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Compact energy surface of a Hamiltonian system

by Kiyoshi Hayashi

( Keio University )

. n
Let x = (Xl’ cesy xn) sy ¥V = (yl, AN yn) be points of R and

H = H(x, y) : R2n —> R

a smooth function.

We consider a Hamiltonian system

(H) ﬂ=H , oy =-H k=1, ..., n .
v k X
k i

Along a solution (x(t), y(t)) of (H) , H(x(t), y(t)) is a constant,

so, for fixed e € R , the set
-1
H () ={ (x, y) ; Hx, y) =e }
is an invariant set of the system (H) , called an energy surface.’
We assume that

(A) e 1is a regular value of H , that is, there are no critical
points of H on H_l(e) .

Then H_l(e) is a sﬁooth submanifold of R2n .

-1 . . R s s .
If H “(e) 1is not compact, there is not necessarily periodic orbit on

it ( for example H = %;ﬁ y [2 +x ) .

Rabinowitz [1] proved that, if H—l(e) is star-shaped, then there
exists at least one periodic orbit on it.

Whether " star-shaped " can be replaced by " homeomorphic to the
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sphere " ( or more optimistically " compact " ) is not known.

Classically, H is the sum of the kinetic energy T and the potential

U , that is,

n ..
(@D H = izj-l ad(x) ' yj + U(x) ,
3=

where (alJ) is symmetric and positive definite.

We have

Theorem. Assume thet H = H(x, y) is given by (1) . If for some
e €e R, H satisfies (4) and ilte) is compact, then there exists at

least one periodic orbit on e

In this case, (H) 1is equivalent to the Lagrangian system

© d 3T _ 3

a5, o (U0

where T =Z aij(x) }'cifcj s A(ai:j) = (aij)—l .

We consider solutions x = x(t) of (L) with T(x, x) +U(x) = e
Since T > 0, the solution x(t) 1lies in

M={xeR ; Ux)<e }

M is a compact manifold with boundary oM={U = e} . In the case
MaD , the theorem is proved by H. Seifert [2]

We prove this theorem by the principle of least action of Maupertuis -

Jacobi.

We consider a Riemannian metric

2
(2) ds" = (e-U) aij dxidxj .
called Jacobi-metric for e . This is positive on. M - 3M and degenerates
on oM .
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A smooth curve
y =v(s) : [0, 1] —> M

with v(0), y(1) € oM and v(s) , 0 < s <1 , being a geodesic by the
metric (2) on M - 3M , gives a desired periodic solution of (L) after

proper time change ( see [2] ) .

As usual [3], we seek such a geodesic as a critical pqint of the

functional

1
(3 EQQ) = S ( e=U(A(1))) T(A(t), A(t)) dt
0

As in [2], for small & > 0 , we define a set M6 C M as follows.

For b € oM , let xb(t) be the solution of (L) with

xb(O) =b and xb(O) = 0.
We put F, = { xb(tl) €Mty 20 and the length of the curve

xb(t) , 02 t< tl , by the metric (2) is less than ¢ } and define

Put B. = oM For

§ § -
small & > 0 , MGQ,M and

if x (t) € By . (t:smald)

So, a geodesic Yy =
vy(s) : [0, 1] —> MS with
Y(i) € By and Y |

Ty(i)BG (i=0,1)

gives a desired solutionm.
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In general, let Q(X; A, B) be the set of continuous curves w = w(t)

[0, 1] — X with w(0) €A and w(l) € B , endowed with the compact
open topology.
Consider a compact connected smooth manifold M with boundary oM = B,

v

and put Y = Q(M; B, B) . We identify b € B with the constant curve b
whose image is b , so BC Y .

Then we have

Lemma 1. HO(Y, B) #0 or ’nk(Y, B) #0 for some k > 1

( proof ) It is easily proved that, if B 1is not arcwise connected
then HO(Y, B) # 0 ; moreover, if B 1is arcwise connected and Y is not

arcwise connected, then HO(Y, B) #0 .

So we assume that B and Y are arcwise connected and ﬂk(Y, B) =0

for all k>1.

We put
J
YO=Q(B; B, B) , BCYO cCyYy.
Since B -’zYO , we have
Trk(Y, B) = 'ﬂk(Y, YO) =0 for k>1.

et m: Y —>BXB be the fibration .
w > (w0),w(l))
We put F = Tr_l(*) = QM ; the loop space, Ty = TYIY : YO —> BXB
and  Fy = myN(%) = 0B .

0

Then we ‘have a commutative diagram of fibrations
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i
a8 —s v, —>» BxB

N o f\jﬂ' ”

QM —> Y —> BXB

This derives the following commutative diagram of long exact sequence

of homotopy groups of fibrations

[ u Jeo. L3 u
m(Y) —> m(BxB) —> m_ (@ —> m_(Y) —> m_ (BXB)

Since Trk(Y, YO) =0 , we have j, : ﬂk(YO) = 'ITk(Y) . Hence by thg 5

lemma, we have

(i), : Trk_l(QB) = Wk_l(QM)
s Qg
. i*
Therefore i, : TTk(B) = ’ﬂ"k(M) for k>1.
B and M are arcwise connected and CW complexes, hence
i: BCM
is homotopy equivalence.
But, on the other hand, Hm(M, B; Zz) #0 (m=dim M)

This is a contradiction. Q.E.D.

