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Threefolds whose canonical bundles are not numérically effective

Nagoya University

Shigefumi Mori

Introduction. In this paper, we study the cone NE(X) of effective

l-cycles on a non-singular projective variety X and state how
this resuit on the cone can be applied to the study of 3-folds.

If the first Chern class cl(X) is ample, then NE(X) is
spanned by finitely many edges (Theorem 1.1). In general, NE(X)
has edges (called extermal rays) in the set S = {Z & NE(X) l
(Z.cl(X)) > O}‘ if S # ¢ (Corollary 1.7). This extremal ray is
spanned by a class representedvby a rational curve (Theorem 1.3).
From thié,/folloﬁs the ésserﬁion : the canonical bundle Ky is
numerically effective if X contains no rational curves.

In Chapter 2, we give a geometric interpretation of extremal
rays on a surface and explain how the result is generalized to
the case of 3-folds : if X 1is a non-singular projective 3-fold
with an extremal ray over an algebraically closed field of
characteristic O, we have either (1) X has an exceptional
divisor which is described explicitly, (2) X 1is a conic bundle
over a surface, (3) X has a morphism to a curve whose general
fibers are Del Pezzo surfaces, or (4) X 1is a Fano 3-fold such

that Pic X 2z,
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Chapter 1. The cone of effective l-cycles.
§1. Notationm, definitioﬁs,rand statements.

Let X be a non-singular projective variety of demension n
defined over an algebraically closed field k of characteristic
p =2 0, with a very ample divisor“H. We will keep thege symbols
throughout this paper.

By a l—EXElé on X, we understand an element of the free
abelian group generated by all the irreducible reduced sub-
varieties of dimension 1 (or curves) of X. A l-cycle Z =ZL.n,C

c

(nC € Z) 1is called effective if n. >0 for all C. .If two ...

l-cycles Z1 and Z2 are algebraically equivalent (resp. numerically

equivalent) in the usual sense [2], we express it as .Z, =.Z

1 "2
(resp. = Zz)' Let
A(X) = ({l1-cycles on X}/ ® z O
N(X) = ({1-cycles on X}/=) ® R,

/A
and AE(X)(resp. NE(X)) the smallest convex come in A(X) (respw N(X))
containing all effective l-cycles, closed under multiplication

by @, ={qeQ | ¢ = 0} (resp.iR+={r eR | r 20}). Via the
intersection pairing ( . ) of l-cycles and divisors, N(X)

is dual to NS(X) @

Z]R, where NS(X) is the Neron-Severi group,

{divisors of X}/x. Thus N(X) 1is a real vector space of finite
dimension p(X), the rank of NS(X). Letvll|[be any norm pf
N(X). Then NE(X), the closure of NE(X) for the metric
topology, is dual to the pseudo—ample cone of "X (cf. [2]) by
Kleiman's criterion for ampleness : a divisor D on X is ample

if and only if (D.Z) > O for all Z e NE(X) n {Z ¢ N(X) | ||Z]| = 1}.
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This cone NE(X), which is interesting from various
viewpoints, is rational polyhedral if cl(X), the first

Chern class of X, is ample.

Theorem 1.1. If cl(X) is ample, then X contains

finitely many rational curves & see lr such that

1’ 12’ b
ﬁli.cl(x)) < n+l for all 1,

a) AEX)

Q2] + cee 4 Qe ] if p>0, and

b) NE(X) = ]R+[£ + eee 4 R+[R, r] if p 2 0, where

N
[Z] denotes the class of 1l-cycle Z.

To be precise, a rational curve means an irreducible
. . . . 1
reduced curve defined over k whose normalization is P k

This theorem enables us to improve our Theorem 3 in [5].

Corollary 1.2. 1If cl(X) is ample, then

a) a divisor D on X 1is ample if D 1is numerically
positive,

b) p(X) =1 if every numerically effective divisor
is either numerically trivial or ample, and

c) p(X) =1 if every non-zero effective divisor is
ample and p = 0, where a divisor D 1is said numerically
positive (resp. numerically effective, ﬁumerically trivial)
if (D.Z) > 0 (resp. (D.Z) =2 0, (D.Z) = 0) for all irreducible

curves Z.
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Indeed, (a) follows from NE(X) = NE(X) by virtue of
Kleiman's criterioﬁ. If p(X) > 1, then we can take a divisor
D such that D> 0 on the interior of NE(X) and D =0
on iR+[li] for some i és a real valued linear function on
N(X), which implies that D 1is numerically effective, and not
numerically trivial, or ample. This shows (b), and (c) follows
from (b) by Lemma 2, (2) in [5].

