Semigroup theory for functional differential equations with infinite delay; a representation of infinitesimal generators

Toshiki Naito

The University of Electro-Communications

1. Semigroups and infinitesimal generators. Suppose \mathcal{B} = $\mathcal{B}(I,\,C^n)$ is a linear space of some functions ϕ mapping an intermal I into n-dimensional comlex linear space C^n , where $I = [-r,\,0],\,0 \le r < \infty$, or $I = (-\infty,\,0]$. For a C^n -valued given function x and a parameter t in R, the function $x_t: I \to C^n$ is defined by $x_t(\theta) = x(t+\theta)$ for θ in I whenever $x(t+\theta)$ is well defined. If $L: \mathcal{B} \to C^n$ is a given linear operator, we say that the relation

$$(1) x'(t) = L(x_t)$$

is a linear functional differential equation—with finite delay when I = [-r, 0], or with infinite delay when I = (- ∞ , 0]. In this lecture, L is always assumed to be continuous. Suppose for every ϕ in $\mathcal B$ Equation (1) has a unique solution $\mathbf x(\mathbf t;\phi)$ for t in $[0,\infty)$ with the initial condition $\mathbf x_0 = \phi$. Then the solution operator $\mathbf T(\mathbf t):\mathcal B \to \mathcal B$ is defined by the relation

$$T(t)\phi = x_t(\phi), \phi \text{ in } B, t \ge 0.$$

In case \mathcal{B} is the family of continuous functions on [-r, 0] into \mathbb{C}^n , the family $\{T(t): t \geq 0\}$ is a semigroup of class (\mathbb{C}_0) of bounded linear operators on \mathcal{B} . Let A be the infinitesimal generator of T(t); that is, $A\phi = \lim_{t \to 0+} t^{-1}[T(t)\phi - \phi]$ whenever this limit exists. It is well known [2] that A is given by

(2)
$$A\phi(\theta) = \begin{cases} L(\phi) & \text{for } \theta = 0 \\ \\ \phi'(\theta) & \text{for } -r \leq \theta < 0 \end{cases}$$

if and only if the function defined by the relation in the right hand side belongs to $\ensuremath{\mathcal{B}}$.

In the case when $\mathcal{B}=\mathcal{B}((-\infty,\,0],\,\mathbb{C}^n)$, several models for \mathcal{B} are proposed: for some special measure μ , $\mathcal{B}=L^p(\mu)\times\mathbb{C}^n$ in which a norm is defined by $|\phi|=[|\phi(0)|^p+\int_{-\infty}^0|\phi(\theta)|^p\,\mathrm{d}\mu(\theta)]^{1/p}$, $1\leq p<\infty$; $\mathcal{B}=\mathcal{C}_\gamma$, the family of continuous functions ϕ such that $\phi(\theta)=\varphi^{\gamma\theta}\to \alpha$ limit as $\theta\to-\infty$, in which a norm is defined by $|\phi|=\sup|\phi(\theta)e^{\gamma\theta}|$. In these cases the family T(t) is again a semigroup of class (\mathcal{C}_0) of bounded linear operators on \mathcal{B} . Furthermore, the representation of A similar to Formula (2) is valid; the definition of ϕ' is slightly changed according to the choice of \mathcal{B} (cf [3, 4]).

In [2, 5, 6], etc, Equation (1) is considered on some abstract phase space $\mathcal B$ which is defined to be a space satisfying some hypotheses. The systems of hypotheses are somewhat different from each other according to the problem under discussion. In all cases, however, T(t) becomes a semigroup of bounded linear operators on $\mathcal B$. Further results are known [5, 6]: an asymptotic estimate of the order of |T(t)| as $t \to \infty$; informations about the spectrum of $\mathcal A$; and a construction of the fundamental matrix of Equation (1) with the variation-of-constants formula for the forced system of Equation (1), etc. However, it has been left unsolved to represent $\mathcal A$ in the manner analogous to Formula (2).

- 2. Formal approaches to the problem. To explain the reason why the representation of A is difficult to obtain, we go into the details of the hypotheses on \mathcal{B} employed in [5, 6].
- (H-0). A seminorm $|\cdot|$ is defined on \mathcal{B} : the quotient space $\hat{\mathcal{B}} = \mathcal{B}/|\cdot|$ is a Banach space.
- (H-1). If a function $x:(-\infty, \sigma+\alpha) \to C^n$, $\alpha > 0$, is continuous on $[\sigma, \sigma+\alpha)$ and x_{σ} is in B, then x_t is in B for every t in $[\sigma, \sigma+\alpha)$ and the map $t \to x_t$ is continuous.
- (H-2). There exist positive continuous functions K(t) and M(t), where M(t) is submultiplicative, such that, for the function x arising in (H-2), $|x_t| \le K(t-\sigma) \times \sup\{|x(s)|: \sigma \le s \le t\} + M(t-\sigma) |x_{\sigma}|$ for $\sigma \le t < \sigma + \alpha$.

