goooboooogn
0 4010 19800 48-65

48

THE EXACT DEGREE OF PRECISION OF GENERALIZED GAUSS KRONROD
INTEGRATION RULES

Philip Rabinowitz
Department of Applied Mathematics
The Weizmann Institute of Science

Rehovot, lsrael

1. Introduction

In this paper we shall consider the Kronrod extensions (KE) to the
Gauss-Gegenbauer integration rules (GGIR) and the Lobatto-Gegenbauer rules
(LGIR). The Gegenbauer polynomials, C:(x) y W> - %— , are those poly-

nomials which are orthogonal with respect to the weight function

-1
w(x;u) = (!-—xz)u “ and have the following normalization [4, p. 174]

1
(1) _{ w(x;u)Cﬁ(x)C;(x)dx = 6nm hnu
where
(2) by = P20 + P/ (rdn!T ()T (20)
which implies that CY(x) = k_x" + ... where
n nu
(3) kpy = 20 T+ /nt T ()

Cﬁ(x) is even (odd) if n is even (odd). Special cases of C'{x) |,
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are Tn(x) , the Chebyshev

perhaps with a different normalization,
polynomials of the first kind (u=0) , Pn(x) , the Legendre polynomials

(w=1/2) , and Un(x) , the Chebyshev polynomials of the sccond kind

(w=1)

The n-point GGIR is given by

1 n
(4) F = [ wix;u) fx)dx = ) W, f( i
..‘ =

where we have omitted the dependence of w, and X,
i

x, are the zeros of Cn(X) ,

(5) “nu n’ Cny

and Mj(f) is defined to be equal to f(j)(i)/Zle for some g€ (-1,1)
points and is given by

The corresponding LGIR has n+1l

(6)

where the ;i are the zeros of (1-x2) C:t: {x) and

2
éi h

(7) Cop == k2
n-1,up+l

n_‘,].l+] - "I*‘C
n‘],u+]

Since the weights of the integration rules considered do not play a part

in the discussion, we shall not treat them here except to remark that
Monegato [9, 10] has shown that the weights u, in (8) below are positive
, for 0 < u 2.

for 0 < u <1 and the v,
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The KEGGIR is given by

n+l

(8) 1 uo fl) + T v, fly,) +E (f)
‘ i=1

i}
Ho~13

| P

1 n

i
where E (F) =0 if f is a polynomial of degree < s and
s
p_ = 2[(3n+3)/2] . The y;, are the zeros of a certain polynomial
n

E (x) which we shall study in the next section. For the moment we

n+l,u
state a result of Szego [16] that for 0 € u s 2, the y, are real, lie
in [-1,1] and we separated by the X - (For w # 0, they, lie in

(-1,1).) The corresponding KELGIR Is given by

n+1 . n _ ()
= u + E
(9) If = .Z up FOx) + ‘Z v fly,) a
i=1 =] n
where q_ = 2[(3n+2)/2] and the ?} are the zeros of E_ U+](x) . Thus,
taking into account that u > - %— , we see that practical KEGGIR's

exist for 0 £ u £ 2 and KELGIR's ,for - %-< u g 1

BN

The first one to discover a KEGGIR was Kronrod [7] who dealt with

the case ¥ = 1/2 , the Gauss-Legendre or standard Gauss rule. Subsequently,

Patterson [13] , Piessens and Branders [14] and Monegato [11] improved on

Kronrod's original work and extended his results to the usual Lobatto case

(= 1/2)

Barrucand [2] was the first to point out the connection

between the KE's and the Szegd polynomials En+l u(x) . KE's to other
’

integration rules are discussed by Baratella [1], Kahaner and Monegato [5],

Monegato [9, 12] and Ramskii [15] .
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in the entire literature on this subject, It Is stated that the
KE's have error terms which vanish for polynomials of degree less than
Py (Gauss) or a, (Lobatto), and in Kronrod's tables, he gives the
error in the integration of xpn by the KEGGIR with p =1/2 . How-
ever , nowhere is it proved that these KE's are of exact degree pn-]
or qn-l as the case may be, that is, that there exists a polynomial of
degree Py ©OF a, for which the corresponding KE 1is not exact. Indeed,
such a statement is not true for all U . Thus, as Monegato [9] points out,
the KE of the n-point GGIR with w = 0 , the first Gauss-Chebyshev rule;
is exact for polynomials of degree < 4n-1 and in fact is identical with
the KE of the corresponding (n+1)-point LGIR, being the (2n+1)-point
LGIR, the first Lobafto—Chebyshev rule. . Furthermore, the KE of the
n-point GGIR with » =1, the second Gauss-Chebyshev rule, is exact for
polynomials of degree <bn+l and in fact, is identical with the (4n+1)
-point GGIR. In the present work, wg'shall show that, except for u = 0,1
in the GGIR case and u = 0 1in the LGIR case, we have the result that the
exact precision of the KEGGIR is pnfl while that of the KELGIR is qn~l
Furthermore, if these rules are of simplex type, i.e. if we can express tﬁe
error term in the form Knuf " (&) or Knuf %n (E) , which we have not

