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In this note we apply the soliton theory to the problem of
finding exact solutions of the stationary axially symmetric
Einstein equations. Several works have been done for this purpose.
For example, the existence of inverse scattering formulae mani-
fested the relations of the equations to the soliton equations
[i],[Z],[S]. A certain inverse scattering problem was aCtﬁally
solved to give the soliton type solution [4]. On the other hand,
some Bdcklund transformations were presented without deriving
exact solutions [5],[6]. The present work gives a Bicklund
transformation and Kasner type solutions for the stationary

axially symmetric Einstein equations.

1. Spin representation and reduced system of Einstein equations

As is well known, the stationary axially symmetric gravita-
tional field can be found from the solution of the Ernst’s

equation [7]
(ReE)AE = VE-VE, ' (1D

where E = £ + iy . f and ¢y are functions of .p, z only, V and A
are the gradient and Laplacian operators in the three-dimensional

Euclidean space, respectively.
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We define a three-dimensional vector S; S = t(sl’SZ’SS)? as

follows

2 2
g, = L * £+ ¢

2 2
1 VE; , 5, = oLty

2 2f ’

= U
S3 T

REMARK 1. The vector S satisfies a pseudonorm constraint

condition
(5:8) = - (5% + (5% + (5% = - 1.

Using this property and the Lagrangian function for (1), we find

that that the equation (1) can be rewritten as
AS = (VS-¥S)S. | (2)

This is a spin representation of the stationary axially symmetric
Einstein equations. The spin representations for the other soliton
equations are given in [8],[9].

Instead of (p,z), we set complex conjugate coordinates (n,n);

_1 . - _ 1 .
n=>(p+iz), n=35(p - iz).
Next, we define complex functions A and B in terms of the

derivatives of S as follows

(Sn-Sn) = AB, (Sﬁ.sﬁ) = AB,
o 1. 2 2 )
(vS'v8) = (8 Sz) = 3 {|A]" + |B]|"].
If the metric is asymptotically flat, then the functions A and B
go to zero at infinity.
REMARK 2. By the use of the original unknown functions f

and y , A and B can be denotedvas
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A =_(1§g fj + ﬂ;nf;l, B = (1og f)— + ipﬁf_l. 1 (4)

We derive a reduced system for A and B. We obtain

24+ ACK - B) + (A+B)(n + )" =0,

(5)

it
o

2.+ B(E - A) + (A +B)(n+ W)

We call equations (5) and their complex conjugates the reducgd

system of the stationary axially symmetric Einstein equations,

and write them Ry, Ry, Ry, Ry, respectively.

2. Bécklund transformation for reduced system.

The reduced system Ry, Ry,* 7" is a compatibility condition
of linear differential operators. Making use of the variables

n, n and a constant € € R, we define a function ¢ as
t? = (e + iW) (e - in)7? - (®)
We have the following theorem.

THEOREM 1. Define the linear differential operators

a/am 0] , g1 0] . 0 A-(n+ml
L = + + -
0os/om 4 lo-1 Z(B-(m+mt 0 ,
_ _ NG
3/om 0] g . (1 0 1 0 A-(n+m)
L- *=7 T2 1
0a/3m * lo-1 B - (n+ " 0 |,

In and only if the functions A and B satisfy the reduced system,

the operators L and T are compatible with each other, that is,

[L,TI]=o0. (8)
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REMARK 3. For the reduced system R;, R,, the operator L
and L give an inverse scattering formula

9q 91
P %2

L =0, L =0, (9)

where ¢q and ¢2 are eigenfunctions.
Next, we discuss a Bidcklund transformation for the reduced

system. We obtain the following main theorem.

THEOREM 2. Define the function &(n,n) by & = ¢1¢2—1, where

1

¢ is not equal to - ¢ If the functions A and B satisfy the

reduced system, then A ang B(l), defined by the transformations

A @ e - 0+ b+ o) la,
, o (10)
B = @+ coygetn + M - (L ze)(zo + 0P B

also satisfy the reduced system.

REMARK 4. If and only if A = B = 0, ¢ = -z*1 are the
solutions of (9). Simultaneously, the second terms of the right-
hand sides of (10) vanish. Thus we may consider that fhe‘transfor—
mation (10) includes'the:tase o = -;il.

REMARK 5. Equations (10) give a Bicklund transformation
for the reduced system. A similar transformationbhas been
derived by [5].

