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ON SOME DELAY-DIFFERENTIAL EQUATIONS
- IN BANACH SPACES

Shin-ichi Nakagiri

( Faculty of Engineering, Kobe University )

1. Introduction.
In this paper we consider the linear delay-differential equation involving
n delay terms
ax o
a;(t) = Ax(t) + X Arx(t-rT), _ (1.1)
r=1
where T 1is a positive constant, x(t) belongs‘to a Banach space P'e and A,
Hf.." Am are linear, not neccessary bounded operators on X. It is assumed
that A generates a strongly continuous semi-group T(t) and Ar, r= 1,++, m,
are relatively bounded compared with A ( see section 2 ).
Our main purpose here is to give a representation of the fundamental solution
of (1.1) . in terms of T(t) and Ar, and establish a variation of constants
formula for (1.1). Such expressions are useful to obtain the fundamental

theorems and some system theoretical results for (1.1) [9,10]. An -application

to infinite dimensional linear systems theory is given here.

2. System Description and Mild Solution.

Let us consider the differential system with m delay terms

m
X _ ax(t) + I A x(t-rT) + £(£), £ > 0 (2.1)
dt Y
r=1
S :
x(0) = x x(s) = g(s), s e [~mT, O), (2.2)
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where T > 0 is a constant, x(t), £(t), g(s) € X and the operators A and

A
r

(r=1,---, m), possibly unbounded, are assumed to satisfy the following

assumptions HO and Hl, respectively.

H . A generates a strongly continuous semi-group { T(t): £t 20 } on x

H A, r=1,°"-, m,k are closed linear operators with dense domains

D(A ) in X.
r

First of all we shall give a definition of the mild solution of the system S.

To do so we need the next integrability condition for Ar.

Let the assumption HY

Hg. For each r there exists a function Mr(-) € Lq[O, T] such that

llT(t)ArxlI < Mr(t)“ x ” for a.a. t € [0, T] and all x € D(Ar).

5 4 € [1, ®]1 Dbe satisfied. Then for any x € X, there

exists only one element vy (t,x) in X for a.a. t € [0, T] as limits of

T(t)A x : such that x € D(A ) and x_ *x in X. The operator (T(t)A )
r’'n n r n r

defined by (T(t)Ar)x‘= y(t,x) for x in+ X is well-defined and bounded for

a.a. t.€ [0, T]. This means that for each r and ‘a.a. t € [0, T] T(t)Ar

can be extended to the bounded operator - (T(t)Ar) on X -and the extended

operator (T(t)Af) satisfies the inequality “(T(t)Ar)|{ < Mr(t) for a.a. t
in [0, T).
Let Xy f(-) and g(*) be given with
x0 € X, » (2.3)
£(-) « L;OC(R-F; X), (2.4)
g(-) € Lp;(—mT, 0; X)( (2.5)

-2 -



87

1] - -
and let the assumption Hg with p’ 1 + g 1 = 1 be satisfied, where p, p'
€ [1, «]. Then the function
t m
x. (t; x ,£,9) = T(t)x_ + [ T(t-s)f(s)ds + 2L J (T(t-s)A )g(s-rT)ds (2.6)
1 0 ° o r=17 0 r

is well-defined, the integrals being Bochner integrals in X, and is strongly
continuous on [0, TI. We give a short proof of this. The first term of

(2.6) 1is clearly strongly continuous by assumption H The integrand of the

o
second term of (2.6) is strongly measurable and Bochner integrable by HO and
(2.4) and hence again by HO the second term is strongly continuous. By

ql
2
Mr(-) € Lq,[O, T], for a.a. s € [0, t] and hence by (2.5) the function

assumption H> , (T(t—s)Ar) is bounded and its norm is bounded by Mr(t-s),

(T(t—s)Ar)g(s-rT) is strongly measurable ( see Hille~Phillips [7, Chapter 3 1 )
and Bochner integrable on [0, t] ( note that g(s-xrT) € D(Ar) is not assumed ).
Therefore all integrands of the third term are Bochner integrable and hence the

third term is strongly continuous. Thus xl(-; x ,f£,9) € C(0,T; X). In

0

general, for any natural number k we define x (t; x_,£,9) inductively by -

k+1 0
t
xk+l(t; xo,f,g) = T(t)xk(T; xo,f,g) + f T(t-s)£(kT+s)ds
0
. gL
m t xk-r+1(s-' Xolflg)l 1=r=k
+ I J (T (t-s)A_) ds (2.7)
=170 g (s~ (r=k)T1), otherwise

Since xl € C(0,T; X) © Lp,(O,T; X) it follows as above that x, is well-

defined and x2 € C(0,T; X). Continuing this process, we find that xk €

c(0,T; X) for all k= 1,2, . Define x(t; x.,£f,9) by xm;xyfg)=x

0 0

and  x(t; xo,f,g) = xk(t—(k—l)T; xo,f,g)' if t e ((k-1)T, kT]. We shall say
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+ ' .
that the function x(-; +£,9) € C(R; X) is the mild solution of S. Since

XO §

there will be no confusion about the operator (T(t)Ar), we denote this operator
simply by T(t)Ar.

