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ON COMMON -SEQUENCE PROBLEMS

Tohru KIKUNO, Noriyoshi YOSHIDA and Shin'ichi WAKABAYASHI -

Faculty of Engineering, Hiroshima University

1. Introduction

A common sequence problem {3] is one of the generalized prob-
lems of both the string-matching and the string—to—étring correc-
tion problems [13]. The problem arises in data processing such
as comparing two files [2] ahd in genetiés such as studying
molecular evolution [8]. Concerning common sequence problem,
the following two subproblems are defined: the longest. common.-
subsequence problem, shortly, the LCS problem, and the shortest
common supersequence problem, shortly, the SCS problem.

In this paper, we show that the LCS Problem is solvable :in
polyﬁomial time for primitive strings, whereas the LCS problem
~ is NP-complete [7] in general. Concerning the SCS problgm.wei
give strictly stronger results than the previous one [7]. by
shoWing that the yes/no SCS problem is NP-complete for strings
whose length is bounded 5 except one string. We also show that
the yes/no SCS problem is NP—éomplete for primitive strings.

Then we present an effective approximation algorithm SCSARG,
based on a mathematical model ARG, for the SCS problem. The
algorithm SCSARG can be»épplied to the design of the Printed

Wiring Boards, resulting in that both placement and routing are"
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determined almost simultaneously. It implies that we never fail
to determine routing if there is no physical restriction such as

the area of the board.

2. Preliminaries

We present necessary definitions about common sequences

and some decision problems on them [7,14].

Definition 1. Let S be a finite string (or sequence) over an

alphabet I. S' is a subsequence of S if there exist integers

1<r.<r <...<rsi[S[ such that S'[i]=S[ri] for each i, liiilS'l,

172
where S[i] denotes i-th character in a string S. We use S>S'
to denote that S' is a subsequence of S. Conversely S is a

supersequence of S' if S' is a subsequence of S.

Definition 2. Let R={Sl,s Sp} be a set of p strings over

g
L, where p>2. A common subsequence of R is a string S such

~

that Si>S for each i, 1<i<p. A common supersequence of R is

a string S such that‘S>Si for each i, 1<i<p.

We shall often refer to common subsequences and common

supersequences as common sequences.

Definition 3. A longest common subsequence of R is a common

~

subsequence S such that no other common subsequences are longer
~

than S. Similarly, a shortest common supersequence S such that
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no other common supersequences are shorter than S.

The following notations will be used throughout the paper.

Notation.
Cé(R) A set of common subsequences of R.
LCS (R) A set of longest‘common subsequences of R.
Cg(R) A set of common supersequences of R.
SCS (R) A set of shortest common supersequences of R.

Definition 4. A string S is primitive if no character appears

more than once in S.

Example 1. Let I={a, b, ¢, d, e} be an alphabet. Let R={abcde,
acbed, badce} be a set of 3 strings over . Note that each
string of R is primitive. Then,

Cé(R)={ace; ac, ad, ae,...},

LCS (R)={acel,

Cg(R)={babdcbede, abadcbede, abcadebced,...},
and

SCS (R)={babdcbede, abadcbede,...}.

Since the problems of finding a shortest common super-
sequence and a longest common subsequence of the set R include
the term "shortest" and "longest", we can consider both problems
as optimization problems. In meaéuring the computatioﬁal com~-
plexity of the optimization'problem/it is sufficient to discuss
the one of the corresponding decision problems. Now we define

a yes/no version of the problem of finding common sequences of
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of the set R as follows [7,14].

Definition 5. The yes/no LCS problem is defined as follows:

Given a positive integer k and a set R={Sl,82,...,Sp} (p>2) of
strings over an alphabet I, is there a string S € CS(R) such

that |s|>k?

Definition 6. The yes/no SCS problem is defined as follows:

Given a positive integer k and a set R of strings over an alpha-

bet I, is there a string S € CS(R) such that |S|<k?

3, LCS Problems

In this section we consider the computational complexity

of the following decision problem.

Definition 7. The yes/no primitive p-LCS problem (shortly, the

primitive LCS problem) is defined as follows: Given an integer
k and a set R={sl,Sz,...,Sp} (p>2) of primitive strings over an

alphabet I, is there a string S € CS(R) such that |S|>k?

