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On ideal-adic completion

of noetherian rings and its application
Jun-ichi NISHIMURA (Kyoto Univ.)

0. Introduction.

In commutative (noetherian) ring theory, complete local rings
have a lot of good properties and play many important roles to study
the (local) properties of (general) noetherian rings.

Nagata used reduced complete local rings in the investigation,
for example, of the finiteness problem of integral closures of noeth-
erian domains. In this work, he found a good class of noetherian
rings which possess the (universal) finiteness property for integral
closures and named these rings ''pseudo-geometric'" (= universally jap-
anese). We should note that he produced many examples of bad local
domains at the same tihe.

In reconstructing Nagata's work, Grothendieck noticed the impor-
tance of the informations included in formal fibres, which conneqt a
local ring with its completion. He paid a special attention to the
study of hoetherian rings whose formal fibres are geometrically regu-
lar. Then, he found a new class of noetherian rings which have alge-
braic- geometrically reasonable properties and called them "excellent'.

Since complete local rings are proved to be always excellent,
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Grothendieck.expected that the conditions of formal fibres might become
no worse when one completes a noetherian ring in any ideal-adic topol-
ogy. More precisely, letting P denote a certain (ring—theoretic)/
property, Grothendieck defined a P-ring to be a noetherian ring which
has the property P . In these terminologies, he asked the following

questions (cf. [2, (7.4.8)]):

Question 1. Let A be a noetherian ring and I an ideal of
A . If A is a P-ring, is the I-adic completion A* of A also

a P-ring ?

Question 2. With A and I as above, suppose
a) A 1is complete and separated in the I-adic topology, and
b) A/I is a P-ring.

Does it follow that A is also a P-ring ?

In this note, we study the above questions in the case where P =
universally japanese, a G-ring, a Z-ring or an N-ring.

Marot [5] showed that, if P = universally japanese, then Ques-
tion 2 1is always true. When A is a semi-local ring and P = a G-
ring (or a Z-ring, an N-ring), Rotthaus [14] proved that Question 2
is also valid in these cases.

On the other hand, when A is a (general) noetherian ring and

P = a G-ring (or a Z-ring, an N-ring), an elementary example shows
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that even Question 1 is not true.

In this paper, we mainly use the notations and the definitions

in [2], [7], [8].

1. Mori-Nagata Theoremn.

In this section, we give an elementary proof of Mori-Nagata The-
orem on integral closures of noetherian domains. Note that the orig-
inal proof of Mori-Nagata Theorem is based on the structure theorem
of complete local rings. Our proof essentially uses henselization in-
stead of completion.

We first give a generalization of Krull-Akizuki Theorem, due to

Matijevic:

(1.1) Theorem. (Matijevic [6]) If A 1is a noetherian ring and - T(A)
“is the global transform of A , then for any ring B such that A <
B < T(A) , B/xB is a finite A-module for each non-zero-divisor x

in A . In particular, if A is reduced, B 1is always noetherian.

(1.2) Corollary. (Krull-Akizuki Theorem) Let A be a noetherian

domain with field of quotients K , L a finite algebraic extension
of K and B a ring such that A < B < L . If dimA = 1,

then

(1.2.1) B 1is a noetherian ring of dimension at most one,
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(1.2.2) for a prime ideal P of A , there are only a finite number
of prime ideals Q of B such that Q n A = P , and

(1.2.3) [k(Q) : k(P)] 1is finite.

(1.3) Theorem. (Mori-Nagata [8, (33.10)]) Let A be a noetherian
domain and A the derived normal ring of A . Then

(1.3.1) A is a Krull domain,

(1.3.2) for a prime ideal P of A , there are only a finite number
of prime ideals P of A such that PnA = P, and 7

(v1.3.3) [k(P) : k(P)] is finite.

In the proof of Mori-Nagata Theorem, we use several properties of
Krull domains. We refer the reader to [3, §1].
We first show (1.3.3) for henselian local domains by induction on

dimension, starting with Krull-Akizuki Theorem:

(1.4) Proposition. Let (A, m) be a henselian local domain
with field of quotients K , L a finite algebraic extension of K
and ( B, n ) the integral closure of A in L . Then

[B/n : A/m] is finite.