Under the above assumptions which guarantee the unique existence of the mild
1o +
O,f,g), there arises the solution mapping S xx LP c(R ; X)

X L, (-mT,0; ) C(R'; X) defined by S(x,,£,9) = x(-;

solution x(t; x
xo,f,g). The domain
S . 1 . loc, +
of is the Frechet space endowed with the product topology of X, Lp (R ; X)

+
(~mT,0; X). Clearly C(R ; X) is a Fréchet space. By standard but

and L
b
complicated arguments concerning the integral representation of mild solutions

given in section 4, we can show that S is linear and continuous.

Remark 2.1. Consider the case where A generates an analytic semi-group
o
T(t) and -A is of type (W, M). Then the fractional power (-A) , 0020, can
be defined and

1im sup tullT(t)(—A%H < ® holds ( see [12, p.69] ).
t 7 O+
of
Let Ar, r=1,+--, m, be linear combinations of fractional powers Zrc¥(—A) i,
i=1

a1 (i=1,---, k. ). Then

. v
where ci are constants and 0 = di

the assumptions H and " with any g such that g < min { l/aig r=1,+--,

1 2

m, i =1,¢--, kr 1 are satisfied.

3. Construction and Representatibn of The Fundamental Solution.

In this section we construct the fundaﬁental solution of the system S and
give its explicit representation in terms of T(t) and Ar.

Let £ =0, g =0 and let the assumptions HO' H. and H; { which is weaker

1

than Hg for all g € (1, *] ) be satisfied. Then as in section 2, we can
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construct the mild solution x(t; xo) = x(t; xO,O,O) € X for any XO € X.

+

The mapping G: R XX ™>Xx defined by G(t,x0F=x(t; xo) give rise to

generates a one parameter family of bounded operators { G(t) : £t 20} , where
G(t) is defined by G{t)x = G(t,x) for x € X and satisfies the following -
properties:

(1) G(t) = T(v) for all t € [0, T] and G(t) € L{(X) for all t 2 0.
(ii) PFor each xO € X, G(t)xO is ¢ontinuous on R+.
These are easy to verify.

Analogously to the finite dimensional case, we shall call G(t) the funda-
méntal solution of S. This terminology will be justified by Theorem 4.2 in
the next section.

Let X, € X and

Gk(t) = G(t+(k-1)T) for t € [0, T] and k = 1,2, . (3.1)

Then by the definition of the mild solution, we obtain the relation for the

operators Gj(t), i.e. Gj(t)xo, j=1,--+, k are given inductively by

: min (j-1,m)
= + X . - G d 3.

Gj(t)x0 T(t)Gj(O)xo 2 .[OT(t s)Ar j_r(s)xO s, (3.2)
where Gj(O)xo = Gj_l(T)xO. From (3.2) follows the next recursive formula
for Gk(t).

Gl(t) = T(t) and

min (k-1,m)
G (t) = T(v)G (t) + z T(t-s)A.G, .(s)ds for k2 2 (3.3)
k k-1 i=1 0 i k-1

The expression of the formula (3.3) is formal. We now give the definite
meaning of (3.3). We first consider G2(t). The operator Gz(t) is given

formally by
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t
G, (t) = T(t+T) + j T(t-s)A T(s)ds. °
2 1
0
. 1 . .
BY assumptions HO and Hz, T(t—s)AlT(s)x . is Bochner integrable on [0, t]
for any fixed x € X as in section 2. Hence the operator F(t) =
t i t
f T(t—s)AlT(s)ds can be defined by the equation F(t)x = J T(t-s)AlT(s)xds for
0 0 '
x € X. To show that F(t) is a bounded operator, we first prove that the

mapping F.x~ Ll(O, t; X) defined by (Fx)(s) = T(t—s)AlT(s)x, s € [0, %],

is closed ( see Dunford and Schwartz [5, p.685] ). Let x »x in X and
Fxn > h in Ll(O,t; X). Then there exists a subsequence {xn } C'{xn} such
3
that (Fxn_)(s) * h(s) in X for a.a. s € [0, t]. On the other hand
: J

T(t-s)AlT(s)xn g T(t—s)AlT(s)x in X for a.a. s € [0, t] because of the
boundedness of T(t) and T(t-s)A;. This shows that (Fx) (s) = h(s) for a.a
s € [0, t], and hence F is closed and therefore bounded. It is in this sense’
that the integral appearing in the formula of G2(t) should be interpreted.
Furthermore G2(-)x € ¢(0,T; X) for each x € X. We can prove by induction
that the same is true for Gk(t), k = 3.