been able to prove, then we have the following result

n n+l
(10) if = izl u, flxg) + _Z- v, fly;) + LR (f)
= i=1 n
n+l _ n o _ _
(1) If = ;Zu u, FO) + ;Zx v fy;) + dn-l,u+lcnuqu(f-)
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where dn is easily computable and does not vanish for 0<uzg 2

b

v#1 ,andall n2 2. For u =2 we have the explicit expression

_ 2 n+l \"
a3\ i3 n even

- b(n+2) (n+1)™ 1/ (ne3) ™!

(12) Aoy =

n odd

where m =[{n+1)/2]

2. The Szego Polynqmials En+l,u

We give here the main results of Szega with some minor modification
of his notation and refer to [16] for details. See also Davis and Rabinowitz

[3, pp 82-89] and Monegato [111].
The Gegenbauer function of the second kind, QE(Z), defined by

r2u) 1 c”(t)

wlt;n) ==
2F(p+;—) -1 z-t

(13) Q#(Z) dt

2i

= __Eigﬂl__ z-n_l E B.zg
. i

1
2T (u+ 7 ) 1=0

where

] .
(W) gy = fwlt) e 0™ ae, =00,
]

is analytic in the entire complex plane with a slit on the closed interval

[-1,1] . Hence
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1 +1 ¢ =27 _
(15) Qﬁ(z) 2" izoqyi Z. - En+1,u

(z) + 6] z T+ 8,2+

defining the polynomial E (z) which is even (odd) for n odd (even).

n+l,p
Thus,

(]6) QE(Z) En+] ,u(z) =] + b] Z-n—z + b z-n—3 .

and by the argument given in [16] or [3]

n
N @) Ey @ = Toe Q)

for certain constants Core v i€y depending on -y and n . Since Qﬁ(z)
is an odd (even) function if n is even (odd), we have that

u
Qn(z) E u(z) is always an odd function which implies that ¢ =0 if

n s odd.

Now the functions of the second kind satisfy the following relations:

(18)  Tim (Q%(x+ie)-Q (x=ie)) = -in T _ i) c¥(x)
>0 n n T (u+ %9 n

(19)  lim (Qf(xric)+Qnix-ie)) = 2 G (x)

€0
where éx(x) is defined on the segment [-1,1]. Hence
(20) H §oect ()
¢, (x) By, (X) = .EO Civne1+i X
':

and
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(21)  QuUIE ) =1+ z i DL )
From (20) it follows that
(22) f wixiu) €00 E Ly (%) Kdx =0, k=0,1,2,...,n

-1

so that by the theorem in [3, p. 77], an interpolatory integration rule
based on the zeros of C:(x) and En+l u(x) is exact for all polynomials
1]

of degree < 3n+]l which forms the basis for KEGGIR'Ss

Now, it can be shown that

(23) Q(2) = v w "I (ot e )

-]

- _]_ZJ
£, n
Ynu jzo ju W

where z = %{uﬁw-‘), Yoy = Vm T{n+2u)/T(n+p+1) ,  F(a,b;c:z) s the

usual hypergeometric function, fou =1 ,

(24) Fip = (l‘u/J)(l'u/n+u+J')fj_] Lo

and we have not shown the dependence on n of the f,

. =i
Setting w=e e and x = cos § , we get that

o«

~

'U
(25) Q, . 20 uTnerez; )
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Since En+l (x) contains only even or odd powers of x , we

’

can write En+],u(x) in the form

, n even

m=~1 mu l
(26) SUNCER SRR SOOR
]
L'Z_Amu ’ n Odd
To determine the coefficients Aiu , we equate in view of (21) and (25)
the coefficients of Tk(x), k=1,...,ntl in the product
- @ m

1]

(27) Qn(x) En+l,u(x) ( ZO fJu Tn+l+2J(x)) ( ZO X' n+l ZI(X))

to zero and the coefficient of To(x) to unity. Here the prime means

that if n is odd, we replace A by %-A . Since

mu my
| . : .
= — that i
Tr(x)Ts(x) 7 (Tr+s(x) + T|r-s|(x))’ we see that the xi“ must satisfy

the following equations

-1

Aou = Zynu

(28) )
A = =

;Zof‘/*k":“ kK =1,...,m
Following Monegato [11], we define aiu = Aiu/A , so that
a =1, a, =-f and
op tu T

k-1

(29) Ay T T fku -7 fiuak-i,u k=2,...,m

i=1



56 .

