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Analysis of the Command Flow Numbers I

— Boolean Lattices —

Hiroshi Narushima

Department of Mathematical Sciences, Faculty of Science
Tokai University

A partially ordered set is also called a poset. In the
following, let a poset be finite. A series of our papers [5-9]
on the inclusion-exclusion principle converged to the one on
posets, The principle is a formula with the sum ranging over
all chains in a given poset. Therefore, the number of chains
in a poset seems to be a criterion of computational complexity
in a problem to which the principle is applicable. So, motivated
by a desire to consider the complexity, we introduced a recurrence
method (without the use of the matrix operations) for counting
the number of chains in a poset [101 Then we called the
cardinality of a class of chains in a poset a "command flow
number" on a poset, and by applying the method to typical lattices
we obtained some recurrence relations on the command flow numbers
and presented some conjectures with some number tables computed
by computer [111. Roughly speaking, the computational complexity
of the algorithm is O(n2?) for the input = the Hasse diagram or
the
cardinality of P. The method can be easily extended to an

the adjacency (or incidence) of a given poset P and n

]

algorithm for counting the number of paths in an acyclic flowgraph.
In this talk, we present the asymptotic formulas of the
command flow numbers on Boolean lattices. We say X in a poset
P covers y in P, written xly if there is no z in P such that
X< zZ<Y. One of our algorithms is as follows.
Algorithm (Value Assignment Form) . Let P be a posetvand N
be the set of natural numbers. Then we define inductively an
assignment v:P—3>N (v*:P —N) by

1 . for X = a minimal element in P
V(x) = .
(v* (%)) (‘§;V(Y)) + 1 otherwise.

X

(( 2Z_v*(y)) + 1)
X7y
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Proposition 1. A (1) v(x)(v*(x)) is the number of covering

chains (chains) in P having x as their greatest element and

called a (total) command flow number of x, written cp(x) (c(x)).

(2) 5%\700( E%v*(x))vis the number of covering chains

(chains) in P and called a (total) command flow number of P,

written Cp(C§).

The name "command flow" means a series of commands from a
higher person to lower persons in a system with an order relation. -

Now, we give a generalized value assignment form.

The Generalized Value Assignment Foer Let P be a poset

and R be the set of‘real numberé. Then we define 1nduct1vely
an assignment v(a,P):p —s R (v*(a/P):p—5R) by

» a for x = a minimal element in P
v(a,b) (x) = '

(w(@b) () Z:v(arb)(y)) +‘b; _ otherw1se.

(( z.v (a, b’(y)) + b)

We denote = v(2:P)(x) ( i:v*(afb><x)) by v(a:b) (¥*(a:b))

‘ Proposition 2. Let v(ar b) and v*(a,b) be the generallzed '

value assignments. Then we have the follow1ng equalltles.
(l) V(,alb»') = av(l 0) + bV(O l)

(2) Fla,b) = ap(1,0) 4 pF(0,1)

(3) v*(a,b) = ay*(1,0) 4 py*(0,1)
(4) ¥*(a:0) = a5*(1,0) 4 pg*(0,1)
Proposition 3. Let P be a poset with a unique minimal

element 0 and v*(a,b) ‘the value assignment. Then the following
equalities hold for x # 0. :

(1) v*(1,0) (x) = v*(0,1) (x)

(2) v*(a,b) (x) (a + ij#(l,O)(x)

v*(a,b) = *(a,b) -
(3) V[O(,ax]) 2v*(a (x) b

Proposition 2 shows that v(1:.0) and v(0.1) are the bases
of the value assigmment v(2,P), and v*(1,0) and v*(er) also are

same. Proposition 3 shows that the assignment v*(a,b) has only
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one base whenever P has a unique minimal element.

Remark 1. v(1,1) jis the assignment v for counting the
command flow number and v*(1l,1) is the assignment v* for counting

the total command flow number.

