward the
perimeter of the graph. Divide these lines into two groups
of lines'{zi} and {mj}. Then consider the following three

subgraphs

G-{¢;} - G-{mj}  G-{g}-{m}
With these subgraphs another set of the recursion formulas

can be obtained.

O 01 = Qooa, ) * Qoofmy ) 7 Confahotmyp () 13- 1)

Z (13.2)

G = Za-{a,} 7 ZG'—{mj}' - ‘Z’G,'—{sli}'-{mj}

MG (X) =~MG"__1[£i} (x) + MG—{mJ}(X) - MG_{zl}_{mj}(X) (13.3)

§3 Chebyshev Polynomial

The Chebyshev polynomials of the first and second kinds

are defined for non-negative n as
Tn(cos f) = con né (1st kind) (14)
and U, (cos 6) = sin(n+1)6/sin 6. (2nd kind) . (15)

It is convenient to define the modified polynomials Cn(x) and

Sn(x) asl3)

c_(x) =2T (x/2) or T (x) = c_(2x)/2 (16)
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Sn(x) =,Un(x/2)‘ or Un(x) = Sn(2x). (17)

By applying the addition theorems of the trigonometric
functions to Ecos. (14) and (15), one gets the following

recursion formulas

T (x) =2x T ,(x) - T _,(x) (n>2) | (18.1)

U, (x) = 2x Unfl(xj - U, _,(x) (n>2) (18.2)
which give

Call) = X Coy (0 - €60 (e22) (19’,”‘1)’,

Sn(x) = x’Sn_l(x)‘— S - (X). (niZ) (léfé) 

Now all these polynomials with any n value can be calculated

from Egs. (18) énd (19) with the folloWing initial valuesf

T, (x) -

T, (x) = 1 - x ' (20.1)
Ugx) = 1 U, (x) = 2:;  (20.2)
Co(x) = 2 Cl(x) = X (2l:i)
So(x) = 1 5, () = x. (21.2)

In Tables 1 and 2 are given these Chebyshev polynomials;for
smaller n values.
By using the de Moibre's theorem, Egs. (14} and (15)

can be converted into the closed forms

T (k) = {(x + /x% - 1) + (x - /%% - 1)P}/2 (22.1)



Table 1

P_ My () = U, (x/2) = 8 ) U_ (x) Z
¢ 1 1

® X 2x 1
o %% -1 ax? - 1 2
‘ﬂ$ x3 - 2x 8x3 4x 3
N xt - 3% 4+ 1 16x? - 12x% + 1 5
JRVRS x5 - 4x3 + 3x 32x5 - 32x3 + 6% 8
(W x% - 5x? + 6x% -1 64x® - gox? + 24x% - 1 13
W\ x! - 6x° + 10x°> - 4x  128x’ - 192x° + 80x° - 8x 21

Table é

Cp M () = 2T, (x/2) = C ) L (x) Zg
¢ 1 2

i X b 4 1
QO %2 - 2 2x2 1 3
‘ZS‘ x3 - 3x 4x3 3x 4
D xt - ax? + 2 gx? - 8x? + 1 7
Q x° - 5% + 5x 16x> - 20x> + 5x 11
O x® - 6x? + 9x% - 2 32x® - a8x? + 18x% - 1 18
Q x! - 7% + 14x° - 7x  64x’ - 112x° + 56x> - Tx 29
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U_(x) = {(x + 2oL Lo o A2y 0k2i1 . (22.2)

Let the two roots of the following quadratic eqguation
x2 -x+1=0
pbe o=(1+/5)/2 and B=(1-/5)/2. Then by substituting x=i/2

into Egs. (22), one gets

.

n
i (o

+ 8My/2 = i L (23)

n

2 T (i/2) c, (1)

in (an+l _ Bn+l)//§ - in Fn’ (24)

and Un(i/Z) Sn(i)

where Fn and Ln are, respectively, the well-known Fibonacci

and Lucas numbers, with the following properties:

F o=F 1 +F Fo = Fp =1 (25)

L, =Lop + Ly o L,

]
=~

L, = 3. (26)

It has been shown by the present author that the topo-

logical indices Z.'s of path graphs {Pn} and cycle graphs

G

{Cn}, respectively, form the Fibonacci and Lucas numbers.l'z)

Note that the recursion formulas of ZG's of these series
of graphs take the form of Eg. (12.2), which implies that
the corresponding matching polvnomials recur as Eg. (12.3),

which is exactly the same as that of Eq. (12) including the

set of the initial values in Eg. (21). Thus we have the

* Although another definition (Fl = F2 = 1) is currently
used, it will be clear that the present definition gives

better graphical representation of.the Fibonacci numbers.
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relations