This problem is an extension of Szymanski's primitive 2-

p
LCS problem [12]. Define N= } ]Si|. Then we get the next theo-
i=1

rem.

Theorem 1. The primitive LCS problem is solved in O(N3) time.
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We prove Theorem 1 by presenting an algorithm that finds

a longest common subsequence of R in O(N3) time [6,14].

4, SCS Problems

In what follows, we define two restricted SCS problems:
the one with the restricted length of the strings in R, and the
other with the restricted occurrence of the character in each

string in R.

Definition 8. The length restricted yes/no SCS problem (shortly,

the problem S1) is defined as follows: Given a positive integer
k and a set R={Sl,52,...,Sp} (p>2) of strings such that |Si!=5

for each i, 1<i<p-1, is there a string S & CS(R) such that |S|<k?

Definition 9. The primitive yes/no SCS problem (shortly, the

problem S2) is defined as follows: Given a positive integer k
and a set R={Sl’sf""’sp} (p>2) of primitive strings such that
ISi|=5 for each i, 1<i<p-2, is there a string S € CS(R) such

that |S|<k?

We get the following two theorems. (The proofs of theorems

are given in [5,14].)
Theorem 2. The problem S1'is NP-complete.

Theorem 3. The problem S2 is NP-complete.
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These results tell us that it is hard to develop an effi-
cient algorithm for the SCS problem. The problem of finding a
shortest common supersequence is of course in NP-hard optimization
problem. Generally, if we are to produce an algorithm of low
polynomial complexity to solve an.NP-hard optimization problem,
then it will be necessary to relax the meaning of the solution.

One of these relaxations is to allow an approximate solution.

Let R={Sl,S ,...,Sp} be a set of strings. We assume with-

2

out loss of generality that [Si|=n for each i, 1l<i<p. Let

SCS(Sl,S ,S,.) be a function which returns a single represen-

2,.-- k

tative of the set SCS(R') where R'={S,,S S ). BY ISCS(Sl,

2I-'-I

Sz""'sk)| we mean the length of a SCS(S;,S,,...,5.).

k

We consider the following approximation algorithm, called
APPRO1, which is described as the ALGOL-like program. The input
of this algorithm is the set R={Si|1iiipr |Si|=n} of strings

and the output is a string T

1°
Procedure APPRO1
begin

Tl:=Sl;

for i:=2 to p do Tl:=SCS(Tl,Si)

end.

It is clear that the output of APPROl is a common super-
sequence of R. The function SCS(Ti,Tj) can be easily implemented
by using the algorithm given by Wagner and Fischer [13]. This

computation of SCS(Ti,Tj) takes at most O(n2) time. Thus the
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total time of APPROL is O(nzp).

We can get the following theorem on APPRO1l [14].

Theorem 4. Let R={Si|l§i§p, ISi =n} (p>2) be a set of strings.

Let n+m be the length of T, defined by APPROl. Let n+m* be

1
the length of the shortest common supersequence of R. Then,

m< (p-1) *m*.
Now, we consider the correspondence between the LCS and
SCS problems, especially the sets LCS(R) and SCS{R). Maier [7]

presented the following gquestion in his paper.

Question [Maier]. Do there exist low order polynomial reduc-

tions directly between the LCS and SCS problems?

We divide the discussion into two cases, p=2 and p>2, where
p is the cardinality of the set R. First, we discuss the case

of p=2. In this case we can get the following lemma [14].

Lemma 1. Let R={S;,S,} be a set of two strings such that !Sl|=m
and |szl=n. Let 1=|LCS(R)| and k=|SCS(R)|, respectively. Then,

k=m+n-1.

By Lemma 1, we can get the answer of the LCS problem imme-
diately when we get the answer of the SCS problem and vice

versa. -
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Theorem 5. Let R be a set of two strings. Then, there exists

a polynomial reduction betweeen the LCS and SCS problems.

Next, we_discuss the case of p>2. We consider the primi-
tive strings rather than the general strings. Let R={Sl,82,
“"’Sp} (p>2) be a set of strings such thaf each string Si
(1<i<p) is primitive. 1In Section 3, we have shown that the
primitive LCS problem is polynomially solvable. On the other
hand, we have shown that the primitive SCS problem is NP-com-
plete. Note that in the definition of the primitive SCS prob-
lem (Definition 9), we restricted the length of strings. But
we can easily prove that the primitive SCS problem, in which
there is no restriction on the length of each string, is also
NP-complete.