To study NE(X) for a general X, we need more definitions.

For an arbitrary positive real number €, let

A

E(Z'H)} ’

A_(X, B) = {z e AX) | (z°c (X))

Y

N (X, H)

7Y

zenw | @e () < e@ml,
AEE(X, H) = AE(X) 0 AS(X,H), and NEE(X, H) = NEX) n NE(X, H).

If there is no danger of confusion, Ae(X, H), NE(X, H), AEE(X,H),
NEE(X, H) will be abbreviated to AE(X), NE(X), AEE(X), NEE(X),

respectively.

Theorem 1.3. For an arbitrary positive ¢, there exist

g finite number r (= 0) of rational curves 21, cee, zr in X

such that (zi-cl(X)) < n+l for all i,
a) AE(X) = Q+[21] + ooee Q+[1f] + AEE(X) if p >0, and
b) NE(X) =R, [g,] +---+R[L] + FE (X) if p 20,

where NE_(X) = NE(X) n N_(X).

Now Theorem 1.1 follows from Theorem 1.3. Indeed, if
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Cl(X) is ample, then AEE(X) = ﬁﬁ;(x) =0, when 1l/e 1is a
Sﬁfficiently large integer such that (l/e)cl(X) - H is ample.

Theorem 1.3 will be proved in the next section.

§2. Proof of Theorem 1.3.

We will begin by reformulating Theorems 4 and 5 in [3].

Theorem 1.4. For a non-singular projective curve C of
genus g dvef k and a morphism f : C + X, there exist a
morphism h : C »~ X and an effective l-cycle Z with the
pProperties ; (a) (h*(C)fcl(X)) < ng, (b) an arbitrary irreducible
component Z' of Z 1is a rational curve sqch that (Z'-cl(X)) <

n+l, and (c) £ (C) = h (C) + Z.

Proof. 1In the statement, £  is the cycle-theoretic
direct image ; £ _(C) = 0 if dim f(C)= 0,[C : £(C)] £(C) if
dim £(C) = 1. We will treat two cases.. First we assume g = O.
We use induction on (£,(C)*H). If (f*(C)-cl(X)) s‘n+1,
then we can set ‘'h  to be any constant map and Z = f*(C).

If (f*(C)-cl(x)) > n+l, Theorem 4 [3] implies that £ _(C)==

Z1 + 22, where Zl and 22 are non-zero effective l-cycles
whose components are rational curves. . Since‘ (£,(C)H) =

(Zl'H) + (ZZ’H), we can apply the induction hypothesis to Z,
and 22, and the case g = 0 is donme. We prove the case g > 0
again by induction on (£, (C)-H). If (f*(C)'Ci(X)) < ng, we

can set h=f and Z = 0. 1If (f*(C)-cl(X)) > ng, it follows



from the proof of Theorem 5 [3] that f£,(C)= £' (C) + U, where
‘ £' : C> X and U 1is a non-zero effective l-cycle whose
components are rational curves. Since U % 0, (£',(C)*H) <

(£, (C)*H). Now we have only to apply the induction hypothesis
to f' and the result on the case g =0 to each component

of U. q.e.d.

Now Theorem 1.3, (a) 1is an easy corollary to Theorem 1.4.

Proof of Theorem 1.3,(a). Let us consider the set & of

all the rational curves £ in X such that (2-cl(X)) < n+l
and [2] ¢ AEE(X). These curves £ form a bounded family,
i.e. parametrized by a quasi-projective scheme [1, n°221, 4 ,

because (L°H) < (l-cl(x))/S <

< (n+l)/e. Hence there exist

finitely many rational curves Zl’ KN zr which form a

complete set of representatives of &/. We will show that the
= + oo 4 + 3

convex cone V Q+[21] Q+[£r] AEE(X) is equal to

AE(X). We treat two cases. Let £ Dbe a rational curve in X.

By Thoerem 4, 2= Z for some effective l-cycle Z whose

components Z' are rational curves such that (Z'-cl(X)) < n+l.

