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An Analysis of the Painlevé Equations by Bilinearization

Shin'ichi 0Oishi, Waseda University

1. Introduction

-6)

Recently, in a series of papersl the present author

has shown that the solutions expressing interactions between
solitons and ripples can be obtained for a wide range of soliton

equations by starting with their bilinear forms. Moreover, it

7-9)

has been also shown that some special examples of the Pain-

levé equations can be analysed by using their bilinear forms.

In the present note, we shall briefly review such results by

0)

taking the Hirota equationl and a special form of the fourth

Painleve equation (P for short) as examples. It should be

N 14

noted here that such results have deep relations to the cele-
brated theory of the monodromy preserving deformation of the
ordinary differential equations, which has recently been devel-

oped strikingly by M. Sato, Y. Sato, Miwa, Jimbo, Ueno and oth-

11)
ers.

2. The Hirota Equation

‘ . . . 10
In this section, we are concerned with the Hirota equation )

of the following form

. . 2 . 2
iug+i3afu| ux+Buxx+1yuxxx+6|u| u=0, _ (2.1)
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where u=u(t,x), the subscripts denote partial differentiations

and o,B,Y, and 6§ are real constants satisfying the relation

aB=y3$ (2.2)

10)

It is known that eq. (2.2) can be transformed into a bilinear

form
(iD, +8 D2+iyD>) g+ £=0 (2.3.a)
t X X cT
) . .
YD £« f=agg , (2.3.b)
by. the dependent variable transformation
o-u=qg/f, (2.4)
where f is a real function. From eq. (2.3.b), it follows that
lu|?=52(10g £) | (2.5)
2Y xx° , ‘

The solution of eq. (2.3) expressing interactions between soli-

tons and ripples can be obtained in the following form

=1+ § £, A (2.6.a)
n=1 .

2]

g= ng ) ' (2.6.b)
n=1 2n-17



where

1 .
o=l ol pwt e T ¥ (B,3)

(nl) 1<h<j<2n
n ) n .
xex .+ . I dr(k.)dt* (k*
: p[j£1(¢3 $n+])]j=l (kg)dr* (%, )
and
an—l=n'(i-l)lfr'°'fpfp*"'fp* I Wn(h;j)
) ) 1<h<j<2n-1
n - n-1 v
*
xexp[jzl(¢j+¢n+j)+¢n] [jEldT (eg)dr*
Here,
bi=k.x-0.t, Q.=—ifkZ+ykd, (3=1,2,+++,n),
s Rl j 3T
b.=k*x-QFt, QF=iBk*2+yk*>, (j=n+l,n+2,+++,2
¢j=kix-afe,  QF=iBkiT4vkiT, (3=n+l,n+2,:--,2n),
and

57(3h+k§) K (l;h;n,’n+;§g;23)
exp ¥, (h,3)={ 2Lk, -k )%, (Lgh<izn)

—%(kﬁ—kg) ,  (n+1<h<j<2n)
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(2.7.a)

j*)]dT(kn)-

(2.7.b)

(2.8.a)

(2.8.b)

(2.8.¢)

The measure dT(k)JiSJdefinedbe'frdr(k)=fF5Kk)dk,~where a(k) is

an arbitrary function of k satisfying suitable conditions and T
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is a contour in a left half of the complex k;plane going. from
k=-io to k=i,