Concerning with the formula (3.3), we define the operators Tl(t),---, Tk(t)’

t 2 0, inductively by

Tl(t) T(t) and

min (k-1,m) t
X J T(t-s)AiT
i=1 0

Tk(t) i(s)ds for k= 2,3,--* . (3.4)

k-

Here the interpretation of the integrals in (3.4) is same as given in (3.3).

Then by (3.2) and (3.4), Gk(t)xO can be written as

Gk(t)xo =T (B)x, + T (t)x, +e-0r + T (B)x, _, + T, (B)x,,

where x, = G.(0)x j = 1,°°*, k.
3 3)013 ’
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The férmula (3.4) is also inductive butkéimpléi than (3.3), and frbm this
formula we can défive the explicit form of Tk(t). Befbre giviné the fbrm,
let us define the index sets A-(j,k) for‘ail j = 1,2,--~ and k =74'1‘,‘2,-;;
by

AG,x) = { (ipsosy i) 3 1S dj,e0e, 4 Smoand &)+ -ee i =k }.

We then obtain from (3.4) the following integral expression of ~Tk(t) for

k-1 t ’ !
= % - ' Ceen - 3 [P
Tk(t) X fOT(t sj_l)Ai jo T(sl s)Ai'T(s)dsdsl ds.

. (3.5)
3=1 A(5,k-1) 1 J .

The meaning of the iterated integrals appearing in (3.5) is similar to those
giﬁén above. We note that Tk(t) is sﬁrongly continuous on‘ R+ for eaéh‘:
K =1,2,°"" . |
Noﬁ,'it is possible to give an expression of G(t) in terms of Tk(tf.
From (3.3), (3.4) and (3;5) it follows thét
G(t) = I 7T, (t-(i-1)71), t e [(k-1)T, kT], (3.6)
i=1*
which will be used in the next section.

Summing up the above arguments, we have the following theorem.

' THEOREM 3.1. Let the assumptions HO, Hl and H; be satisfied. Then
the set of one parameter family of strongly continuous operators
A T () = k=1,2,----}

can be constructed and is given by (3.5), and the fundamental solution G(t)

is given by (3.6).

Example. 3.1. Let X be a complex separable Hilbert space with inner product

<, > and A is self-adjoint on X. Then the semi-group T(t) generated by
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A is also self-adjoint. Therefore, from Nagy's theorem it follows that there
exists a resolution of unity {E(-)} on some half infinite interval (-%, c]
corresponding to T(t) such that T(t) is given by

C)\t
T(t) = Je aE () (3.7)

-0

provided that there exists t > 0 such that T(t)x = O implies x = 0 ( cf.
[6,71 ). Now let m =1 and Al = I , the identity operator on X. Then the

fundamental solution G(t) of (2.1) is given by

. (e]
¥ -yttt J Ae-(i-1)T)
e

i=1 (i-1)! o

G(t) = ae(), t € [(k=1)T, kTl.

Example 3.2. In addition to the assumpfions in Example 3.1, we suppose that
A has compact resolvent. Then there exists the set of eigenvalues and eigen-

functions {Xn, wnj= j=1,0e0,m, n=1,2,- } of A ( Kato [8, p.277] ).

In this case the semi-group T(t) in (3.7) is analytic and is represented by

[oe)

A m

T(t)x = L e nt ™x,0 Y ., t20 for each x € X. (3.8)
n=1 =1 ™ ™

Let A and Al commute. Since Ai (i=1,2,-+ ) commutes with T(t) for

t 20, i.e., for any x € D(Ai) and t 20, T(t)x € D(Ai) and AiT(t)x =
T(t)Aix , the fundamental solution G(t) is given by

k . i-1 . m .
cx = 3 pAEUDD. MDD il y sy
n=1 i=1 : j=1 ol

t € [(k-1)T, kT] (3.9)
1)

for x € D(Ai-

It is easy to verify the equality (3.9) by the expressions (3.5) and (3.6).
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4. Representations of The Mild Solution.

In this section we shall give two different types of concrete représentation
of the mild solution without induction. The first one is expressed by the
operatofs Tk(t) and the second by the fundamental solution G(t). The
second one is well known as a variation of constants formula and is extended
for more general delay systems both in finite dimensional space ( Bellman and
Cooke [1], Oauztgreli [11] ) and infinite dimensional space ( Delfour and Mitter

[3,4] in which all operators appearing in the system are bounded ).

' +
THEOREM 4.1. Let xj € X, £(°) € L;OC(R i %), g() € L, (-nT,0; X) and

]
o Hy end Hg with 1/p' + 1/q' = 1 be satisfied.