Thus for each component Z' of Z, we have either Z' € & or
Z' ¢ AES(X). Hence [2] € V, and the rational curve case is
done. Let C be a non-singular projective curve of genus
g>0 and f : C~» X a morphism. Let Ci be the p_i—th

~ power of C and ", : Ci -> Ci— the p-th power morphism. We

1

then inductively find morphisms. £, : Ci + X and its image
i

Di = fi*(ci) for i > 0 so that f0 = f,v(Di+1-cl(X)) < ng,

-6 -
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and p[Di]—[Di+1] € V for all i 2 0. 1Indeed, if we apply

Theorem 4 to fi°“i+1 : C]._d'_1 - X, then we get h = fi+1 and

h (C

(G = D

i+l such that p[Di] - [Di+1] is equivalent to a

sum of rational curves which belong to V as we have seen before.
Now if {Da] e V for some a, then [DO] e V Dbecause

a~1 -j-1 -a
= I P %57 Pig) TP Dy

If [D] ¢ AEE(X) for all i, then (Di-H) < (Di cl(X))/s < ng/e
. i
for all i. Since (Di-H) is uniformly bounded, there are

numbers a and b such that D A D, and a < b [1, n°221].

Then
b-1 .
. b-a_ _ b-1-i _
l)Da.v p D ,-D = iia P (pDi Di+1)

b_
(2

implies that [Da] e V, from which follows [DO] e V. q.e.d.

To prove a result in characteristic 0, we prove a variant

of Theorem 1.3, (b) which is actually equivalent to Theorem 1.3,(b).
Lemma 1.5. Let Z be an effective l-cycle on X such

that (Z-cl(X)) >0, and M an arbitrary ample divisor on X.

Then there exists a rational curve Z' such that

ntl (c; (X)-2") N (e, (X)+2)
ez -7 @z T (Mez)

Proof. If we can prove the lemma in characteristic p > 0,
we can prove the lemma in characteristic 0 by using the
arguments on schemes over Spec Z Dbecause the inequility
in the theorem gives an upper bound of (M-Z'); (M-Z') < (n+l) (M-Z)/
(cl(X)-Z) which is independent of p (see the proof of Theorem 6

in [3]). Hence assuming that p > 0, we can apply Theorem 1.3, (a).
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We choose ¢ so that 1/¢ 1is a natural number and (1/e)M -
2(M-Z)H 1is ample. Then there exist non-negative rational numbers
aj, *rcs Ay and Y ¢ NEE(X) such that [Z] = Zai[gi] + Y.

Since .Y ¢ NEE(X) and M-Y) = 2e (M-Z) (H-Y), we see (cl(X)-Y) <
e(HY) < (MY)/2(M-Z). Thus

(cl(X)-Z) Zai(cl(x)-zi)+(M-Y)/2(M-Z)
M-y S Ta, (M%) + (1Y)

and since a; 20 and M-Y) =2 0, we have

(c1 X)-2) (cl(X) -JLi) 1

D < Max {Mix (M'Ri) » ST }.

Since (cl(X)-Z) > 1, we can take Z' = li for some 1i. q.e.d.

Let us prove Theorem 1.3, (b). As in the proof ‘of
Theorem 3, (a), the set & of rational curves 2 in X such
that (Q-cl(X)) < n+l and [2] ¢ NEs(X) is bounded, and ¢/&

has a complete set of representatives &., **+, & . We claim
1 r :

Lemma 1.6. The cone V =ZR+[21] + oo +:R+[£r] + NEE(X)

is closed in N(X) :'RP(X).

Proof. Let Z ¢ N(X) be a limit of Z(i) = a(i, 1)21 +
eee + a(i, r)ﬁz,r + Y1) ({1 =2 1), where a(i, j) sﬁR+ and
Y@AE) ¢ ﬁﬁ;(X). Then the sequence (Z(i)+H) 1is bounded because
(Z(i)+H) » (Z°H) as 1 » . Since a(i, j) < (Z(i)-Hi/(lj’H)
and (Y(i)-H) < (Z(i)-H), the numbers a(i, j), (¥Y(i)+H), and
hence |‘Y(i)|] have a uniform upper bound by Kleiman's criterion.

Thus there exists a subsequence Z(ni) such that a(ni, j) and

Y(ni) converge as 1 - », whence Z ¢ V. q.e.d.
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Going back to the proof of Theorem 1.3, (b), we will assume that
V'#>ﬁﬁ(X) and show that this leads to a contradiction. By the
ampleness of H, NE(X) n {Y € N(X) l (Y°H) = 1} 1is compact.
Hence byrthe separation theorem for convex sets, there is an
element M & NS(X) ® Z]R with the properties? (a) M2 0 on
NE(X) and M(2Z) =0 for some non-zero 7Z in NE(X), and

(b) M >0 on V - {0} considered as a real valued function

on N(X). By the above compactness, there exist a sequence

{Mj }jzo

of ample divisors and a sequence {mj}jZO of natural
numbers such that M is the limit of Mj/mj in NS(X) ® z B

as j > <. Let .Z (given in the condition (a)) be the limit of
[Zj]/nj, where Zj is an effective l-cycle and nj a natural
number. Since V1 =V n {Y £ N(X) \ (Y-H) = 1} is compact,
(cl(X)-Y)/(Mj/mj°Y) converge uniformly to (cl(X)-Y)/(M-Y) when

j > as functions on Vy. Hence (cl(x)°Y)/(Mj/mj'Y) G =0,

Y ¢ V - {0}) are uniformly bounded. We have (cl(X)°Zj)/(Mj/mj'Zj)
»> +o as j = « Dbecause (M-Z) = 0 and (cl(X)-Z) >0 (Z¢V).