From this, we see that the aiu are the first m+l coefficients in the

series
(30) ) o u'= (] f, uiy!
i=0 j=0 ¥
so that we can also use (29) for indices k > m . Here also we have

not indicated the dependence on n of the Aiu and aiu

3. The Exact Degree of Precision of KEGGIR's and KELGIR's

Let us define

BN f ) =) E

Then from (20) it follows that lfk O IR

applied to fk(x) vanishes, we have from (8) that Epn(fk) =c hn+l+k,u

so that the exact precision of the KEGGIR is determined by the first

h Since the KEGGIR

index for which € # 0 . We now show that for 0 <u <2, u#1, % #0

for n even and ¢y # 0 for n odd.

Consider first the case n even. Substituting (25) and (27) into-

(21) and equating the coefficients of T ,.(x) , we find that

n+2

Y

= Ny }
(32) Co Yn+l,u 5 {kmufou + Amuflu + Am_]’“fzu Fo.ot Aoufm+]’u

f

+ f, +o +oo4ay foo+ f =
amu OLmu Tu m-1,u 2y

-
1 mu ml,u o Pmu Cm+l,u
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Thus, it suffices to show that «u« -

a does not vanish. in fact,
my m+l,u

weashall show that the aiu are strictly monotonic. For 0 < yu <1

b

the sequence {fju} is completely monotecnic, i.e. (-l)kAkfEu >0 for

all j and k [17, p. 1371 . Hence, by a theorem of Kaluza [6], the

sequence {-ai+] u} is also completely monotonic and hence strictly

’

monotonic. For | < u < 2 , the sequence {‘fj+| U} is completely

*

monotonic. From this it follows by some results in [6] that

@y a
L1 N 3 H s 1= 1,2,...
a. i+]
i »H

(=)

Since z T converges, and in fact equals {F{1-u,n+);n+p+1;1)}
i=0

follows that the sequence {aip} is strictly monotonic. For yu = 2

.‘1 )
, It

’

Szego [16] gives an explicit expression for the Ai

i _ 2 1 n+1 i .
(33) Aoy = = (n+3> , i =0,1,...
which again shows that the a., are strictly monotonic.

We now consider the case n odd. Proceeding as before, this time

equating the coefficients of Tn+3(x) , we find that

y
= —H 6o f o

(34) C|Yn+2,u 2 mu lu+ m-l,ufou * Am-l,uqu * Am~2,uf3u+"'+xoufm+l,u

o +a  f. +a f, +..4+a, £  +f = -0y
m-l,u mp Ty mel,u 2p Tu mu m+1,u (m~l,u m+,u

#0 .

Since the %y are strictly monotonic, it follows that <)

- =1 = - _ 3
For n =20, fjo 1,i =0,1,2,... so that koo = A]O 2n/mw ,
2m
= H = e - ) 1
XIG o, R | and En+‘,0 n% {Tn+l(x) Tn_l(x) }, ny 2.

>
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Hence

N | 2
57 T Ton-} = K (I, =

o
(35) Cn(x)E 2n+1 "2n-1

n+l,0(x) - len{Tn —Tn b=

. 2, .1
k3(l-x )Czn_](x)

and the zeros of Cg(x) En+] O(x) are the abscissas of the .(2n+1)-point
LGIR for the weight w(x;0) which is of exact precision k4n-1, as can also

be seen from the fact that -2 is the first S which does not vanish.

= = HEEY =———2
For v =1, fOl =1, fjl =0, j>0 so that AO] - ,
— H -—2
Ail =0, i >0 and En+l,l(x) = —;— Tn+](x) . Hence

(3) ¢ "(x) E ]°T)* kU GOT L () = kz c; S

and the zeros of C;(x) En+]](x) are the abscissas of the (2n+1)-point
GGIR for the weight w(x;1) which is of exact precision A4n+] and
which also follows from the fact that <, is the first k which does

not vanish.

In the case of the KELGIR,we define

ry = (1-.,2y 0] o) cutl _
(37) fk(x) = {1-x )Cn_](x) En et n¥ﬂ+k5 x) , k=0,1,...n
so that lﬁ%= =) hn+k,u+l . Hence, since ¢, = co(n'l,u+l) # 0
for n-1 even, i.e. for n odd, while < # 0 for n-1 odd, we have

that the (2n+1)-point KELGIR is of exact precision 3n+l for n even
and 3n for n odd, provided that u # 0 . For u =0, we have as

before that E .(x) = Z—-T (x) so that
ni w% n
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(38) (1-7) € 60 E ) = k (=) ¢

i
2n—l(x)

whose zeros are again the abscissas of the {2n+1)-point LGIR for the

weight w(x;0) .