(1.5) (cf. [8, (43.20)], [13, Chapitre IX]) (1.3.2) and (1.3.3)
for general noetherian domains are proved by (1.4) and the following

canonical correspondences:



85

Let (A, m) be a noetherian domain with field of quotients K ,

A the derived normal ring and ( hA , hm ) the henselization of A .

Then we have three natural one-to-one correspondences between:

(1.5.1) the maximal ideals { ﬁg } of A and those { m} } of
h

A EAA R

(1.5.2) the maximal ideals { m} } of Ma QAK and the minimal prime
ideals { qai } of Pa @AK', and

(1.5.3) the minimal prime ideals { q; } of hA &AK' and those

{aq; } of hy .

In these correspondences,
(1.5.4) A/m = (A &K)/m*
U i A i’
(1.5.5) (hA ﬂAij* is the derived normal ring of hA/qi , and

h, = — * —
(1.5.6) (A®RA) nK = K.

Before proving (1.3.1), we remark:

(1.6) Proposition. ({11, (1.7)]) Let (A, m) be a local domain
T
and m = aA+ ...+ a A . Then the total transform Am) (= €:3>Aai )

of A is integral over A if and only if the derived normal ring has
no maximal ideal of height one. In particular,

(1.6.1) if A has a maximal ideal of height one, then prof A = 1 .
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(1.7) Corollary. Let (A, m) be a henselian local domain of

dimension greater than one, m = alA + ...t arA and A the derived

T
normal ring of A . Then A = [\ K;
i=1 i

Outline of the proof of (1.3.1) (cf. [10, Proposition 6]):

We prove (1.3.1) in a few steps.

Step 1. (Krull-Akizuki Theorem) (1.3.1) is true for all noetherian
domains of dimension at most one.

Step 2. We have the following implications: Let n be a positive
integer, [(1.3.1) is true for all noetherian domains of dimension at
most n ] => [(1.3.1) is true for all henselian local domains of di-
mension at most (n + 1)] (cf. (1.7)) = [(1.3.1) is true for all lo-
cal domains of dimension at most (n +1)] (cf. (1.5.6)) = [(1.3.1)
is true for all noetherian domains of dimension at most (n +1)] (cf.
(1.3.2), (1.6.1)).

Step 3. By induction on dimension, Step 2 shows that (1.3.1) is true
for all local domains. Therefore, (1.3.1) is true for all noetherian

domains (cf. (1.3.2), (1.6.1)).

2. Japanese Rings.
In this section, we give a slight generalization of a lemma of
Tate. Then we show that some well-known theorems are derived from this.

First we note an easy lemma, which seems to be useful:



(2.1) Lemma. ([9]) Let A be a Krull domain and P a prime ide-
(e)

al of height one. If A/P is noetherian, then A/P is noetherian

for any natural number e .

(2.2) Corollary. Let A be a Krull domain. If A/P is noether-
ian for every prime ideal P of height one, then A is also noether-

ian.

(2.3) Corollary. (Mori) Let A be a noetherian domain and A the
derived normal ring of A . Then A is noetherian if and only if

A/P is noetherian for every prime ideal P of height one.

(2.4) Corollary. (Mori-Nagata) The derived normal ring A of a

noetherian domain of dimension two is again noetherian.

(2.5) Corollary. (Heinzer) Let A be a noetherian domain of dimen-
sion at most twe and B a Krull domain such that A < B . If
[Q(B) : Q(A)] 1is finite, then B is noetherian and of dimension at

most two.

(2.6) Remarks. (cf. [8, Appendix])

(2.6.1) There exists a two-dimensional local domain A which has
non-noetherian over-rings between A and its derived normal ring (cf.
Example (4.5)).

(2.6.2) There exists a three-dimensional local domain A whose de-

87
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rived normal ring is not noetherian (cf. Example (4.8)).
Now we prove:

(2.7) Theorem. Let A be a noetherian domain and x an element
of A . Suppose

(2.7.1) A is complete and separated in the xA-adic topology, and
(2.7.2) A/P is a japanese ring for every P in Ass(A/xA)

Then A 1is also a japanese ring.

