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Uniform ultimate boundedness of limiting equations

in retarded system

Junji KATO

(Mathematical Institute, Tohoku University)

The relationship between the stability (including the bound-
edness) of a system and that of the limiting equations has been
discussed by many authors. For a paft of references, see [1].
Recenﬁly we have added some remarks including several illustra-
tive examples which show that substantial conditions can not be
dropped in order that the stability property is inherited to the
limiting equations [17]. ‘

In this report, we shall show that the most of the results
in [1] can be extended to functional différential equations
though the uniform ultimate boundedness no longer impliés the
uniform boundedness even for autonoﬁous sysﬁems, see [2].

Let Y and Z be metric spaces, and denote by C(Y ,Z)
the space of Z—Valued continuous‘functigns defined on ’¥’3 A

sequence {fk}k in C(Y ,Rn) is said to be c-uniformly conver-

gent on Y 1f it is convergent uniformly on any compact‘set in
Y. Clearly a c-uniformly convergent sequence has a uniquer
limit which belongs fo, c(Y ,R") . Assume that Y = I xX ié a
product space with Ir=_[0 , @), A fuhction £(t, &} S C(I>§X;;

Rn) .is sald to be (positively) preéompact if for any sequence
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{t,} in I the sequence {f(t-+tk ,¢)}k contains a c-uni-

k
formly convergent subsequence. We denote by Q(f) the set of
all 1imit functions of c-uniformly convergent sequences

{f(t+tk ,cp)}k on I x X for sequences {tk} such that

t, > @, while we set T(f) = {f(t+1,¢):t€I} and H(L)
denotes the closure of T(f) in C(IxX, Rn) under the compact-
open topology.

Then we have the following lemma.

Lemma 1. (i) H(Ff) = T(f£)uva(r).

(ii) If f € C(IxX, Rn) is precompact, then it is bound-
ed and uniformly continuous on I x K for any compact set K C
X, and the converse holds if X is separable.

(i1ii) For any g € H(f) we have H(g) € H(F).
Moreover, if X 1is separable and f 1s precompact, then H(g)
C Q(f) for any g € Q(f) and, hence, we have H(f) = Q(f)

under the condition

(1) | € Q(g) for any g € Q(f) .

Proof. The assertion (i) and the first parts of (il) and
(iii) are obvious. We shall prove the converse part in (ii).
Let {(TR ,¢Z)}l be a countable dense set in I x X, and let

{t,} Dbe any sequence in I . By the assumption {f(rz-ftk ,(!JQ)}}2

k
contains a convergent subsequence for any fixed &, and hence
- o
by the standard argument, we can select a subsequence of {tk},
which is again denoted by {tk} , so that {f(IQ-ktk ,¢2)}k

is convergent for every £. Let K Dbe any compact set in
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I x X, andlet A C {(1,,6¢")}, be a minimal finite 1/m-net
of K, where an e-net A 1is said to be minimal if any proper
subset of A 1is no longer e-net. Put K*¥ = KU[U” . A ].
Clearly K¥ 1s compact since the derived set is contained in

K. We shall show that {f(tk-+t ,cb)}k converges uniformly on
K, which implies that it is c-uniformly convergent on. I x X.
Since f(t , ¢) 1is uniformly continuous on I x {¢ : (t , 0) EK¥
for a t€I}, there is a 6&(e)>0 for any e >0 such that
[f(t+t ,¢)-f(t+s,¥)] <e forany T €I if (s s V) be-
longs to a 5(5)—neighborhood of (t,¢) in K¥ . On the other
hand, for any integer m and .€>0 we can find an Nm(e) SO
that If‘(tk+t ,¢)—f(tj+t,¢)| <e if (t,¢) €A and

k,J 2 Nm(e) . For a‘given e >0 choose an integer m(e) so
that m(e)§(e/3) > 1, and set N(e) = Ny(ey(e/3) «  Then, for
any (t, ¢) € K there is an (s, Vy) € Am(e) which belongs to

a §(e/3)-neighborhood of (t, ¢) . Therefore, if k,J 2 N(e),
then [f(t, +t, )=t +t,8)] S [£(t, +t,0) =Tt +5,9)]
LG IR TR I |f(tj+s,w)-f(tj+t,¢)l < €.
This completes the proof. This is actually a consequence of

the Ascoli-Arzela theorem.

Now we shall prové that Q(f) 1s closed if X is separa-
ble and if f 'is precompact, which assures the second. part of
(iii) since T(g) C Q(f) for any g € Q(f) . Let {gk}k be a
sequence in Q(f) which converges to a g c-uniformly on
I x X. Since gk € Q(f), there is a divergent sequence

{t, .} for which {f(tkj‘+t ’¢)}j converges to gk(t ,¢) c-

kj~J
uniformly on I x X, It is not difficult to see that by choos-
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ing a sultable for each k and setting s, = t. . we can

k »ka

claim that {f(sk-+T£ ,ch')}k converges to g(rl ,¢2) for every

JK

L, where ‘{(TE ,¢2)}£ is a given countable dense set of

I x X' under the separability condition of X. Now the same
argument as in the proof of (ii) asserts that {f(sk-+t ,¢)}k
converges to g(t, ¢) c-uniformly on I x X, “that is, g €

Q(f) .