If we now define

; amu_am+1,u n even
(39) d = < )
nu ( “m=1,u “m+l,u n odd , m= [(n+1)/2]

we have that for the Gauss case

{co Yn+],u n even

(40) d

LF] Yn+2,u n odd

while for the Lobatto case

c_ Yy n even
( o) Yn,u+l

d =
n-1,u+l 4 Yn+l,u+1 n odd

where we have suppressed the dependence of s and ¢, on n and u.
This lead us immediately to formulas (10) and (11). For example,

applying (8) with n even to fo(x) , we have that

- -l.n
(41) € hn+l,u - Knuknqunpz kn+]’n(3n+2)l
so that
) d c
(42) K = I Pt .
nu Yo+t 2"k« (3n+2) ! Ph
’ nion+l LU 2 p !



60

_]3_

For n odd, we consider f](x) while in the Lobatto case we work with

?;(x) and ?}(x)

4. Remarks

a. Monegato [11] gives an error bound for KEGGIR's with 0 < p < 1
We shall show how to improve this bound slightly and extend it to the case

1 <u<2 as well as to KELGIR's with - %“ wgl ,nu#0.

For n even, Monegato writes the error Ep (f) for fe€ C3n+2[-l,1]
n

in the form

13 £ (F) = 2 f] () €60 (B, en? B2 ¢ )y
3 P knu(3n+2$! 0 WRGHE A PO e x!
where
m
= 1
(44) En+l,u(x) En+l;u(x)/xop iZO aiu n+l—2i(x)
Hence
l l T (n+2p) B:H )
(45)  |E_ (A)] < - ' M
Pn 23n+2u ! pnl r(p+1)T(n+p)  Pn
where M = max |f(5)(x)i and B = max |E (x) |
n+l,u n+l,u
~-1<x1 -l<xg]
For 0 < u <1, Monegato states that Bn+l " <2 and replaces

Bn+],u by 2 in (45). Now while this bound is the best available
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for 0 <y g %- , we can improve on it for 1. po< 1

2

bound on B is also available for 1 <y <2 .

n+l,u

our observation above that

61

In addition, a

This follows from

© - H
(46) ) a, = {F(1-u,n+1;n+u+l, 1} = T, = LT (n+2u)
i=0 '® o (nep+1) T (2u-1)
Now for %—< w<l1, a°u =1, alu <0, i> Since
Tl | ) I
B o, =1 - 1 - a,
e T e i= =1
it follows that B < 2-T <2 . For 1 <yuc< 2, we have that
n+l,u nu m
aiu >0, all i . Hence B +,u < ,aniu < Tnu For n=2,

- -1
= - n+l = N*3
.aniz - (' n+3 ) 77 Bhi,2

>

1
2

u# 1,2 .

For n odd, using classical arguments, we have the same bound.

In the Lobatto case, we have similarly for n odd that

0 <wuw <

b

2-2n i
_ 2 . p+] = 2.(3n) 7
(47) Eq (x) = G f w(x,u+l)Cn_](x) <En,u+l(x)) f (Ex)dx
n n-1,u+l -1
whernce
7 T(n+2u+1) B2
I I n,u+l
(48) E (f)] < — M
qn 23n+2u qun! r(n+u)r(u+2) qn
i
where for kY <up<0, Bn,u+l < Z-Tn-l,u+1 and for
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Bn,u+] < Tn—l,u+] . For u=1, 8 < ———= . As before, the same

bound holds for n even.

b. The Fourier-Gegenbauer coefficients of a function f(x) are defined

by

1

(49) FGnu(f) = h;u

1
[ wix;u) Cz(x)f(x)dx , n=0,1.
-1

As Barracund [2] points out, the integral is most efficiently evaluated
by a (2n+1)-point KEGGIR applied to the function Cﬁ(x)f(x) which reduces

to the (n+1)-point formula

-1 n+l " n+l
o~ = fly.
(50)  Fe (A =h_ izl v, ¢ (y) izl v, fly;)
For u # 0,1 , we get a rule which is exact for polynomials of degree
<p,N which is the best possible. For assume that there existed an

(n+1)-point rule, say

n+l .
(51) FG (F) = ] v, f(y,)

i=]

exact for polynomials of degree p,"n » N even. This would imply that

] n+}

(52) -{ w(x;u)C:(x)En+‘ﬂ}x) ig‘ (x-y;)dx =0

which contradicts our results above. Similarly for n odd.

For u =0, the rule (50) is exact for polynomials of degree

<3n-1 , a result which has already been reported in[8] . For u =1

’

(50) is exact for polynomials of degree <3n+l which is the best possible
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result, so that the highest precision is achieved for Fourier-Chebyshev
coefficients of the second kind. However, we should warn the user that
the welghts ;i in (50) alternate in sign inasmuch as the v, are
positive and the zeros of Cz(x) separate those of En+l,u
that the Ca(yi) alternate in sign.
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