Proof. Let L be a finite algebraic extension of Q(A) and
B the integral closure of A in L . Then B is a Krull domain (
: - ole)) (e) . . .
cf. (1.3.1)) and xB = Q1 1" n .00 Qs s’ with height-one prime
ideal Q. of B . Let Q. nA = P, , then
1 1 1

(2.7.3) Pi € Ass(A/xA) and [k(Qi) : k(Pi)] is finite for any

i (ef. (1.6.1), (1.3.3)).

Since A/Pi is a japanese ring by assumption, B/Q.1 is a finite
(A/Pi)—module. Hence B/Qi is noetherian. Thus, B/xB is noether-
ian by Lemma (2.1). Moreover, these imply that B/xB is a finite
A-module. Therefore, as a Krull domain B is xB-adic separated and

A is xA-adic complete, B itself becomes a finite A-module.

(2.8) Corollary. (Tate) Let A be a normal domain and Xx an ele-
ment of A such that xA is a prime ideal. Suppose

(2.8.1) A 1is complete and separated in the xA-adic topology, and
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(2.8.2) A/xA 1is a japanese ring.

Then A 1is also a japanese ring.

(2.9) Corollary. (Marot's Theorem [5]) Let A be a noetherian ring
and I an ideal of A . Suppose

(2.9.1) A is complete and separated in the I-adic topology, and
(2.9.2) A/I is an universally japanese ring.

Then A 1is also an universally japanese ring.

(2.10) Corollary. (Nagata) A complete semi-local ring is an univer-

sally japanese ring.

3. Ideal-adic Completion of Semi-local P-rings.
In this section, we define three classes of noetherian rings with
good formal fibres. Then, we show that Question 2 has a positive an-

swer for semi-local rings in these classes.

’(3.1) Definition. Let A and B be noetherian rings and Y a
ring homomorphism of A to B . Then we call ¢ regular (or normal,
reduced) if

(3.1.1) Y 1is flat, and

(3.1.2) for every prime ideal P of A , the induced homomorphism
[V} k(P] makés B EAk(P) geometrically regular (or geom. normal,

geom. reduced, resp.) over k(P)
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(3.2) Definition. Let A be a noetherian ring. Then we say A
is a G-ring (or a Z-ring, an N-ring) if, for every maximal ideal m
of A , the canonical homomorphism P of Am to (Am)A is regular

(or normal, reduced, resp.).

In these terminologies, we state the main theorem of this section:

(3.3) Theorem. (Rotthaus [14], cf. [5], [12]) Let A be a semi-
local ring and I an ideal of A . Suppose

(3.3.1) A is complete and separated in the I-adic topology, and
(3.3.2) A/1 is a G-ring (or a Z-ring, an N-ring).

Then A is also a G-ring (or a Z-ring, an N-ring, resp.)}.
To prove Rotthaus' Theorem, we need the following:

(3.4) Theorem. (André [1], cf. [12, Proposition (2.4)]) Let
(A,m) and ( B, n) be local rings and Yy a local homomorphism
of A to B . Suppose

(3.4.1) ¢ 1is flat,

(

(3.4.3) A is a G-ring (or a Z-ring, an N-ring, resp.).

Y ® k(m) ) is regular (or normal, reduced), and

<

(3.4.2)

Then Y 1is also regular (or normal, reduced, resp.).

(3.5) Lemma. (Rotthaus [14, Lemma 2], cf. [12, Lemma (1.2)]) Let

A be a noetherian ring and I an ideal of A . Let B be an A-al-
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gebra, b an ideal of B . Put a = banA, bn = b+ I" and

a = bn n A . ‘Suppose

(3.5.1) A 1is complete and separated in the I-adic topology,

' = >
(3.5.2) bn anB for any n > 0 ,

(3.5.3) B/anB is faithfully flat over A/an for any n > 0 , and
(3.5.4) (\b_ = b and [ \(aB + ™B) = aB . '

n n
Then aB = b .

