Some problems in char. p > 0

M. Raynaud

Let X be a smooth proper scheme over k, k being algebraically closed of char. p > 0.

I. Concerning De-Rham-Witt complex:

- a) If X is an abelian scheme, try to compute $\operatorname{H}^{\dot{1}}(X, \operatorname{W}_{n}\Omega^{\dot{j}})$ in terms of $\operatorname{H}^{\dot{1}}_{\operatorname{crys}}(X, \operatorname{W})$.

 If it is not possible, what are the new invariants one has to introduce ?
- b) Define a Poincaré duality in terms of D.R.W. (?) Probably one will have to lift in char. 0 the Residue calculus.
- c) If Y is another smooth scheme, what are the relations between $DRW(X \times Y)$ and DRW(X), DRW(Y)?
- d) Look for some geometric interpretation of the Cartier modules $H^{i}(X, W\Omega^{j})/V$ -Torsion, generalizing the Cartier modules of formal Brauer groups $H^{i}(X, W\Omega^{0})/V$ -Torsion.

II. Torsion phenomena in problems of lifting from char. p to char. 0:

Let R be a complete discrete valuation ring of unequal characteristics, and of ramification index e. Let $X \longrightarrow R$ be a smooth proper scheme with closed fibre $\overline{X} \longrightarrow k$.

- 1) If $e (or <math>2e ?), can we have non-closed 1-forms on <math>\bar{X}$?
- 2) Let L be an ample invertible sheaf on x.

If $e \le p - 1$, I have proved in my paper at Colloque de Rennes (cf. Asterisque. 64 (1979)) that $H^{1}(\overline{X}, L^{-1}) = 0$.

If $X \longrightarrow R$ is of relative dimension ≥ 3 , what can be said about $H^2(\overline{X}, L^{-1})$?

If the dimension of the formal Brauer group does not jump from generic fibre to closed fibre, my proof works also for the ${\rm H}^2$. So, can the dimension of the Brauer groups jump?

III. Problems on surfaces in char. p > 0:

X is a proper and smooth surface.

- 1) (Analog in char. p of the Castelnuovo theorem) Suppose $c_2(X) < 0$ ($c_2 = \text{top. Euler characteristic}$). Does X admit a fibration f: $X \longrightarrow C$ such that genus $C \ge 2$ and the generic fibre of f is of geometric genus 0 ? (A surface with such a fibration is called a false ruled surface, in case it is not a (true) ruled surface.)
- 2) Let f: X \longrightarrow C be a false ruled surface with genus C > 2 and with generic fibre of arithmetic genus \ge 2. Is $\chi({\bf G}_X)$ \ge 0 ? (Notice that $12\chi({\bf G}_X)$ = c_1^2 + c_2 . The interesting case is where c_1^2 > 0 and c_2 < 0.)
- 3) Let X be a K3 or an abelian surface, H a general hyperplane section.

Is the difference between jacobian of H and jacobian of X (Picard variety) ordinary?