Now we define

A(S ={ X :70, 1] —> Mg ; piecewise smooth w‘ithv )\(0)‘, A1) € B(S }
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with a distance as §16 in [4]. Then, as Theorem 17.1 in [4], we can prove

Ao > QM3 B B

s Bgo 6) ~ Q(M; B, B)

From Lemma 1, we have HO(AS’ Bé) #0 or ﬂk(Aé’ BG) 40 .

For example, let o e'ﬂk(Aé’ BG) be the nontrivial element.
. k.. .
A representative f ¢ o. is a continuous func¢tion D —> A6 with

k-1

f(S ) C B6 .
We define
(4) cg = inf Max E( Imf )
feq,

For the case of homology, take a component A with A (-\B6 = ¢ and

define c. = inf E(a)
$
aeA

The following lemma is easily proved.
Lemma 2. There exist 6, > 0 and K >1 such that

g+ 12K if 0<8< 6

{ proof of Theorem )

Assume that there are no periodic
orbit on H_l(e). Then any solution
xb(t) , b € oM, of (L) does not reach
at the boundary.

Hence we can choose &8, , 0 < &,
< §; in Lemma 2, such that any
solution ’xb(t) lies in MG for

2
t. £t <t,, where the length of

» by the metric
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(2) is &2 and the length of xb(t) > £ é;t‘é:tz 3 by (2) is Kl/2 .

Then we change the metric ds to dS so that

~..ds-= ds on M
(5) d ds’ s,
2
(6) ds > d5 on Ms - M§ for some 0 < 83 < &y,
Z 5 2 )
(7 M6 is geodesically .convex w.r.t. ds .
3

This is done as in [2]. The condition (6) is fulfilled if we modify
the function A used in [2] so as to A <1 but IK'(G)l: ; sufficiently

large. ‘
0stg

\/,

Remark that then xb(t) is also a geodesic w.r.t. ds after a time
change, because dgi‘is a conformal trnsformation of ds by the function

A depending 6nly on y. in [2] .

Now let d( , ) be the Riemannian distance on M - oM w.r.t. dg'.

We choose 1n > 0 so that
(8) two points x, y € M63 ; with d(x,’y) i;n ,‘is uniquely‘qombi?ed
by the shortest geodesicjn M §3
(%) for x e M63 with d(x, 363) <n , there is #he unique ‘r(g) &

B such that Jd(x; r(x)) = d(x, B63) .

3

We put N = (K/m)° .
Then for A€ Ag ~ with E(\) <K, where E is defined by (3)

replacing ds with dS, we have

t .
2 L
d( Ay, AMty) ) < g | AMo) |4y at
t
< (e E) <o
if 0<t, -t <1/N .

2 1
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~ ~
Weput A={Xxe€eA E(\) <K 1}.

83 °
For A €A , we join r(A(1/N)),
A(L/N), A(2/N), ..., A(1-1/N),
r(A(1-1/N)) by the shortest
geodesics, mark the centers of

the geodesics and join them by

another geodesics ( see [2]. )

Thus we deform A to the

new curve §9 A
iﬁ : K'——9-7T

is continuous and

1)y B o= iy,
(1) é; : E - decreasing.'
Let ¢ be defined by (4) putting § = §3 and replacing E with E.
We have
(12) c>0.
Because o 1is nontrivial in the relative sense ( if ¢ =0, Im f is

deformed into Bé ) o
3

Then ¢ < <K~-1 by (6) and Lemma 2.

C63
Now for a natural number j , we choose f € o with

c < Max Ek Imf) < c+1/j .

By (10) and (11) , )gof €& and Max E( Im Bof ) <ec+1/j

A
So we have Aj € A with
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(13) ¢ < E(PA ) < E( A S e+ 1/

For this sequence { Kj } we can assume

i=1, 2, ...°

Aj(k/N)—)pk ; k=0,1, ..., N .

Consider the curve A given by combining Py» pl, +es Py by the
shortest geodesic. Then we can prove that A 1is a smooth geodesic w.r.t.

d¥ with
E(A, ) =c and fo® L Ty (4)Bg,  (1=0,1) .

This corresponds to the condition (C) of Palais-Smale [3}

tonsider the point p g de , at
which A encounter M62 for the
first time. 5 p = Am(sl).. Then

Aol L T Bs,

But, by the constructionvof Sy
the geodesic %”(s) 3 81 <s < 1, is
contained in M . because»the length

(P

of the curve Am(s) 380 <8 < 1, w.

r.t. ds ( = d§ as long as A (8) €

M6 by (5) ) is less than Kl/2 .
)

s

( E( A ) =c <K implies that the lemgth of )\ = w.r.t. ds < K

This is a contradiction, proving the theorem. Q.E.D.

[2] treats the analytic system, but it is not essential for our

argument. In [5] , Seifert's result is proved for - C3 - Finsler systems.
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For the case M & D" » Seifert conjectured that there may be af least
n periodic orbits.

For counting the number of criiicél points, we use the homology group
( pairwise subordinated homology classes f3] ) instead of the homotopy group

But I don't know whether Lemma 1 is valid, replacing with H .
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