(H-3). $|\phi(0)| \leq K|\phi|$, ϕ in \mathcal{B} , for some constant K. From these hypotheses, it follows that the solution $x(t;\phi)$ exists on $[0,\infty)$ uniquely: the solution operator T(t) is linear and continuous on \mathcal{B} . Hypothesis (H-1) implies that the semigroup T(t) is of class (C_0) . However, notice that no measurability condition is assumed on ϕ in \mathcal{B} . We cannot, for example, discuss whether ϕ in \mathcal{B} is absolutely continuous or not: the derivative ϕ' has no meaning. To overcome this difficulty, we add more hypotheses on \mathcal{B} , or else we interpret Formula (2) in a different manner than ever before. In this lecture, we proceed along the latter line.

To do this, let us introduce operators $\, {\rm B} \,$ and $\, {\rm C}_{\rm L} \,$ defined formally by the relations

$$B\phi(\theta) = \begin{cases} 0 & \theta = 0 \\ \phi'(\theta) & \theta < 0 \end{cases} \quad C_{L}\phi(\theta) = \begin{cases} L(\phi) & \theta = 0 \\ 0 & \theta < 0. \end{cases}$$

To emphasize the operator L:B \rightarrow Cⁿ, T_L(t) denotes the solution semigroup of Equation (1) and A_L its infinitesimal generator. Then we can rewrite Formula (2) as

(3)
$$A_{L}\phi = B\phi + C_{L}\phi.$$

Observe that $B = A_0$, the infinitesimal generator of the

solution semigroup $T_0(t)$ of the trivial equation x'(t)=0. Usually, we use a special symbol S(t) for $T_0(t)$. The operator $U_L(t)$ defined by $U_L(t)=T_L(t)-S(t)$ is completely continuous; the decomposition $T_L(t)=S(t)+U_L(t)$ was extremely useful to investigate the property of $T_L(t)$, [3,5]. Hence Relation (3) is also expected to have some meaning. However, we soon notice that this formula contains a trivial contradiction; that is, the domains of A_L and B do not coincide with each other. Furthermore, we do not know whether C_L is well defined on the space B or not. Formula (3) has an ambiguity concerning the domain where it holds.

3. Representation of A in the dual space. Fortunately, the adjoint operators of A_L and B have the same domain. Stech [7] first discovered this interesting fact in the case where B is of the type $L^p(\mu) \times C^n$; the author [5] proved the same result in the case where B is an abstract space satisfying a system of hypotheses similar to (H-0, ... 4). Therefore, we hope that Formula (3) can be interpreted if the relation is transferred to the dual space. Let us introduce notations: X* is a dual space of a Banach space X, and T* the dual operator of a linear operator T on X if it exists.

Before the demonstration of the final result, we again refer to the hypotheses on $\mathcal B$ which is sufficient to obtain the desired result. We leave Hypotheses (H-0) and (H-1) as

they are. The latter hypothesis implies that $\mathcal B$ contains the space $\mathcal C$, the family of continuous functions on $(-\infty, 0]$ with compact supports. Hypothesis (H-2) is replaced by

(H-2)'. There exists a continuous function K(t) such that, if ϕ in C has its support in [-t, 0], then

$$|\phi| \leq K(t) \sup\{|\phi(\theta)|: -t \leq \theta \leq 0\}.$$

Suppose $\alpha:\mathcal{B}\to\mathbb{C}$ is linear and continuous; that is, α is a member of \mathcal{B}^* . Then (H-2)' implies

$$|\langle \alpha, \phi \rangle| \leq |\alpha| K(t) \sup\{|\phi(\theta)|: -t \leq \theta \leq 0\}$$

for ϕ arising in (H-2)'. This means that the restriction of α on C is a Radon measure on $(-\infty, 0]$. It is well known that, for such a measure α , there exists a function $\eta(\alpha;\theta)=(\eta_1(\alpha;\theta),\ldots,\eta_n(\alpha;\theta))$ locally of bounded variation for θ on $(-\infty, 0]$ such that

$$\langle \alpha, \phi \rangle = \int_{-\infty}^{0} d_{\theta} \eta(\alpha; \theta) \phi(\theta) = \int_{-\infty}^{0} \sum_{i=1}^{n} d_{\theta} \eta_{i}(\alpha; \theta) \phi^{i}(\theta)$$

for every ϕ in \mathcal{C} . We can assume that η is normalized in the sense that $\eta(\alpha;0)=0$ and $\eta(\alpha;\theta)$ is continuous to the left for $\theta<0$. Then $\eta(\alpha;\theta)$ is determined uniquely by α in 3^* . It is clear that the map $\alpha\to\eta(\alpha;0-)$, the left-hand limit of η at $\theta=0$, is a linear operator on

 B^* into C^n . We assume the following hypothesis.

(H-4). This operator $\alpha \to \eta(\alpha;0-)$ is continuous. Note that this condition holds [6] if we adds one more hypothesis to the system (H-0, 1, 2, 3).

Hypothesis (H-3) is also assumed and rewritten in the form

(H-3). The operator $D:\mathcal{B}\to C^n$ defined by $D(\varphi)=\varphi(0)$, $\varphi\in\mathcal{B}$, is continuous.