We can see that the function f and g defined be eq. (2.6)
really satisfy eq. (2.3) from the facts that eq. (2.3) has the N-
soliton solution and the functions f2n and Ion-1 enjoy the fol-

lowing relations

n
. 2.,
) (1Dt+BDx+1yDi)g2(n_j)+l-f2.=0, (2.9.2n+1)

j=0 J

o 2
} (yDIf £, .-
j=0

x 2(n-j) 27 g2(n-j)—l.g§(j+1)—1)=0' (2.9.2n)

for n=0,1,2,+-+, where g_l=0. We note here that the function £
can be rewritten in a Fredholm determinant form
0

n
fF=l+ ] ——feee[Tdet (6_0*) T
n=1 2y(n!)2 X X nn j=

[0}
‘ dx.dy.
13

=1+ ] 2T [Pdet (Y ) T .dx., | (2.10)
n=1 2ynl’x X n j=l J

where @n and Wn are nXn matrices defined respectively from the

function F(x)=frexp(kx-9t)dw(k) as follows: the h-j element of
. : (. ) Pk i

@n is F(xh+yj) and that of Wn is fo(xh,y)F (y,xj)dy. It is

easily seen that the function f is the Fredholm determinant of

the following integral equation

\K(x,y)+F(x+y)+f:f:K(x,sl)F(sl,sle*(sz,y)dslds2=0. (2.11)
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3. The Fourth Painlevé Equation

We now show that using the result obtained in the preceeding

section, we can derive an one parameter family of solutions for

a special form of PII'

Schrddinger equation

To this end, we note that the nonlinear

. 2 _ .
1ut+2|u[ u +u =0, (3.1)

which is obtained form eq. (2.1) by putting a=y=0 and B=§/2=2,
reduces to a special form of le

w' = (2w) "L w') 2= (32w) " -2w (3wl-zwtw/16) (3.2)

by the similarity transformationlz)

1., iz%/4 |
ul(t,x)=v(z), w(z)=7I[log(e v(z)/v*(z))]"'. (3.3)

Here, the prime denotes the differentiation with respect to z=xt

and in the following, we shall refer to eq. (3.2) as Pi,.

In the first place, we show that the bilinear form of Pi,

can be derived from that of eg. (3.1). For the purpose, we put
f(t,X)=T1(Z) _ (3.4.a)
g(t,x)=t"

1/212(2) . E ' (3.45b)

in eq. (2.3) with a»0, y»0, o/y>2, and B=§/2~1:

1/2
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(iDt+Di)g-f=0 ~ (3.5.a)
2
Dxf'f=2gg*. (3.5.b)

Then, eqg. (3.5) is transformed into

. 2
[1(zDZ+I)—2DZ]T2-Tl=0 (3.6.a)
e =Dk '
Dle T, 21212 ) (3.6.b)

and eqg. (3.3) into

. 2
w(z)=§%[log elZ /4T2<z)/r§(z)]'. (3.7)

Thus we found that eq. (3.6) is the bilinear form of Pi, and

is connected with P! through eq. (3.7).

v

We now construct an one parameter family of solutions for
Pil' For the purpose, we note that if a solution of eg. (3.5)
enjoys the conditions (3.4.a;b), it is also a soltions of eq.

(3.6). Having this in mind, put:

' dr (k) =dk, h | (3.8.a)
¢j=i(ij—k§t), (§=1,2,+++,n) , © (3.8.b)
,¢j=-i(ij—k§2t), (§=n+1,n+2,-++,2n) : (3.8.¢)
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_(kh-kg)—z, (1zh<n, n+l<j<2n)

exp y_(h,3)= —(kh-kj)z, (1<h<j<n) (3.8.d)
—(kﬁ-kg)z, (n+1<h<j<2n)

and deT(k)=ffwdk in eq. (2.7). Then, we can see that

fzn(t,x)=T (3.9.a)

1,2n %)

(t,x)=t"1/2 (3.9.b)

Ion-1 T2, 2n-1 (%)

so that the functions f and g enjoy the conditions (3.4.a,b).,

where

12,2n=1(z)=92n—1(t=1’z) ldT (k) =dk " (3.10.b)

Thus, we found)that the functions
_ S _2n '
T, (2)=1+ z a”"1y on(2) (3.11.a)
n=1
and
o S _2n-1 '
7T2(z)—n£1a T3, 2n-1 (%) (3.11.b)

become a solutiom of eq. (3.6), where a is an arbitrary real.
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