Now, assume that there exists a polynomial reduction be-
tween the LCS and SCS problems. Then, we can construct a poly-
nomial time algorithm for the primitive SCS problem, which at
first reduces the SCS problem into the LCS problem and then
computes the answer. But we have shown that the primitive
SCS problem is NP—complete. Thus, in general case, we get the

following conjecture for Maier's open problem.

Conjecture. There don't exist polynomial reductions between

the LCS and SCS problems.
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5. Application of Common Supersequences

In this section we discuss the placement and routing at
the design of PWB's [11] as one of the applications of common
supersequences. We have already shown that the problem of
finding a shortest common supersequence of an arbitrary set of
strings is intractable. So, we must develop a good approxima-
tion algorithm in order to use the shortest common supersequences
in the practical applications.‘ Firstly, we introduce the new
mathematical model, called ARG, for the problemkof finding a

shortest common supersequences.

Maier gave the threading scheme [7] as model for the prob-
lem of finding common supersequences. This model is useful to
prove theoretical results. In this section, we introduce a new

mathematical model, called ARG, defined és follows.

Definition 10. Let R={Sl,32,...,sp} be a set of strings over

an alphabet I and

e B Y B

N={(i,j)|Si=s. S, +eeS; «..S, ,» 8; €I, 12i<p, 1§jilsi|}.
An Acyclic Representation Graph (ARG) for a set R is an acyclic
directed graph G=(V,E) such that
(1) v={v} where |V|<|N| and there exists a mapping % from
N onto V such that (a) A (i,j)#h{i,3'), and (b) A (i,])
=v=h(k,7), i#k, for some veV only if S; =Sy -
J i
(2) BE={(v,v')|v=h(i,3), v'=h(i,3+1), l<i<p, 1<j<|s,|-1}.
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Example 2. Let R={Sl,SZ,S3} be a set of three strings such

that S;=abcd, S,=acbd and Sj=adbc. Then, N={(i,3)|1<i<3,

1<j<4}. Figure 1 shows an ARG G=(V,E) of R. The mapping
h:N-V is defined as follows:

(1,1)>v,, (1,2)+v3; (1,3)+v4} (1,4)+v6

(2,1)>v), (2,2)>v,, (2,3)7vg, (2,2)>v,

(3,1)2vy, (3,2)5v,, (3,3)9v;, (3,4)7v,.

1!
Note that, under the mapping %, V and E are assumed to be speci-
fied as follows:

V={Vi|1iii6}l

E={(V1,V3), (V3IV4)I (V4IV6)1-~-'(V21V3)}-

Fig. 1 ARG G=(V,E).

Before explaining the correspondence between ARG and the

common supersequences, we show the property that ARG has.

Property. Let R be a set of strings and G=(V,E) be an ARG of
R. Let S be a string which is obtained by applying the topol-

ogical sorting [10] to G. Then, S is a common supersequence

of R such that [S|=|V].

10
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Definition 11. The yes/no ARG problem is defined as follows:

Given a set R of strings and a positive integer k, is there an

ARG G=(V,E) of R such that [V]|<k?
We get the following theorem on the yes/no ARG problem.
Theorem 6. The yes/no ARG problem is NP-complete.

Theorem 6 indicates that the problem of finding a minimum
ARG is intractable. But for the primitive strings, we can find
a minumum ARG in polynomial time. Once we get the minimum ARG,
we can easily find the shortest common supersequence of R by

applying the topological sorting to G.

Theorem 7. Let R be a set of primitive strings over an alphabet
Z. Let p be a relation on IXI which is defined by (a,b) €p

if and only if "ab" is a substring of some primitive string

in R. If the relation p is a partial ordering, then a shortest

common supersequence of R is found in polynomial time.

Now we give an approximation algorithm based on ARG. The

following is an outline of our algorithm SCSARG.

Algorithm SCSARG (Outline)

begin
initialize; / construct an, ARG of S1 /
for i:=2 to p do

begin

11
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match; / determine the maximum matching between the ARG
of {Sl,sz,...,si_l} and s, /
constructarg / construct an ARG of {Sl,Sz,...,Si} /
end;
topologicalsort / find a common supersequence of
{Sl'SZ""’Sp} /

end.