Hence for a sufficiently large j, we have

(e, (0°2) (e (01

M'OZ. M..Y

If we apply Lemma 5 to these Zj and Mj (note that (cj(X)~Zj)
> 0), we get a rational curve % such that

ntl (cl(X)-k) . (cl(X)-Zj)
(Mj-l) (Mj-l) .(Mj-Zj)

This inequality (together with the above) means that 2 ¢ V and

(cl(X)-l) < n+l. Since V g_ﬁE;(X), we have & ¢ ﬁEE(X) and

-9 -
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% ¢ ®. This implies [%&] € V, which is a contradiction. Thus

Theorem 1.3, (b)> is proved.

§3. Concluding remarks.
A half line R = I{+[Z] in N(X) 1is called an extremal

ray if (1) (Z-cl(X)) > 0, and (2) Z1 and Z in NE(X) belong

2

to R 1if Z1 + Z2 ¢ R. A rational curve ¢ in X is an-

extremal rational curve if (R-CI(X)) < n+l and 'R#[l]"is'

an extremal ray.
It is not hard to restate Theorem 1.3 without using‘ H and
€ (cf. [4]). Here we simply state an immediate corollary.
Corollary 1.7. X has an extremal ?ational curve if and
only if KX is not numerically effective.
Only if part is obvious. If KX is not numerically effective,
then NE(X) # EEg(X, H) for sufficiently small positive €. Then

at least one of %i's in Theorem 1.3 is an extremal rational curve.

Chapter 2. Threefolds with extremal rays.

Let k be an algebraically closed field of an arbitrary
characteristic p > 0, and X a non-singular projective variety
over k whose canonical bundle KX is not numerically effective.
By Corollary 1.7, X has an extremal ray R, which we fix in
this chapter.

§]. Case of surfaces.
Let us begin with the case of surfaces X with an extremal

ray R as an introduction to the case of 3-folds.

Theorem 2.1. If X is a surface with p(X) > 1, then we

_10_
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have one of the following 2 cases:

(1) X contains an exceptional curve E of the first kind
such that R = H{+[E], or

(2) X is a IEl-bundle over a curve C with structure

morphism wm : X —> C such that R = :m+[xt], where t e C .

This result treats the case where "adjunction terminates"
except for the case p(X) = 1, which implies that X ¥ ]PZ. The

following lemma is essential for Theorem 2.1.

Lemma 2.2. Under the assumption of Theorem 2.1, let ¢ be
an extremal rational curve generating R. Then (22) < 0, where

(22) is the self-intersection number of % on X.

Proof. Assuming (22) > 0, we will get a contradiction.
Let H be an ample divisor on X. Let D be an arbitrary
divisor on X such that [D]/¥DIl is ciose enough to &/)% so
that (0°) > 0 and (D.H) > 0. Then H(6(aD)) = HO(B(R,-mD)) = 0
for n >> 0 because ((KX—nD).H) < 0 for =n > 0. Thus
R (@D)) > x@©@D)) = n’(0?)/2 - n(D.K)/2 + x(&) and
n(e(aD)) > 0 for n >> 0 because (D?) > 0. Whence [D] e NE(X)
which contradicts the assumption that £ is on the boundary of

ﬁﬁkx). Thus (22) < 0. .q.e.d.

Lemma 2.3. Under the assumption and notation of Lemma 2.2,
we have (1) & 1is an exceptional curve of the first kind if
(£2) < 0, and (2) if (22) = 0, then an arbitrary irreducible

curve D such that [D] € R has the property that D ¥ ]Pl,

- 11 -
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(D2) =0, and (D. KX) = =2,

Proof. From
0<p (1) =1+ (29)/2+ (L.RD/2 <1+ 0/2+ (-1)/2 = 1/2, we see
that pa(k) = 0 and (22) = (2.K) = -1 if (22) < 0. Thus case (1)
is proved. In case (2), we have (D2) = 0 because [D] ¢ ]{+[Z]
1

and (22) = 0. Hence just like case (1), we see that D & P

and (D. KX) = -2, ’ q.e.d.