The Command Flow Number on Boolean Lattices

Let Bp be a Boolean lattice with n atoms and lz, be a .unique
maximal element of B,. Then we denote v(2:P) (kg ) and v(a,b) "’
by c{3:P)(n) and &{2/P) (n) respectively, and v*(2a.P) (15 ) and
v*(a,b) by cg(a,b)(n) and ag(a.b)(n) respectively. The command
flow numberskcél'l)(n), Eél'l)(nL cg(l'l)(n) and Eﬁ(l’l)(n) on
Boolean lattices are abbreviated to cB(n)} EB(h), cg (n) and
¢x(n), respectively.

The Recurrence Relations. We have the following

recurrence relations.

: a (n = 0)
(1) cla,b)(n) ={ o
ncla;, b)(n - 1) +b (n > 1)
(2) &(a/b) (n) = k‘fi( Je@ad) (k) (nz 0)
=0
. a (n = 0)
(3) c*(a,b) (n) {m-l .
g; c*(a,b)(k) + b (n 2z 1)
' . a {n = 0)
(4) 5*(a,b)(n) {
2c*(a,b) (n) - b (n 2 1)
a (n = 0)
(5) C*(a,b)(n) {
(a + b)e* (1, O)(n) (nz 1)

For a = b = 1, we have the follow1ng recurrence relations for

the command flow numbers on Boolean lattices.

o1 . (n = 0)

(©) estm) = {ncB(n -1) +1 (nz 1)
(7) &g (n) =§°(E)c3(k), (n z 0)
(8) ci(n) ={3i} * : (n = 0)
= (B)eh(k) + 1 (n 2 1)
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0)

(9) &4(n) = 2ci(n) - 1 (n z
1 (n = 0)
(10) cx(n) = { (by T. Ohya)
' 2cg (1+0) (n) (n z 1)

Remark 2. In the p.l15 of Lovasz [4], the number Sp is
defined as follows, "S, is the number of mappings f:N,—>N, such
that if £ takes a value i then it also takes each value J,
1s jsi, where S = 1 and N, = {1,...,n}", The recurrence
relation of S, is just one of c*(1,0) (n).

The Exponential Generating Functions. We denote by

G(ap;x) the exponential generating function of a sequence {ay}
.0f numbers. Then the following equalities hold.

beX + (a - b)
1 -x

(1) Glc(asb) (n); x) =

be?X + (a - b)eX

(2) g(&ta:b) (n); x) = ——

(3) G(c*(a,b) (n); x) = ReX + (a - b)
2 - e¥

2 -
(4) G(&*(a,b) (n); x) = PeX + (a - bjeX
2 - eX '

For a = b = 1, we have the following generating functions for the
command flow numbers on Boolean lattices.

. . w) — eX
(5) Glep(n); %) = y—%
~ oy _  e2x
(6) G(CB(n)I x) - l - x
X .
(7) G(cg(n); x) = E (by H. Enomoto)
2 - eX
2x
(8) G(&§(n); x) = ——
’ 2 - e¥
Remark 3. For a =1 and b = 0 in (3), remenbering that
c*(1:0) () = Sn, we have the following generating function.
G(Spi %) = —— (p.149 of Lovész [4])
2 - e
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The Formulas. We have the following formulas.

(1) cla:b) (n)

(b 3 —+ k' + (a - b))n!

k=0
k

(2) ¢ad) (m) = b -2+ (a-b) 3 <pn

k-0 k! k=0 k!

a (n = 0)
(3) c*(a,b) (n) = {

(a + b)kZ L (n> 1)

L a (n = 0)

(4) & (a:2) (n) = {

2(a + b)z% 2k+l -b  (nz1)

For a = b = 1, the formulas on the command flow numbers are

obtained. ‘
O L * _ = kn
(5) cg(n) = (kgo k!)n! (7) cg(n) —kzz‘——zT(—
on n
(6) &y(n) = (z:-—)n' (8 ezm = —55+ 1)
=i

0 in (3), we have the

il

Remark 4. By setting a = 1.and b

formula.
& kn #
Sp =2 — (p.15 of Lovasz [4])
k=0 ok+1 .

