Abelian coverings of links

By Makoto Sakuma

Recently, the Smith Conjecture was proved by W.P. Thurston, H.H. Bass, P. Shalen, W. Meeks - S.T. Yau, and C.McA. Gordon - R.A. Litherland. In fact, they proved the following:

Branched Covering Theorem. Let Σ be a homotopy 3-sphere and let K be a knot in Σ . Then, if the n-fold branched cyclic covering space of Σ branched along K is a homotopy 3-sphere for some $n \ge 2$, K is a trivial knot.

In the Topology Symposium in Sapporo 1979, Professor K. Murasugi showed that Branched Covering Theorem implies the following:

Theorem M. Let S^3 be the 3-sphere. Then if an abelian covering M of a link in S^3 is simply connected, M is S^3 .

Furthermore he conjectured the following:

Conjecture M. The only link in S^3 , other than the trivial knot, which has a homotopy sphere as an abelian covering is

In this paper, we will prove this conjecture.

I would like to express my sincere gratitude to the members of Kobe Topology Seminar for their helpful suggestions and conversations.

§ 1. Reducing the conjecture to another conjecture.

In this section we review Murasugi's proof of Theorem M and reduce Conjecture M to another conjecture.

First, we give a simple proof to a theorem of Murasugi and Mayberry [5] which gives a necessary condition for an abelian covering of a link to be a homology sphere and which is a key lemma to prove Theorem M. To do this, we use a method of [6]. Let $L = K_1 \cup ... \cup K_p$ be an oriented link of p-components in an oriented homology 3-sphere S, and let X = S - L. By Alexander duality the first integral homology group $H_1(X)$ is the free abelian group on $\upmu\text{-generators}\quad \textbf{t}_{1},\dots,\textbf{t}_{\upmu}, \text{ where } \quad \textbf{t}_{i} \quad \text{is the meridian}$ of K_i . Let \widetilde{X}_a be the universal abelian covering space of X_i ; that is, the covering space of X corresponding to the kernel of the Hurewicz homomorphism $\Upsilon: \pi_{1}(X) \to H_{1}(X)$. Let A be a finite abelian group and $\Psi: H_1(X) \to A$ be an epimorphism. Let X_{Ψ} be the covering space of X corresponding to Ker(40), and My be the branched covering space of S obtained by the completion of X_{ψ} . We use the symbol q (resp. j) to denote the natural projection $\widetilde{X}_{,,} \to \widetilde{X}_{\Psi}$ (resp. the inclusion $\widetilde{X}_{\Psi} \hookrightarrow M_{\Psi}$). Let $R(\Psi)$ be the factor module $H_1(\widetilde{X}_{\Psi})/(j \circ q)H_1(\widetilde{X}_a)$. Then we have:

Proposition 1. $|R(\Psi)| = (\prod_{i=1}^{\mu} n_i)/|A|$, where | | denotes the order of a group and n_i is the order of the element $\Psi(t_i)$ of A.

Proof. From the definition of \widetilde{X}_{ψ} , the following sequence is exact: $1 \to \pi_1(\widetilde{X}_{\psi}) \to \pi_1(X) \xrightarrow{\psi \circ Y} A \to 1$.

Factoring this sequence by $q_*\pi_1(\tilde{x}_a)$, we obtain the following exact

sequence: $1 \to \pi_1(\tilde{X}_{\psi})/q_{\star}\pi_1(\tilde{X}_{a}) \to H_1(X) \xrightarrow{\psi} A \to 1$.

Since $\mathbb{T}_1(\widetilde{X}_{\Psi})/q_{\#}\mathbb{T}_1(\widetilde{X}_a)$ is abelian, $H_1(\widetilde{X}_{\Psi})/q_{\#}H_1(\widetilde{X}_a) \cong \text{Ker }\Psi$. Consider the following diagram of exact sequences:

where γ is a natural map and $[j_*]$ is the homomorphism induced by j_* . Since M_{ψ} is the completion of \widetilde{X}_{ψ} , j_* is onto and Ker j_* is equal to the branch relation $B \subset H_1(\widetilde{X}_{\psi})$. Hence, from the kernel and cokernel exact sequence (see [3]), $Ker[j_*] = \gamma(B)$. From the definition of the branch relation B, we can see