Finally, we need the following.

(H-5). For every t \geq 0, $T_L(t)$ is well defined to be a continuous linear operator on \mathcal{B} .

Hypotheses (H-1, 5) imply that $T_L(t)$ is a semigroup of class (C_0) of bounded linear operators on B. It is known [2, 5] that (H-5) is derived from (H-1,2,3). In this lecture, we are not interested in this fact, but we dovote ourself to the study of the representation of A_L . From this standpoint, we assume the above statement, while (H-2) is replaced by a weak Hypothesis (H-2)'.

Now observe that $(T_L(t) - S(t))\phi$ is a menber of C for every ϕ in B. From Hypothesis (H-2)', for every α in B^* we can represent $<\alpha$, $(T_L(t) - S(t))\phi>$ in terms of Stirtjes integral. This implies the following Proposition.

Proposition 1. For every α in B^* and every ϕ in B,

$$\lim_{t \to 0+} \langle t^{-1} [T_L^*(t) - S^*(t)] \alpha, \phi \rangle = \sum_{i=1}^{n} -\eta_i(\alpha; 0-) L^i(\phi).$$

Let $\delta^{\dot{i}}(\phi)$ and $L^{\dot{i}}(\phi)$ denote the i-th component of $D(\phi)$ and $L(\phi)$, respectively. Hypothesis (H-3) implies that $\delta^{\dot{i}}$ is an element of \mathcal{B}^* ; clearly, $L^{\dot{i}}$ is also in \mathcal{B}^* . From the definition of infinitesimal generators and dual operators, we have the following proposition.

Proposition 2. Every δ^i belongs to the domain of A_L^* ; and $A_L^*\delta^i = L^i$ for $i=1,\ldots,n$.

Define an operator $P:B^* \rightarrow B^*$ by the relation

$$P\alpha = -\eta(\alpha; 0-) \cdot D = \sum_{i=1}^{n} -\eta_{i}(\alpha; 0-) \delta^{i} \quad \text{for } \alpha \quad \text{in } \mathcal{B}^{*}.$$

It is easy to see that PP = P; while Hypothesis (H-4) implies that P is continuous. Therefore P is a continuous projection on \mathcal{B}^* . Now we state the main theorem.

Theorem 3. Suppose Hypotheses (H-0,1,3,4,5) and (H-2)' hold and let A_L be the infinitesimal generator of the solution semigroup $T_L(t)$ of Equation (1). Then the domain of A_L^* is independent of the choice of the continuous linear operator $L:\mathcal{B}\to\mathbb{C}^n$. If the above projection P is restricted on this common domain \mathcal{D}^* , then the restriction, denoted by P again, is also a projection on \mathcal{D}^* . The all operators A_L^* , B^* and P are transformations of \mathcal{D}^* into B^* and they are related with each other in the manner

$$A_{L}^{*} = B^{*} + A_{L}^{*}P.$$

It is not difficult to prove this theorem if we use Proposition 1, 2 and the following result (cf. [1, p. 49]): the dual operator of the infinitesimal generator of a semigroup of class (C_0) is equal to the weak* infinitesimal generator of the dual semigroup. Notice that, along this line, we can again prove the existence of the common domain \mathcal{D}^* .

Corollary 4. The domain \mathcal{D}^* is decomposed into a direct sum $\mathcal{D}^* = \mathcal{N}_\text{T}^* \oplus \mathcal{M}_\text{T}^*$ as follows:

- (i) $A_T * \alpha = B * \alpha$ if and only if α is in $N_T *$.
- (ii) The restriction of A_L^* on M_L^* is an isomorphism of M_L^* onto the linear manifold generated by $\{L^1, \ldots, L^n\}$. (iii) M_L^* is contained in PD^* and $(I-P)D^*$ in N_L^* . On the other hand, the following conditions are equivalent: (a) $M_L^* = PD^*$, (b) $N_L^* = (I-P)D^*$, (c) the family $\{L^1, \ldots, L^n\}$ are linearly independent.

REFERENCES

- [1] P. L. Butzer and H. Berens, "Semi-Group of Operators and Approximation", Springer-Verlag, Berlin Heiderberg, 1967.
- [2] J. K. Hale, "Theory of Functional Differential Equations", Springer-Verlag, New York Heidelberg Berlin, 1977.
- [3] T. Naito, On autonomous linear functional differential

- equations with infinite retardations, J. Differential Equations, 21(1976), 297-315.
- [4] T. Naito, Adjoint equations of autonomous linear functional differential equations with infinite retardations, Tohoku Math. J., 28(1976), 135-143.
- [5] _____, On linear autonomous retarded equations with an abstract phase space for infinite delay, J. Diffetential Equations, 33(1979), 74-91.
- [6] ______, Fundamental matrices of linear autonomous retarded equations with infinite delay, Tohoku Math. J., 32(1980), 539-556.
- [7] H. W. Stech, On the adjoint theory for autonomous linear functional differential equations with unbounded delay,

 J. Differential Equations, 27(1978), 421-443.