Remark. Let K be a compact set in a separable metric
space (Y, dY). There is no doubt for the existence of a min-
imal finite e-net 'A8 of K, where A8 is sald to be an

g-net of K 1if U{Ue(x): xelkj DX -for

(2) U (x) = {yeEY: dY(x ,y) <el
or
_(3) ' , Ue(x) = {y€vY :dY(X ,y)Sel.

In the case of (2) it should be noted that every minimal e-net

A_ of K is always finite. 1In fact, if {Xk}k C A_ Dbe infi-
nite, then from the minimality there is a yk € K such that

k k}.

y € Ué(xk)\ UE(X) for all x € Ae\ {x The compactness of

K allows us to assume that yk converges to a y € K. Choosek
x € AE so that y € UE(X). Then, we have yk € Ue(x) for all
large k ,  which yields a contradiction.

However, in the case of (3), .a minimal e-net 1s noet neces-
sarily finite nor even (relatively) compact. For example,

choose an xk € c([0, 1] ,Rl)_ defined by

4 _
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_ 1
1 t = =
(t) = {o - gl 2
2k
linear otherwise ,

and set K = {%(xk--x1

_ o1y k11,
)}k and A_ = {(e-+k)x - ¥ }k'
Clearly, K 1s a compact set in the separable Banach space
c(fo, 1], Rl), and A€ is a minimal e-net of K but not

relatively compact.

We shall consider the functional differential equation
CORE - &(t) = £(t, %)

defined on I x X, where xt(s) = x(t +§) for ss20. ~ Here
and henceforth X 1is a space of‘ Rn—vaiued functions definéd
on (-« ,0] with a pseudometric d(- , *) satisfying the fol;
lowing properties [3]: The zero‘function- 6 always beloﬁgs
to X. | o
(HO) The correspondihg metric space X/d is complete{:
(H,) The mépping: o — (0) belongs to C(X,RY) .
(H,) XtGEX if  (t,x) € [0 ,a]ﬁ<Xé; and the mapping

(t , x) —> x, belongs to C([0,a]x Xa; X) for any a>0,

t

where Xa is the set of the R'-valued functions x defined
on an interval containing (-« ,a] such that xOEEX and x €

C([0,al]l, R™) with the pseudometric

d (x,y) = ,max{d(xo‘,yo) R supoétéa{g(t)-jy(t)l} .
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Throughout this paper we assume that f 1is continuous on
I x X and positively precompact. The continuity of f allows
us to consider that f 1is definedbon the metric space X/d4,

which we shall identify with X. A system
5) £(t) = gt x)

is said to be a limiting equation of (4) when g € Q(f) . We

say that the system (4) 1is régulaf if the solutions of every
limiting equation of (4) are unique for the initial valued prob-
lem.

The following lemma is a specilal case of the theorem in [3]

which is a version of the well-known Kamke?’s theorem.

Lemma 2. Suppose that {f(t+tk ,¢)}k converges to a
g(t, ¢) c-uniformly on I x X, and let xk(t) be a non-con-

tinuable solution of (4) such that xk converges to a & € X.

by
Then, the sequence {xk(t-+tk)}k contains a subsequence which
converges to a sdlution x{t) of (5) through & at t=0 c-
uniformly on a domain of x(t). Furthermore, if =x(t) 1is the
unique solution of (5) through & at t=0, then {xk(t-ktk)}k

itself must converge to x(t).

Applying this lemma, we can extend Theorem 1 in [1] with-
out any effort. Namely we have the following.
Theorem 1. Suppose that the solutions of every limiting

equation of (4) are continuable up to t = =, If the solutions
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of (4) are compact—uniformiy ultimately bounded, then they are

compact-uniformly bounded.

In the above, the solutions of (4) are said to be compact-

uniformly ultimately bounded if there are a constant B > 0

and a number o(l') > 0 depending on every compact set T C X

such that any solution x(t) of (4) with X €T fora 1T€TI
satisfies |x(t)| £ B for all t 2 t+0(I'). This concept cor-
responds to the compact dissipative when (4) produces a dynami-

cal system, refer to [4]. The definition of the compact-uniform

poundedness will be given in a same manner. If in the above T
ranges over bounded sets of X, then we shall omit the prefix
“compact” in the definitions. Note that if X 1is a locally
compact normed space, there is no difference whether the prefix
“compact” is omitted or not. However, as was shown in [2] we
can not omit this brefix in Theorem 1.