A new solution E(1)7= f(l) + iw(l) of equation (1) 1is

obtained from A(l) and B(l). We have

PROPOSITION 1. Let A(l) and B(l) satisfy the reduced system.

If there are some functions f(l) and ¢(1) satisfying
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' D e (1) @) L (D)
d log f(1) __A f; B —dn + A ; B v a7,

:v—(l) ' C=(1). . (1)
- B (1) A - B
£ dn - 71

(11)
£1) a7,

then fcl) ahdlp(l) are'anbther solution of equation (1).

We have completed an algorithm to construct exact solutions

of the field equation.

3. Concrete solutions: generelization of Kasner solutions.

In this section, we consider an application of the Bicklund
transformation. We use the Minkowski metric as a known solution,

i. e.,

2 2 2 2

ds® =.- dt® + dp® + dz° + Pzd¢2,

in the cylindrical coordinates (p, z, ¢). The complex potential
E and the functions A, B are written as E = 1, A=B = 0. Then,

the function @®(n,n) satisfies
Citore =l fEEAR . -2
@n = 2{2(n + n)} T - In (1 ),
o — -1//n;f:“33; o2
o £{2(n + n)} PR (L - 7).
The resulting solution is written in the form:
1

o= (P+8XP-8"1, (-P+38)( -8 T,

where § is a nonnegative constant and P is defined by

p . Ve Im*/eram

Ve - in * Ve + 1n|.

We shall restrict ourselves to the case § = 0. By the
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Bicklund transformation o =+ 1, and ¢ = - 1, which are denoted
as ¢ _, ®_, respectively, we generate some solutions of equation

(1). Under the tranSformation_@;, we have

A g gn e 3 s et

’

e oW i - v Y =,

(1)

where vy is a positive constant. By the transformation ¢ _,

new solutions A(?), BCZ) of reduced system are obtained from A(l),
B(l) as |

A(2) o 2¢(n + 'ﬁ)'l, p(2) o _ zc'l(n + ﬁ)’l.
Then, we get

(2 o yD v - 12, (2 2,

where Y(Z) is a positive constant. This is the result of the

product transformation ¢_o¢, .

REMARK 6. By the product transformation ¢+°¢; OT @ _od_»
the function f does not become complicated at all. By using
¢, and ¢_ successively, a series of solution ftl), f(z),--- can

be derived.

If the transformations ¢, and ¢_ are repeated N times, the

solution f(N) reads

£ = M D - ne O D2 ooy,
(12)

R S [ b Il I (N:even),

where Y(N) are positive constants. It is not hard to represent
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(12) in (p, z) coordinates. We have

f(N) - Y(N) p,{‘/(ze + 2)2 + vpz F (2¢ + z) }9-1 ’(N + /2 (N:odd) ’
. : ‘ (13)
f(N) = Y(NH{VQZE + Z)Z + p2 + (2¢ + Z)}p—ll(N * 2)/2. (N;even),

where the double signs + (N:odd) and + (N:even) correspond to

g = +(e+ iM% - in 12,

We here set Y(N) = (4|eD (N + 1)/2 (N:odd), Y(N)
= (4]€|);(N +2)/2

solution (13) are now

(N:even), and take the limit ¢ »+ «». The

g = 1 =N+ 1)/2 0 (y:04q),

. (14)k
f(N) - ot N+ 2)/2 (N:even).

i
©

Finally, we complete the metric with respect to (14). The

remaining unknown functions can be determined to be

4s? = . L (N +1)/2 4.2

- (dp?

s N+ DN - 1)/8,

s dz?y + o TN 1/2 42 (Niodd),

as? = - N+ 2)/2 42, (N+ 2)(N+2 : 4)/8,

N 2+ (N + 2)/2

+ dzz) + p d¢;, . (N:even).

By suitable coordinate transformations, they are reduced to

d52

where

42 £ N+ 1)/C, u = (N® + 2N - 3)/C,

>
1]

2

v=4(2FN%1)/C, C=N°4+6N+ 2, (N:odd),



i
A= FAN +2)/D, y = N2 o+ (4 in4)N + 4+ 8}/D,
v=4(4 £ N 2)/D, D=N + (4t 4)N 4_4 £ 24, (ﬁ;even),
(A +uw+v=1, p+ pv+ vA‘= o).

The solutions (15) are nothing but the polynomial solutions
discovered by Kasner [10], while the solutions (13) are new

generalizations'of Kasner type solutions.
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