M, (x) Un(x/2) = Sn(x) (27)

and M~ (x)
n

2 Tn(x/2) = Cn(x). (28)

This means that the matching polynomial of a path graph
Pn is ddentical to the second kind of‘the Chebyshev polynomial
with the degree n, while that of a cycle graph Cn is to the
first kind (See Tables 1 and 2). Once we know these relations,
we can derive a number of recursion formulas of these orthd—'
gonal polynomials by using the graph-theoretical aspects
of the matching polynomial., For example, suppose that the
two path graphs, Pm and Pn' are joined by a line ¢ tq give a

longer path graph Pm . Then the application of the relation

+n

(11.3) to Pm+n gives

(x) -M, (x). (29)

P m=-1 n-1

M ‘ x) =M, xX):M. (xX) - M
Pm+n m Pn P

For the case where m and n are equal we have

M. (x) = M. (x)}2 - (M (x)}2. (30)
PZn‘ Pn Pn—l

The following recursion relations for the U polynomial are

automatically obtained:

Upgn ) =0, (x)-U_(x) = U (x)-0__;(x) (31)

-1
and U, (x) = {U_(x)}2% = {U_ .(x)}? (32)
»2n n n-1 *

By using Eg. (9) ,Eq.(29) can be transformed into

7 = Z_ <% + Z -7 (33)
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or F = Fm-Fn + (34)

m+n Fn~1"Fp-1

Similarly the relation (11.3) is applied to a cycle

graph Cn to give

2 T, (x)

U, x) = U, x) (n>2)" (35)

il

and  C (x) =S (x) -8 _,(x),  (n2) (36)

both of which can be transformed into
L =F +F__.,. (n>2) (37)

Next add up the both sides of Eg. (36) separately for
i *
the even and odd n terms, and we are left with the follow-

ing equations:
ConX) +Cy S(x) + v + Cux) =58, (x) + 5,(x) (38.1)

(x) + C2n_l(x) + et Cl(x) l(x), " (38.2)

Can+1 = 5,4

which give the recursion relations of the Chebyshev poly-

nomials,l4)

2{T2n(x) T, (X)) oeee 4 To(x)};= Uy, (%) + Uo(x) (39.1)

2{T2n+l(X) + Tzn_l(x) 4+ eee 4 Tl(x)} = U2n+l(x)' (39.2)

* If we extend Egs. (35) and (36) down to n=0, we need to have

il
Il

2 Tl(x) Ul(x) 2 To(x) 2 Uo(x)

and Cl(x) Sl(x) Co(x) 2 So(x).
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Similar treatment on the relations (19) gives

x{Cy (x) = Chy H(X) + Cy ,(x) = +or + (-1)7 € (x)}
Coppp (X) + (=17 ¢p (%) (40.1)
x{Cy 1 (X) = €y 1 (x) +Cy S(x) = s+ (=17 ) (%))
Copen ) + (1) ¢ (x) (40.2)

1085 () = Sy G0 + 85y 4(x) = wee b (<17 5,(x)}
= 82n+i (%) (40.3)
xSy () = Spp () + 8y Jx) = oo+ (<17 5 (x))
Sonpn (X) + (-1 5, (x), (40.4)

which give rather

new types of the recursion relations of

the Chebyshev polynomials:

22Ty (1) = Tpp p (0 + Ty g(x) = woo 4 (=17 T (0]
=T, . x + (-7 T () (41.1)
2%{T, 1 (x) = T, (X)) T, o(x) - cee + (=1)7 T (%)}
Topnea X) + (=107 T (x) (41.2)

260U (1) = Upp p (%) + Uy gx) = oo (-1)% U, (x)}
Upppq (%) (41.3)
2x{U, () - U, (X)) + U, ,(x) - -+ -1)" U, (x)}
Upppg ) + (=17 Uy (x) . (41.4)
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§4 Graphical Representation

Since all the Chebyshev polynomials, T, U, S, and C,are
shown to be associated with either of the path or cycle
graph through the matching polynomial, the recursion ielations
(29)-(39) can respectively be given their graphical representa-
tions as in Figs. 1-3, where the relations among the Fibonacci

and Lucas numbers are also shown.
§5 Orthogonal Polynomials

The Hermite polynomial is defined either as

: .
D™ exp®) S exp(-x?), (42)
dx

Hn(x)
or as

13)

_ »,—h/2
hn(,x) = 2 Hn(x//i). (43)

In Table 3 are given the Hn(x) éhd hn(x) for smaller n values.