$$\eta(B) = \langle t_i^n (1 \le i \le \mu) \rangle c \ker \psi \subset H_1(X),$$

where <...> denotes the subgroup generated by the elements in <... Hence $R(\Psi) \cong \operatorname{Ker} \Psi / < t_i^n (1 \le i \le \mu) >$. Factoring the exact sequence $0 \to \operatorname{Ker} \Psi \to H_1(X) \xrightarrow{\Psi} A \to 0$ by $< t_i^n (1 \le i \le \mu) >$, we obtain the following exact sequence:

$$0 \to \mathbb{R}(\Psi) \to \bigoplus_{i=1}^{\mu} \langle t_i | t_i^{n_i} = 1 \rangle \to \mathbb{A} \to 0.$$

Hence $|R(\Psi)| \cdot |A| = \prod_{i=1}^{\mu} n_i$. This completes the proof.

Example. Let $M_n(L)$ be the n-fold branched cyclic covering of L; that is, the branched covering space corresponding to $\ker(p_n \cdot h)$, where p_n is the homomorphism $H_1(X) \to \langle t \mid t^n = 1 \rangle$ defined by the equality $p_n(t_1) = t \ (1 \le i \le h)$. Then $|R(p_n)| = n^{\mu}/n = n^{\mu-1}$ (compare [2] or [6]). In particular, $M_n(L)$ can not be a homology sphere unless $\mu = 1$.

Corollary. (Theorem 11.1 of [5])

If My is a homology sphere, then A = $\bigoplus_{i=1}^{p} < \Psi(t_i) >$. That is, Ψ is of the following form:

$$\Psi: \mathbb{H}_{1}(X) \to \bigoplus_{i=1}^{\mu} \langle t_{i} \mid t_{i}^{n_{i}} = 1 \rangle, \quad \Psi(\tau_{i}) = t_{i} \quad (1 \leq i \leq \mu).$$

Now, let us review Murasugi's argument.

Theorem M. Let M_{ψ} be an abelian covering of a link L in the 3-sphere S^3 . Then, if M_{ψ} is simply connected, M_{ψ} is S^3 .

Proof by Murasugi. From the corollary of Proposition 1, Ψ is of the following form:

Then we obtain the following sequence of branched coverings:

$$\mathbb{M}_{\psi} = \mathbb{M}_{\psi_{D}} \rightarrow \mathbb{M}_{\psi_{D-1}} \rightarrow \cdots \rightarrow \mathbb{M}_{\psi_{D}} \rightarrow \mathbb{M}_{\psi_{D}} = \mathbb{S}^{3}.$$

Note that M_{ψ_i} is the n_i -fold branched cyclic covering space of $M_{\psi_{i-1}}$ branched along \widetilde{K}_i , the lift of K_i in $M_{\psi_{i-1}}$. Since $M_{\psi_{i-1}}$ is simply connected, M_{ψ_i} $(0 \le i \le p)$ is simply connected. From the example of Proposition 1, $\widetilde{K}_i \subset M_{\psi_{i-1}}$ is connected. Hence, by Branched Covering Theorem, $\widetilde{K}_i \subset M_{\psi_{i-1}}$ is a trivial knot. Since the bottom of the sequence is S^3 , every M_{ψ_i} $(1 \le i \le p)$ is S^3 .

From the above argument, Conjecture M is equivalent to the following:

Conjecture $\widetilde{\mathbb{M}}$. If a link $L = K_1 \cup \ldots \cup K_{\mu} (\mu z 2)$ in S^3 has the following property $(\sqrt[4]{\mu})$, then $L \subset S^3$ is

- (x) There exist integers n_1, \dots, n_{μ} such that
 - (1) $n_i \ge 2$ $(1 \le i \le \mu)$,
 - (2) $\widetilde{K}_i \subset M_{\psi_{i-1}}$ $(1 \le i \le \mu)$ is a trivial knot, where ψ_i is the homomorphism defined in the proof of Theorem M.

§ 2. Proof of the conjecture.

Lemma 1. Let $K_1 \cup K_2$ be a 2-components link in S^3 with K_1 a trivial knot. Let \widetilde{K}_2 be the lift of K_2 in $M_n(K_1)$, the n-fold branched cyclic covering of $K_1 \subset S^3$. Let $\widetilde{\Delta}(t)$ be the reduced Alexander polynomial of \widetilde{K}_2 . Then, if $\lambda = |lk(K_1,K_2)| + 1$ and $n \geq 2$, $\widetilde{\Delta}(t) \neq 1$.