The Asymptotic Formulas. We have the following

asymptotic formulas for the command flow number on Boolean

lattices.
. n
(1) e'n! = cg(n) = 0[] (2) e*.nt - &5(n) = o(Z)
% 1  .n+1 1 n,n
[egn) = (555" ntl < (55m7)

(by H.Narushima & T. Ohya)

(4) lim(cy (n)/( Pty =1

(5) 1im (&% (n)/(2( Prlonn) =1
n -0

log2
Let f(x) = (log2)ntl(xn/2m). Then (3) is obtained by
. PN ‘ & '
comparing Sf(x)dx = gtn.e—tdt =T(n + 1) = n!
with S f£(k) = (log)ntl.cg(n). We now have ‘a more

X
"
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detailed result than (3). The result is as follows.

(6) For log2<a, O0<c and 2tm<b <27(m + 1) (mz 0),

. m
|cg (n) - nl((I;}—~dn+l + s;‘(z£+l'+viﬁ+l))[ < nta(a,b,c,n)

g2
where - 1 .
k log2 + 27mki.
1,2(a+c) 1 2b 1 2b 1
b = = (2 . —. .
a(ar rc’n) 'IT( [_hc bn+l + le—c—Z' cn+l + lea__zi‘ an+l)
e~2C_ge~Ccosb + 4 (-1< cosbsg 1 )
2e€
hy = 1
4sin?p (—— <cosb <1, sinb # 0).
’ : 2eC =
* - ' 1 n+1l pad n+l
(7) cg(n) n'((izﬁﬁi) + 2|§£iRe(zk ))
where 1
Re(z§+l) = *cos (n+1) 0y

(W (Tog2)z +(2mk)2 )+l
tanek = (27k)/log2.

8) limsup (cX(n) - (—=——)""1.h1) =
(8) : j>( g (n) ‘(logz) nl)
. . 1 n+l
lim inf (cX(n) - ( ) .nl) = -0
D —3 o B log?2

(by H. Narushima & T. Hilano:

see [12] for the more informations),

Since cj(n) = 2c¢*(1,0) (n) =2S, and

‘ AT+
Sn = G(n) (Sn; 0), bY uSing CauChyls ; ‘ :

integral formula with a path T of
integration in the right side Fig, !
we obtain the inegaulity (6).

2T
Remark 5. If we use a circle Y

with radius r such that ;
A(10og2)? +(2m)? < r< 4 (1og2)? + (27 (m+1))2 (m30) e
instead of the outside rectangle : —aRi
path ABCD in the right side Fig, '
then the right side of (6) results _ "—2m%cm
infgun! for some constant c. But C e

we can not decide the value of c ; . ;
— a2 lmet)fr----- -

explicitly. For m = 0, the
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following formulas are derived.

: 1 1
(1) |c§(n) - (55" et < Spend
e -1 n+l C __.nt .
(2) J (logz) n!|_<2’rn n!

where log2 <I'<Aklog2; + (2m)?

)n+1.n!-> y = ‘l_'

-

(3) 11m(qn/(2 log2

((2)&(3) :p.150 of Lovész i4])

Note that 11m(——-n')/(1092 e)

Problem. Decide whether orenet there exists n217
such that |ci(n) - (1/log2)n+l.nt|<1.

The Asymptotic Relationships. We have the aSymptetice

relationships between B, the_command<flow’numbers,on B, and [2Bnj,

1Ba | —35 Cp (1) —S& () —Z5>cf (n) —25 &4 (n) —251 280 |

(1)

(2)

g(n) _ .

where "f(n)~—é+>g(n)" denotes "11m = a",
CB(n) _n_ n
(1) TB,] ~e-(57) -A2mn
cg (n)
(2) ~B —_ ( )n+1
g (n) e 1092 ’
2Bn (2m)
(3)' é“lz* (nl) i (1392 y n2 n
B (elog2) 2mn

Remark 6.

and B(n) be Bell's number.

relationships.

Let S(n,;k) be Stirling' s number of second ‘kind
- Then we have the follow1ng .

(1) B(n) = é S (n,k) =::o( 500, BO) = 1
. T n—|
(2) s, = %;'kls(n,k) = =5, (h)Sks S0 =1
. * . - n ) ) )
(3) can) =28, = X ({)ep(k) + 1, c3(0) =1

Each assignment for B, is demonstrated in the

following.
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