Proof of Rotthaus' Theorem. Since a complete (semi-) local

ring is a C-ring (cf. [7, (30.D), Theorem 68]), by induction on diﬁ A/T ,
we may assume

(3.3.3) for any ﬁon—maximal prime ideal p of A which contains I ,
the Ip—adic completion A; of Ap is a G-ring (or a Z-ring, an N-
ring, resp.).

Moreover, by noetherian induction, we may assume

(3.3.4) A 1is a semi-local domain with field ofrquotientsv K and,

for any non-zero ideal a of A, A/a is a G-ring (or a Zering, an
N-ring, resp.).

Since any finite A-algebra satisfies the same assumptions as. above,

to prove the theorem, it is sufficient to show that R QAK is regular
(or normal, reduced, resp.).

It is known that, if a semi-local ring R 1is a G-ring (or an N-

ring, resp.), then the set Reg(R) = { P e Spec(R) | Rp is regular }
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(or Nor(R) = { P e Spec(R) | RP is normal } , resp.) is open in

Spec(R) (in Zariski topology) (cf. [7, (32.A), (32.C), (33.D)]).
Hence; as A is a G-ring, we denote by b = sing(A) (or b
= non-nor(A) , b = nil(A) ) the ideal of A which defines the

~

(reduced) closed set Sing(A) = Spec(A) - Reg(A) (or non-Nor(A)

= Spec(A) - Nor(A) , Spec(A)red , Tesp.).

Put b = b+ IA and a_ = b_nA . We claim:
n n n
(3.3.5) anA = bn for any n > 0 .
Proof of (3.3.5). Let bn = Q1 n ... n QS be a primary de-

composition of bn » where Qi is a Pi-primary ideal. Then, letting

p. = Pi n A and q; = Q.

i 0 A (a P, -primary ideal), we have a,

= qp N ...nq (, which mayvnot be an irredundant decomposition).

First we can easily check:

(3.3.5.1) if Pi is a maximal ideal of A , then in = Qi .
Hence, to get the claim, it is sufficient to show:
(3.3.5.2) if p 1is a non-maximal prime ideal of A which contains

I , then anAT = (bn)T with T = A-p.

Proof of (3.3.5.2). Let A% be the IT-adic completion of

AT and (AT)* the IAT—adic completion of A Let p (or T)

T
be the canonical homomorphism of A to A (or of AT to (AT)* s
resp.) and let Pr (or p% ) be the induced homomorphism of AT to

A

AT (or of A% to (AT)* s resp;). Then we have the following commu-
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tative diagram:

©
> 2>

By assumption (3.3.3), A% is a G-ring (or a Z-ring, an N-ring, resp.).

1}

A% = * * * 5
Then, as PT ( pT b} (AT/IAT) p B (A/I)T ) is regular (or normal,
reduced, resp.) by assumption (3.3.2), p; is also regular (or normal,
reduced, resp.) by André's Theorem.

Let ¢ = sing(A%) (or ¢ = non-nor(A%) , € = nil(A%) ,

resp.). Then, as p% is regular (or normal, reduced, resp.) and T

is regular, we have c(AT)* = b(AT)* . Consequently, letting n
= ¢+ ImA% ,
(3.3.5.3) cm(AT)* = bm(AT)* for any m > 0 , hence

(3.3.5.4) (an)T = c n AT .
Conversely, as a, contains I , (3.3.5.4) implies
* =

(3.3.5.5)  a A% c, -
Then, by (3.3.5.3), we have

* - *
(3.3.5.6) an(AT) = b (AT) .

Therefore, as A.. contains I'A (3.3.5.6) implies anA = (b )

A0 T? T n'T °
Thus (3.3.5.2) is proved and this also completes the proof of

(3.3.5).
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Final step of the proof of Rotthaus' Theorem. (With notation as

above) By (3.3.5) and Lemma (3.5), we have b = (bnA)A . Hence,
as b 1is semi-prime, (ap)_l(Reg(A)) = Reg(A) (or (ap)—l(Nor(A))
= Nor(A) , nil(A)A = nil(A) , resp.). Therefore, A &AK is

regular (or normal, reduced, resp.).

q.e.d.