Proof. Let $n = p^r m$, g.c.d.(p,m) = 1, p a prime, r > 0, and $\lambda \neq 0$. Then, by Theorem 1 of Murasugi [4],

$$\rho_{\lambda}(t) \widetilde{\Delta}(t) \equiv \left[\prod_{j=0}^{m-1} \Delta(\gamma^{j}, t) \right]^{p^{T}} \mod p,$$

where $\Delta(t_1,t_2)$ is the Alexander polynomial of L, $\ell_{\lambda}(t)=1+t+\ldots+t^{\lambda-1}$ and ℓ is a primitive m-th root of l. In particular, $\Delta(1,t)^{p^r} \text{ divides } \ell_{\lambda}(t) \widetilde{\Delta}(t) \text{ mod p. Since } \ell_{\lambda}(t) \text{ divides } \Delta(1,t)$ by the Torres's condition [10], $\ell_{\lambda}(t)^{p^r-1}$ divides $\widetilde{\Delta}(t)$ mod p. Hence, if $\lambda > 1$, $\widetilde{\Delta}(t) \neq 1$. If $\lambda = 0$, \widetilde{K}_2 is a n-components link; so, $(t-1)^{n-1}$ divides $\widetilde{\Delta}(t)$ and $\widetilde{\Delta}(t) \neq 1$.

Proposition 2. If $L = K_1 \cup ... \cup K_{\mu} \in \mathbb{S}^3$ has Property (\mathbf{x}), then $\mu = 2$ and $|lk(K_1, K_2)| = 1$.

Proof. Suppose that $\mu \geq 3$. Let \widetilde{K}_1 (i = 2,3) be the lift of K_1 in M_{Ψ_1} , the n_1 -fold branched cyclic covering of $K_1 \subset S^3$. Then $\left| \operatorname{lk}(\widetilde{K}_2, \widetilde{K}_3) \right| = n_1 \left| \operatorname{lk}(K_2, K_3) \right| \neq 1$. Hence the lift \widetilde{K}_3 of K_3 in M_{Ψ_2} , the n_2 -fold branched cyclic covering of $\widetilde{K}_2 \subset M_{\Psi_1}$, can not be a trivial knot from Lemma 1; this is a contradiction. Hence $\mu = 2$ and $\left| \operatorname{lk}(K_1, K_2) \right| = 1$ by Lemma 1.

Hence we may consider only 2-components links. Using Branched Covering Theorem, we obtain the following:

<u>Proposition 3.</u> Let $L = K_1 \vee K_2$ be a 2-components link in S^3 with K_1 a trivial knot. Suppose L has Property (\bigstar) ; that is, there is an integer $n_1 \ge 2$ such that the lift \widetilde{K}_2 of K_2 in $M_{n_1}(K_1)$, the n_1 -fold branched cyclic covering of $K_1 \subset S^3$, is a trivial knot. Then, for any integer $n \ge 1$, the lift \widetilde{K}_2 of K_2 in $M_n(K_1)$ is a trivial knot.

Proof. Let $n_2 \ge 1$ be an integer and let Ψ be the homomorphism $H_1(S^3-L) \to \bigoplus_{i=1}^2 < t_i \mid t_i^{n_i} = 1 > \text{ defined by the equality } \Psi(t_i) = t_i$ (i=1,2). Then M_{Ψ} is the n_2 -fold branched cyclic covering space of $M_{n_1}(K_1)$ branched along \widetilde{K}_2 , the lift of K_2 . Since $\widetilde{K}_2 \subseteq M_{n_1}(K_1)$ is a trivial knot in S^3 , M_{Ψ} is S^3 . Let \widetilde{K}_1 be the lift of K_1 in $M_{n_2}(K_2)$. Then M_{Ψ} is the n_1 -fold branched cyclic covering space of $M_{n_2}(K_2)$ branched along \widetilde{K}_1 . Hence, by the proof of Theorem M, $M_{n_2}(K_2)$ is S^3 and \widetilde{K}_1 is a trivial knot. Repeat the above argument by exchanging the roles of K_1 and K_2 , and we obtain the desired result.

