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Semigroup theory for functional differential
equations with infinite delay; a representation

of infinitesimal generators

Toshiki Naito

The University of Electro-Communications

1. Semigroups and infinitesimal generators. Suppose B

= B(I, Cn) is a linear space of some functions ¢ mapping
an intermal I 1into n-dimensional comlex linear space Cn,

where I = [-r, 0], 0 <r <o, or I = (-», 0]. For a

Cn-valued given function x and a parameter t 1in R, the

function xt:I > Cn

in I whenever x(t + 6) is well defined. If L:B ~» ot

is defined by xt(e) = x(t + 6) for o
is a given linear operator, we say that the relation
(1) x'(t) = L(x,)

is a linear functional differential equation--with finite
delay when I = [-r, 0], or with infinite delay when I~

= (=», 0]. In this lecture, L 1is always assumed to be con-
tinuous. Suppose for every ¢ in B Equation (1) has a
unique solution x(t;¢) for t in [0, =) with the ini-
tial condition XO = ¢.- Then the solution operator T(t):B =

B 1is defined by the relation
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T(t)¢ = xt(q;), o in B, ¢ :O.

In case B 1is the family of continuous functions on
[-r, 0] into c", the family {T(t): t > 0} is a semigroup
of class (CO) of bounded linear operators on B. Let A Dbe
the infinitesimal generator of T(t);, that is, A¢ =

limt+0+ tflfT(t)¢ - ¢] whenever this 1limit exists. It is

well known [2] that A 1is given by

]
o

L(¢) for 6
(2) Ap(0) =

¢$'(8) for -r <6 <0

if and only if the function defined by the relation in the
right hand side belongs to B.

In the case when B = B({(-», 0], Cn), several models‘
for B are proposed: for some special measure u, B = Lp(p)
x ¢ in which a norm is defined by [¢| = [|eC0)|® +
19 16(o) | au(e)1P, 1 <p<ew; B = C,, the family of
continuous functions ¢ such that ¢(6) eYe + g limit as
9 + -», in which a norm is defined by |¢] = sup |¢(6)eY9|.
In these cases the family T(t) is again a semigroup of class
(CO) of bounded linear operators on B. Furthermore, the
representation of A similar to Formula (2) is valid; the

definition of ¢' is'slightly changed according to the choice

of B (ecf [3, 41).
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In [2, 5, 6], etc, Equation (1) is considered on some
abstract phase space B which is defined to be a space sat-
isfying some hypotheses. The systems of hypotheses are some-
what different from each other according to the problem
under discussion. In all cases, however, T(t) becomes a
semigroup of bounded liﬁear operators on B. Further results
are known [5, 6]: an asymptotic estimate of the order of
|T(t)| as t » «; informations about the spectrum of A; and a
construction of the fundamental matrix of Equation (1) with
the variation-of-constants formula for the forced system of
Equation (1), etc. However, it has beéh left unsolved to

represent A in the manner analogous to Formula (2).

2. Formal approaches to the problem. To explain the reason

why the representation of A is difficult to obtain, we go
into the details of the hypotheses on B employed in [5, 61].

is defined on B: the guotient

(H-0).. A seminorm

space B = B/|+]| is a Banach space.

(H-1). 1If a function x:(-», ot+a) =~ Cn, a > 0, is
continuous on [o, o+a) and X is in B, then Xy is in
B for every t in [0, o+a) and the map t - Xt is con-
,tinuous. |

(H-2). There exist positive continuous functions K(t)
and M(t), where M(t) is submultiplicative, such that, for

the function x arising in (H-2), |x K(t-0) x

A

¢ |
csup{|x(s)]:0 £ 8 < t} + M(t-0) [xol for ¢ <t < ota.
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(H-3). [¢(0)| < K|o], ¢ in B, for some constant K.

From these hypotheses, it follows that the éolution
x(t;¢) exists on [0, ») wuniquely: the solution operator
T(t) 1s linear and continuous on B. Hypothesis (H-1) im-
plies that the semigroup T(t) ié of class (CO). However,
notice that no measurability condition is assumed on ¢ in
B. We cannot, for example, discuss whether ¢ in B is
absolutely continuous or not: the derivative ¢' has no
meaning. To overcome this difficulty, we add more hypotheses
on B, or else we interpret Formula (2) in a different
manner than ever before. In this lecture, we proceed along
the latter line.