The recursion relations have been known as

Hn(x) 2% Hn_l(x) - 2(n-1) Hn_z(x) (44)

(x). (45)

i

and hn(x). bid hn_l(x) - (n=-1) h

n-2

Suppose a complete graph,Kn and its matching polynomial,

which has already been shown by the present author to recur as

11)-

M (x) = x M, (x) - (n-1) M (46)

K X “(x) .

n n-1 n-2
Note that Egs. (45) and (46) nave just the same form. The

latter can be derived by a successive application of the

/z
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11‘ ,T,n-z
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Eqgs. (38),(39)

(31 O O o ¢ o MW ¢

— eeee AISD_...O - _HND + AICD_HO
_.Na B _.Nnum * _xmnk. . ‘
o+ Tp = AC~3+CO:N
Ton * Ton-2 * Ton-4*
Y A - < A
L - Lop-y *+ cvo-c .A..::_L - _n.m_.l
2N+

b oeeeaen + T - CN3+_\N
Tonet * Ton-g



Table 3

a MK (x) = hn(x) Hn(x)
n .
¢ 1
L4 X 2x
—e 2 _ ax? - 2
A x3 - 3x 8x3 - 12x
‘éI§¥ x* - 6x% + 3  16x? - 48x? + 12
x5 - le3 + 15x 32_x5 - 160x3 + 120
x® - 15x% + 45%2% - 15 64x® - 480x* + 720x% - 120
[n/2] ' . , _
K (x) = 2 (—l)k ‘ ‘n' % xn 2k
n k=0 (n-2k) ! k! 2
[n/2] : _
= ¥ =nF(B) (k-1 11 xPTE
2k
k=0
n
B (x) = (-1)" exp (x2) 9—3 exp (-x2)
dx

- »,—n/2
h (x) = 2 Hn(x//f),
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recursion relation (13). It has also been shown that the

closed form of M, (x) is given by

K
n
[n/2] _
M () = (-1 E n! . $P2E 1D gy
n k=0 {n-2k) ! k! 2°
which is identical to h_(x),%) namely,
M, (%) =h (x) = p~n/2 Hn(x//f). (48)

n
Gutman has also shown that the matching polynomials of
the complete bipartite graph Kn n and Km n are, respectively,
14 14

equivalent to the Laguerre and associated Laguerre polynomials

as
n 2
Mp  &x) = (-1)7 L (x7) - (49)
n,n
n m-n ’
and ) - G nlx e, men) (50)

In Tables 4 and 5 are given smaller K and K graphs and
n,n m,n
the corresponding polvnomials.
By a successive application of the recursion relation (13)
to Egs. (49) and (50) Gutman has derived the following

recursion relations of the Laguerre and associated Laguerre

polynomials:

L (x) =nL_;& -xL () (51)

and . L )

n+1 (52)

(x) = (2n+1-x) L_(x) - n’ Ln_l(x);l?

§6 Discussion

The matching polynomials for typicél series of graphs

are thus shown to be closely related to some of the orthogonal
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Table 4
K M, (x) = (-1 L (x?)
n,n K n
n,n
1
x2 -1
x¥ - %+ 2
x6 - 9x4 + 18x2 - 6
x% = 16x% + 72x* - 96x2 + 24
My x) = (-l)k {n!} 5 X2n 2k
n,n k=0 {(n-k)!}" k!
Table 5
n-n
n K M (x) L
 “m,n Km',n _ ™
1 v x> - 2x 2% - 4
1 \I/ x? - 3x? - 6x + 18
2_W x> - 6x> + 6x - 3x% + 18x - 18
2 W x® - 8x? + 12x°2 12x2 - 96x + 144
min(m,n)
_ k m! nl! m+n-2k
My ) = 1 D ET kT ET X
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polynomials as summarized in Table 6. This fact suggests

that the non-adjacent number p(G,k) is not only an important
graph-theoretical quantity but also may have some key role

in the mathematical structure of the guantum mechanical eigen
value problems. The Legendre, Laguerre, and Hermite poly-
nomials are known to be the typical solutions of the Schro-
dinger equations for the problems where a wave-like particle
is trapped in a potential well of various forms. The differ-
ential equations to be satisfied by the Chebyshev and Legendre

polynomials are very similar, i.e.,

Il
o

(1-x2) T () - x T_'(x) 4+ n? T_(x) (47.1)

2

(1-x%) v "(x) - x U ') + 0’ U_(x) =0 (47.2)

I

(1-x2) P"(x) - 2x B_'(x) + n(n+l) P_(x) = 0 (47.3)

However, no eigenvalue problem has been known whose solution
takes the Chebyshev polynomial, whose matching polynomial is
identical to the Legendre polynomial. These questions are

open.
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Table 6

Orthogonal Polynomial Graph

Chebyshev (1lst kind) T » C, Cycle graph “n
Chebyshev (2nd kind) U, S, Path graph n
Hermite H . hn Complete graph L
Laguerre Ln Complete bipartite graph Kn,n
Associated Laguerre Lx_n Complete bipartite graph Ka,n
Legendre e T

* e 4 ‘
mikio kano and auther found a new series of graphs

whose matching polynomials are equivalent to the Chebyshev

polynomials Tn(x).

Let Gn be the following graph.

1
3 4 ., n /! 2 3
o o
2
nz4 n=3
Then M = _}E
g (%) 2x T _16).
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