Now, the proof of Conjecture $\widetilde{\mathbb{M}}$ is completed by the following proposition:

<u>Proposition 4.</u> Let $L = K_1 \cup K_2$ be a link in S^3 with K_1 a trivial knot. Let \widetilde{K}_2 be the lift of K_2 in $M_2(K_1)$, the 2-fold branched cyclic covering of $K_1 \subseteq S^5$. Then, if \widetilde{K}_2 is a trivial knot, $L \subseteq S^3$ is \bigcirc .

Proof. Let T be the involution of $M_2(K_1)$ generating the covering transformation group. Then the fixed-point set of T is \widetilde{K}_1 , the lift of K_1 , and $T(\widetilde{K}_2) = \widetilde{K}_2$. Let D be a disk in $M_2(K_1)$ bounding \widetilde{K}_2 . Using this disk, we will construct a disk D in S^3 such that $\partial D = K_2$ and D intersects K_1 transversaly in a single point. Let S(D) be the closure of $D \cap T(\hat{D})$ in $M_2(K_1)$, where \hat{D} denotes the interior of D. Then we have

Lemma 2. We can deform D, without moving ∂D , so that \mathring{D} is transverse to both $T(\mathring{D})$ and \widetilde{K}_1 , and S(D) is a proper 1-dim. submanifold of D.

Proof. See Lemma 1 of [1]. (Lemma 1 of [1] does not require that the deformation fixes ∂D . But it is not so hard to accomplish the deformation without moving ∂D .)

Hence we may assume that S(D) consists of simple closed curves and arcs with end points on ∂D . If S(D) contains simple closed curves, we can eliminate them by the cut and paste method (see [1], [8]). So we may assume that S(D) consists only of proper arcs. Since $\left| lk(\widetilde{K}_1,\widetilde{K}_2) \right| = \left| lk(K_1,K_2) \right| = 1$ by Proposition 2, $D \cap \widetilde{K}_1 \neq \Phi$. Hence there is a connected component C of S(D) such that $C \cap \widetilde{K}_1$

 $eq \phi$. Then D is a union of two disks E₁ E_2 with $E_1 \cap E_2 = C$. Let $J_i = \partial E_i - C$ for each i = 1,2. Suppose there is a component C' other than C such that C'o \widetilde{K}_1 $\star \phi$. Without loss of generality we may assume that $C' \subseteq E_1$. Then $T(\partial C') \subseteq T(J_1) = J_2$. On the other hand, since $C' \cap \widetilde{K}_1 \neq \emptyset$, $T(\partial C') = \partial C' \subset J_1$. This is a contradiction. Hence any component of S(D), other than C, does not intersect S(D). From this, we can see that $T(E_1) \cap E_1 = C$. Let $D = p(E_1)$, where p is the covering projection $M_2(K_1) \rightarrow S^3$. Then, from the

Thus we have proved Conjecture M.

This completes the proof of Proposition 4.

References

[1] C.McA. Gordon and R.A. Litherland: Incompressible surfaces in branched coverings, preprint.

above argument, \mathbb{D} is a disk with $\partial \mathbb{D} = \mathbb{K}_1$ and $\mathbb{D} \cap \mathbb{K}_1 = \text{one point}$.

- [2] F. Hosokawa and S. Kinoshita: On the homology group of branched cyclic covering spaces of links, Osaka Math. J. 12(1960), 331-355.
- [3] S. MacLane: Homology, Berlin, Goettingen-Heiderberg, Springer-Verlag, 1963.
- [4] K. Murasugi: On periodic knots, Comment. Math. Helv. 46 (1971), 162-174.
- K. Murasugi and J.P. Mayberry: On representations of abelian groups and the torsion groups of abelian coverings of links, preprint.

- [6] M. Sakuma: The homology groups of abelian coverings of links,
 Math. Sem. Notes, Kobe Univ. 7(1979), 515-530.
- [7] P. Shalen: The proof in the case of no incompressible surface, preprint.
- [8] Y. Tao: On fixed point free involutions of $S_{\mathbf{X}}^{\mathbf{1}} S^{2}$, Osaka Math. J. 14(1962), 145-152.
- [9] W.P. Thurston: Hyperbolic structures on 3-manifolds, preprint.
- [10] G. Torres: On the Alexander polynomials, Ann. of Math. 57 (1953), 57-89.

Osaka City University