Then the mild solution x(t; x

‘let the assumptions H

»£,9) 1is given by

0
X o L l-DT
x(t; x_,f,g) = Z T, (t-(i-1)T)x_+ 2 T, (t-(i-1)T-s)f(s)ds
0 . i 0 . i

i=1 : i=1’0
k m LT

+ Z I (T. (t=- (i-14r) T-s)A )G (s)ds, (4.1)
i=1 r=1 7-r¢ * T

'where t € [(k-1)T, kT] and S(s) = g(s),. s € [-mT, 0)

o , s € [0, ©®) .
\

This theorem can be proved by using mathematical induction. To give some
definite meaning of the operator (Ti(t)Ar) in (4.1), which‘is a bounded exten-
sion of Ti(t)Ar' Hausdorff-Young's inequality is used effectively. For
detailed discussions, see Nakagiri [10].

We next give another representation of the mild solution in terms of G(t) '
which is well known as a variation of éonstants formula and has a

simpler form than that giﬁen in Theorem 4.1.
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THEOREM 4.2. Under the same assumptions in Theorem 4.1, the mild solution

is given by R

t 0
m
G(t)xO + J G(t-s)f(s)ds + L "‘(G(t—rT—s)Ar)g(s)ds, - (4.2)

0 r=1"-rT

x(t; 'xolflg)

where (G(s)Ar) 0 if s < 0,

]
Here the sense of (G(s)Ar)r is that given as X (Ti(s—(i-l)T)Ar) if s €
i=1 °
[{3-1)T, jTI.

5. An.Applicétion,

The repfeséntation (4.2) 1is quite useful to obtain the fundamenfal theorems
for the system S such as stability,‘continuous depeﬁdénce and‘existence of |
periodic or almost periodic solutions as well as the system theoretical results
such asrcontfollability, observability, stabilizabiliﬁy, identifiabiiity and
Vexistence of optimal controls [9,10]. Here we give an application of (4.2)
Zfovthe concept of controllabiliﬁy.

Let U Dbe a Banach space. In the system S, we put

11o% rF, U) and B € L(U,X).

f(t) = Bu(t), u €
L (R+; U) is the space of controls. First we shall give a definition of
exact and apéroximaté confréilabilities‘of the system S. To défine these
cdndepté,rthé foliowiné set of attainabilitf;is needed.
loc

. R : L ) + ,
Ax,L)y={xex:x=x(t; x,Bu,0) where u(-) € L (R ; U) 1.
t 0 P 0 P

Definition. . The system S is said to be
(i) p-exactly controllable on [0, t] if At(xO'Lp) =X for any’,xoye X;

(ii) p-approximately controllable on [0, t] if, A (x

t»'O‘Lp)%= X for any X, € X

0

1o -
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The following theorems can be established via infinite dimensional linear

system theory ( cf. Curtain and Pritchard [2] ).

THEOREM 5.1. Let X and U be reflexive Banach spaces and let p € (1,%).
Then the system S is p-exactly controllable on [0, t] if and only if

there exists Kt > 0 such that

I+l xx Kt” B4G (+) %+ | Lq(o,t; u*) ' x* e xr,
where 1l/p + 1/q = 1.

THEOREM 5.2. Let X be infinite dimensional and let p € [1, «]. Then the
system S is never p-exactly controllable on any‘ [0, t], £ > 0O if one of the
following conditions holds:

(i) T(t) is compact for_all t > 0.

(ii) X has a Schauder basis and the operator B is compact.

THEOREM 5.3. The system S is p-approximately controllable on [0, t] if and-

only if B*G(s)*x* = 0 in U* for all s € [0, t] implies x* = 0 in X¥*.

Now we consider the same system given in Example 3.2.

K
X(t) = Ax(t) + Ax(t=1) + Ibu (), t>0
: v=1
S
c . , )
x(0) = x,, X(s) =0, sc¢€[-T, 0,

oo 2loc,_+ _b e i oo . o :
where b, € D(A}), u,(-) € L 77(R) (V =1, K) (D@ =ni=1D(Ai) ).

. ) K . , ‘ Koo, .
In this case U=cC = { (ul,'-', uK) } and B € L(C, X) is given by
B(ul,---, u)=X “_bou. For each natural numbers n and i ‘and each  X-

tuple bv, we define the m X K matrix B: by

- 11 -
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i i-1, i-1
B, = [<A] Tbyoyp <Ry bl
i-1 i-1 '
<By byl ottt <Ry beslp
i-1 i-1
k<Al bl' > <A1 bK'¢hm; J

Then from Theorem 5.3 and the representation (3.9), we have the following result.

loc

COROLIARY 5.4. Let by, gD(Af) and u, ¢ L, ®hH (v=1,---, k) in s_.

Then the system Sc is p-approximately controllable on. [0, t1, t € [(k-1)T, k7)

. , k. .
if and only if rank [Bi,---, Bn] = mrl for all n=1,2,--- .

10.
11.
12.
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