Proof of Theorem 2.1. By Lemma 2.3, it is enough to show that

in2] is composite with a iEl—bundle X—2>C for n> 0 if

2, _ e ' 0
(27) = 0. By Rieman-Roch theorem, we see that h (©(nf)) 2
x(&(ne)) = X(ek) +n for n > 0. Thus, for some n >> 0, |n%
is free from base points and fixed components (note: (22) = (0) and

is composite with a pencil = : X —> C such that

Since R = ]R+[£] is an extremal ray (an "edge" of NE(X)), every
irreducible component D of an arbitrary fiber of w belongs to
R, whence D = IP1 and (D. KX)=—2 by Lemma 2.3. From

(D. KX) = -2, we see that every fiber of w7 1is irreducible reduced

and hence 7w is a Iml—bundle. q.e.d.

Now ' Theorem 2.1 is generalized to the case of 3-folds X
with p(X) > 1 as follows. Case (1) of an exceptional curve of
the first kind is generalized to an exceptional divisor of several
types which we classify explicitly. The complexity of the case
reflects that of birational geometry of 3-~folds. Case (2) of
Pl—bundle is generalized to two cases, a fiber space structure

X =Y where (a) every fiber is a conic, or (b) every fiber

- 12 -
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Xy is an irreducible reduced surface and wy is negative.

y

§2. Case of 3-folds.
In this section, we assume that the base field is of
characteristic 0 and X is a 3-fold over k, with an extremal

ray - R.

Theorem 2.4, There exists a morphism ¢ : X > Y to a

projective variety Y such that (1) ¢*0X = GY and (2) for

any irreducible curve C in X, [C] € R if and only if dim ¢(C) = 0.

Furthermore, such a ¢ 1is unique up to isomorphisms.

The structure of this ¢ 1is given by the following theorems.

Theorem 2.5. The extremal ray R 1is not numerically effective
if and only if dim Y = 3. ' If these conditions are satisfied,
then there exists an irreducible divisor D of X such that X
is the blowing-up of Y by the ideal defining ¢(D) (given the
reduced structure), and we have either

(1) ¢(D) 1is a non-singular curve and Y 1is non-singular ;
¢ID : D > ¢(D) is aIPl—bundle and (D.¢—1(n)) = -1 for any
n e ¢, |

v(é) Q = ¢(b) is a point and Y 1is non-singular ; D zi@z
and G, (D) =0p(-1), SRS

(3) Q= ¢(D) 1is an ordinary double point of Y ;
D :]Pl ><IP1 and GD(D) > py *&P(—l) ® P, * @']P(—l) , where
1 is the i~-th prqjection,

(4) Q= ¢(D) 1is a double point of Y ; D = an irreducible

- 13 -
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reduced singular quadric surface S in P3, @b(D)

(5) Q=4¢(MD) 1is a quadruple point of Y ; D = E’z, eb(D) ~
@}P (-2).
Let & be the local ring of Y at Q for cases (3),

Y,Q ’
(4), and (5) in Theorem 2.5. Then we have

Theorem 2.6. (1) The divisor class group of 8& Q is
0 1in cases (3) and (4), and 'Z/ 2Z. in case (5), and

(2) the completion &, .~ of O is given by

Y,Q Y,Q

k[[x,y,z,u]]/(x2 + y2 + 22 + u2) case (3),

QY Q= k[[x,y,z,u]]/(x2 + y2 P u3) case (4),

k[[x,y,z]](z) case (5),

(2)

where k[[x,y,z]] is the invariant subring of k[[x,y,z]]
under the action of the involution (x,y,z) > (-x,-y,-z).

The remaining cases are treated by

Theorem 2.7, If R 1is numerically effective, then Y 1is
non-singular, p(X) = p(Y) + 1, and we have either

(1) dim Y = 2, and for an arbitrary geometric point n of
Y, the scheﬁe~theoretié fiber Xn is isomorphic to a conic of
K)Zk(n)’ where k(n) 1is the field of n(i.e. Xn is isomorphic to
either a smooth conic, a reducible conic, or?double line),

(2) dim Y = 1, and for an arbitrary geometric point n of
Y, Xn is an irredu¢ible reduced surface such that w;_l is

X
n

ample, or

(3) dim Y =0, and X 1is a Fano 3-fold, (these 3-folds are

- 14 -
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classified by Iskovski [6]).
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