4. Examples.

In this section, we first present an example which gives a nega-
tive answer to Question 1 (; where P = a G-ring, a Z-ring or an N-
ring). We note that this example gives a new one of two-dimensional
local domain which has non-noetherian over-rings between the domain
and its derived normal ring. Next we show that the same method gives
further examples of bad local domains, e.g., a two-dimensional normal
local ring which is analytically ramified and a three-dimensional lo-
cal domain whose derived normal ring is not noetherian. Since all
claims of this section are easily verified, we omit their proofs.. For

detail, see [12, sections 5 and 6].

(4.1) (cf. [4, Proposition 1, Example 1]) - Let k be a field of

characteristic 2 . Letting Xi be indeterminates, we set Ri =

k(X2 , XJ] with (fixed) maximal ideal p. = (X2, X3) (i =1, 2,
i i i i i

[ : _ o . . .

..). Put R' = &kRi and S = R! K?/’piR' (a multiplicative

i i
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ly closed set). Let R = R'S . Then

(4.1.1) R 1is a one-dimensional noetherian domain with field of quo-
tients K = k(X1 s X2 s ... ) , and

(4.1.2) for each maximal ideal q. of R, R = Ki[xi ,

i q.

3
X312 .3
i 17X XD

with certain exteﬁsion field Ki of k.

Hence, by definition

(4.1.3) R 1is a G-ring.

Let R be the derived normal ring of R . Then

(4.1.4) R = R[X . ], and

1° XZ ?

(4.1.5) the set R - { " | r« R} is contained in R .

Moreover, for any maximal ideal q of R

(4.1.6) Rq is not normal, but the derived normal ring ﬁa of Rq

is a finite Rq—module (;f. (4.1.3)).

4.2) Letting T be another indeterminate, we set

o
(4.2.0) A = R[[T]], C = R[[T]] and & = ] ijj
Then =
(4.2.1) w© ¢ QCA) , but w’> e A .
Let m be a maximal ideal of A and q = mnR.

Then, as ﬁa is a finite Rq-module (cf. (4.1.6))
(4.2.2) W e QAP = QURY"IITI])
Therefore

(4.2.3) the TR[T}-adic completion A of a G-ring R[T] is not
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an N-ring.

(4.3) Remark. With notation as above, we see

(4.3.0) A is a two-dimensional noetherian domain,

(4.3.1) A is complete and separated in the TA-adic topology, and
(4.3.2) A/TA = R 1is a G-ring.

Hence A/a is a G-ring, for any non-zero ideal a of A .

(4.4) With notation as in (4.2), let

(4.4.0) B = Afw] , M a maximal ideal of B , b a non-zero el-
ement of M and §g_ the derived normal ring of BM .

Then

(4.4.1) the bBM-adic completion B& of BM is not reduced, and

(4.4.2) §§> is a regular local ring.

Hence, for each height-one prime ideal P of BM

(4.4.3) B, is analytically ramified.

P
(4.5) Example. With notation as above, let
P S i gl
(4.5.0) D = BM n BM[b] (= the integral closure of BM in BM[b] ).

Then

(4.5.1) D 1is not noetherian.

This gives an example of a two-dimensional local domain which has (an
infinite number of) non-noetherian (quasi-local) over-rings between

the domain and its derived normal ring.
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(4.6) We make a minor change of notation. Let R, K and R be
the same as in (4.1). We use Yi , Zj for XZi—l s ij (i, =1,
2, ... ). Letting T, U be two indeterminates, we set
o] -

(4.6.0) A = R[[T,U]] , C = R[[T,U]], w = ZYiTl ,

o ; i=1
w, = _Z ZjU and w = wy o+,

j=1
Let P = (T,U)A . Then
(4.6.1) Ap is a two-dimensional regular local ring.
4.7 Example. With notation as above, let
(4.7.0) B = A[w] and Q the prime ideal of B such that Q n A
= P , then

(4.7.1) BQ is normal.

Hence, this gives an example of a two-dimensional normal local ring

which is analytically ramified.

(4.8) Example. With notation as above, let M be a maximal ideal
of B . Then

(4.8.1) BM is a three-dimensional local domain whose derived normal

ring BM is not noetherian.
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