The maximum matching is defined as follows. Let G be an
ARG of the set R of strings over an alphabet X. Let S be a
string over the alphabet XZ. The maximum matching between G
and S is a longest subsequence S' of S such that we can con-
struct the ARG G"of Rv {S'} without adding any vertices to G.

Next we discuss the distinguished features of our algorithm

) P
SCSARG. Let R={Ss,,S.,,...,S_} and N= ) |S.,|, as before. The
1772 P ;21 1

merits of algorithm SCSARG are summarized as follows:

(i) The result of‘SCSARG doesn't include redundancy. In other
words, if we determine the string S as a common super-
sequence of R, there is no other string S' such that S'<S
and S' is also a common supersequence.

(ii) For p=2, SCSARG produces the exact, i.e. optimal solution.

(iii) For R which satisfies the condition of Theorem 7, SCSARG
‘produces the exact solution, also.

Note that (i) and (iil) are nét true in the algorithm APPRO1
given in Sectioh 4. Concerning the evaluation of algorithm,

we show the following theorem.

12
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Theorem 8. Let R={Sl,52,...,Sp} be a set of strings such that
|Si|=n (1<i<p). Let n+m be the length of a common supersequence
of R, that is determined by SCSARG. Let n+m* be the length of
the shortest common supersequence of R. Then,

m< (p-1) *m*.

Now we propose a new method to solve the placement and
routing problem for two-sided Printed Wiring Boards (PWB's).
Our method is based on the concept of the shortest common super-
sequences discussed in this paper. The placement and routing
problem is one of the most important problems in the design of
electronic systems fabricated on-board and many investigations
have already been done. Here we propose a new method for this
problem. Figure 2 shows the general flow chart of our method.

The characteristics of our method is summarized as follows:

(1) Both placement and routing are determined almost simul-

taneously. (Placement is determined before routing in

conventional methods.)

(2) We never fail to determine routing if there is no

physical restriction such as the area of the board. That

is, we get 100 percent routing.

(3) But, there are some more redundant lines in their

length in the result obtained than those in conventional

methods .

Most of the conventional methods contain the heuristic
techniques such as the maze-running method. By now there is
few algorithmic approach to the PWB problem. So, we think our

method is noteworthy investigation since it is algorithmic.

13



144

( START)

W

Assign an alphabet @ to lines attached to IC's.

2

(1) Construct strings over I by concatenating
symbols assigned to lines.
(2) Then, define a set R.

L

(1) Construct ARG G of R.
(2) Find a common supersequence S of R using
ARG G (Algorithm SCSARG).

¥

Construct beading scheme for S.

A 2

Determine routing of one-side for PWB, and place-

ment of IC's by using beading scheme.

L 2

Determine the remaining routing of another side.

placement

END

Fig. 2 Flow chart.

14

routing
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6. Conclusion

The computatinal complexity of the LCS and SCS problems
is mainly discussed in this paper. In Section 3, we present
a polynomial time algorithm to solve the primitive LCS problem.
However, in Section 4, we show thet two restricted versions of
the yves/no SCS problems still remain to be NP-complete. The
results obtained in this paper, including that given in [7,9]
are summarized in Table 1.

In Section 5, an application of the SCS problem (strictly,
common supersequences) is considered. We define a new model
ARG to solve the problem of finding a shortest common super-
sequence. An effective approximation algorithm using ARG model
is presented. Then, we try to make a new approach, which is
based on common supersequences, to the design of the PWB's.

Now we survey briefly the directions of future researches
related. First, on the SCS problems, it is expected to make
clear the boundary between P and NP (that is a class of prob-
lems in P and a class of problems in NP).

Secondly, in order to apply common sequences to the prac-
tical applications, it is desirable to develop more effective
appfoximation algorithm to find common sequences than that ever
proposed.

Thirdly, much more applications of common sequences should

be considered.

15
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Table 1 Computational complexity of

decision problems.

Problem LCS problem SCS problem
(general) NP-complete [7] NP-complete [7]
|Z|=const. NP-comlete for NP-complete for
lz]=2 [7] [Z]=2 [9]
|Si|=const. Polynomial time | NP-complete for
(by definition) |s; =5 (12i<p-1)
primitive Polynomial time NP-complete for
|s; =5 (12i<p-2)
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