The space X 1s said to have a fading memory, if X sat-

isfies the conditions : For any a >0,

A

(H3> d(xt ,yt) B(a) if te&€[0,a] and da(x ,y) S o,
(HM) d(xt ,yt) S e forall t € [1T+w(e,a),al if |
6, (x,y) £ o and |x(t)-y(t)| < 6(e) for t€ [t,al,

where B(a), &8(e) and w(e,a) are positive numbers depend-

ing on. their indicated arguments.

Lemma 3. Suppose that X has a fading memory. Then, the

sequence {x% } contains a convergent subsequence if £ €

k

S(fa, L) = N{x€X_:d_ (x,08)3a, |x(t)-x(s)]2L|t-s] on [0,
250 a’“a

-7 -
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alt and if tk > o where o, L are positive constants

and 6 1is the zero function on (=« , «) ,

Proof. -Take a sequence {x? } for xk € S(o , L) with
| k |
tk + o, and set yk(t) = xk(t-+tk-—a) for an a > 0. Then,
we have X% = yk and yk € s(B(a) , L) if t, 2 a, where
Kk a i k

B(a) 1is the one in (H3). Here, we may aésume that yk(t)
converges to a y(t) c—uhiformly on [0, «). For any € > 0,
chodse N so large that tk > g = Q(e, B(d)) and ]yk(t)-y(t)|
S §(e) on [0,a] irf k‘é N . Hence, the condition (HM) as-

) e if k 2 N, that is, xX converges

t

sures that d(yg > Vg
k

to ya.
It is easily seen that every result in [1] can be extended
to the equation (4) in a same manner as for Theorem 1. Under

additional conditions we have the following theorem which cor-

responds to Theorem 2 in [17].

Theorem 2. 1In addition to the assumption that X 1is sep-
arable and has a fading memory, suppose that f(t s 0) satisfies‘
the condition (1) and is bounded on I x I for every bounded
set I € X and that the solutions of every limiting equation
of (4) are uniformly bounded. Then, ﬁhe solutions of (5) are
uniformly ultimately bounded for every g € H(f) 1if so are the

solutions of (4), 7
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Proof. . Suppose that there is a g € H(f) for which the

.solutions of (5)_are not uniformly ultimately bounded. Then,

there exist a constant a >0, sequences {Tk} s {tk} and
{xk(t)} s solutions of (5), such that Ty 20, B = Ty
(= 2s,) 2 k, d(x? ,68) £ o and lxk(t)] 2B+1 on [t .,t.1],

k
because otherwise we will have |x(t)| £ y(B+1) for all t 2

T+0 and some o > 0 if d(xT ,0) £ a, where B 1is'a bound

v

for the uniform ultimate boundedness of (4) and v (a) o is’

the number which is associated with the definition of the uni-
form boundedness of (5). Here, note that g € H(f) = Q(f) by

Lemma 1. Since ka(t)l S y(a) for all t 2 the sequence

Ty s
yk ‘defined by yk(t) = Xk(t-+Tk) belongs to S(B(y(a)) , L(a)),
where L(a) is a bound for |[f(t, ¢)]| on I x {¢:d(¢,8)s
B(y(a))} and B(a) 1is the one in (H3). Thus, by Lemma 3

{ygk}k contains a convergent subsequence, namely, we may assume
that {yg }k is convergent to a £ € X. On the other hand,
by applying Lemma 2 we may also assume that ,xk(ﬁ + T

ket sk)

yk(t-fsk) converges to an x(t) c-uniformly on [0 ,W)‘ and.
{g(t-krk-+sk ,¢)}k converges to an h(t, ¢) c-uniformly on

I x X, where x(t) 1is a solution of
x(t) = h(t, x)

through & at t = 0. Clearly IXk(t-FTk-FSk)I 2 B+1 on

[0, t [0, s implies that [x(t)|] 2 B+1 on [0,

L B i)
©) ., Since h € Q(g) C H(f) = Q(f) by Lemma 1, we have f €

2(h) by (1) and there is a sequence {uk} for which {h(t-kuk,
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)}

. converges to f(t ,¢) c-uniformly on I x X. Thus, ap-
plying Lemma 2 again we can see that {x(t-fuk)}k converges to
a solution y(t) of (4), and we have ly(t)] 2 B+1 on [0, «)

a contradiction.

When the system (4) is regular, we can omit the additional
conditions and the following statements given in [1] can be re-

produced with the same proofs.

Theorem 3. Assume that the system (4) is regular and that
the solutions of (5) are continuable up to t = « for every g
€ Q(rf) . Then, if the solutions of (4) are uniformly ultimately
bounded with a bound B, then so are the solutions of (5) for

every g € H(f).

Theorem 4. If the system (4) is regular and if its solu-
tions are uniformly bounded, then the solutions of (5) are uni-
formly bounded with the same pair (a, y{a)) for every g €

H(fE) .
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