To do this, let us introduce operators B and CL

defined formally by the relations

0 8 =20 : L(¢) 8 =0
Bo(6) = cpe(e) =

$'(8) 6 <0 0 8 < 0.

To emphasize the operator L:B - Cn, TL(t) denotes the
solution semigroup of Equation (1) and AL its infinitesimal

generator. Then we can rewrite Formula (2) as
(3) Ard = Bo + C0.

Observe that B = A the infinitesimal generator of the

O)
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solution semigroup To(t) of the trivial equation x'(t) = 0.
Usually, we use a special symbol S(t) for To(t). The ope-
rator Uy (t) defined by Up(t) = T, (t) - S(t) is completely
continuous; the decomposition TL(t) = 3(t) + UL(t) was
extremely useful to investigate the property of TL(t), [3,5].
Hence Relation (3) is also expected to have some meaning.
However, we soon notice that this formula contains a trivial
contradiction; that is, the domains of AL and B do not
coincide with each other. Furthermore, we do not know
whether C is well defined on the space B or not. Formula

L

(3) has an ambiguity concerning the domain where it holds.

3. Representation of A in the dual space. Fortunately,

the adjoint operators of AL and B - have the same domain.
Stech [7] first discovered this interesting fact in the case
where B is of the type LP(u) x Cn; the author [5] proved
the same reéult in the case where B 1s an abstract space
satisfying & system of hypotheses similar to (H-0, ... 4).
Therefore, we hope that Formula (3) can be interpreted if the
relation is transferred to the dual space. Let us introduce
~notations: X¥ dis a dual space of a Banach space X, and
T¥ the dual operator of a linear operator T on X 1if it
exists.

Before the demonstration of the final result, we again

refer to the hypotheses on B which is sufficient to obtain

the desired result. We leave Hypotheses (H-0) and (H-1) as
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they are. The latter hypothesis implies that B‘ contains
the space C, the family of continuous functions on (-«, 0]
with compact supports. Hypothesis (H-2) is replaced by

(H-2)'. There exists a continuous function K(t) such
that, if ¢ in C has its support in [-t, 0], then

o] < K(t) sup{|¢(8)]: -t < 6 < O}.

A

Suppose «a:B > C 1is linear and continuous; that is, o

is a member of B¥., Then (H-2)' implies
|<a, ¢>| < |a| K(t) sup{[¢(8)|: -t < 6 < O}

for ¢ arising in (H-2)'. This means that the restriction
of o on € 1s a Radon measure on (-«, 0]. It 1s well
known that, for such a measure o, there exists a function
n(a;6) = (nl<a;e); cees nn(a;e)) locally of bounded vari-

ation for 8 on (-, 0] such that

0

n .
<a, 6> I dgny(a;0) 6 (8)

-0 i=71

jfm agn(ase) (e = j

for every ¢ in C. We can assume that n 1s normalized
in the sense that n(a3;0) = 0 and n(a;6) dis continuous to
the left for 6 < 0. Then n(a3;6) 1s determined uniquely
by a 1in B*. It is cdear that the map o > n(oa;0-), the

left-hand 1limit of n at © = 0, is a linear operator on
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B*¥ into C". We assume the following hypothesis.

(H-4). This operator o - nfa;0~) is continuous.
Note that this condition holds [6] if we adds one more hypoth-
esis to the system (H-0, 1, 2, 3).

Hypothesis (H-3) is also assumed and rewritten in the
form

(H-3). The operator D:B-+C" defined by D(¢) = ¢(0),
¢ € B, 1is continuous.

Finally, we need the following.

(H-5). Fof every t 2 0, TL(t) is well defined to be
a continuous linear operator on B.
Hypotheses (H-1, 5) imply that TL(t) is a semigroup of
class (CO) of bounded linear operators on B. It is known
[2, 5] that (H-5) is derived from (H-1,2,3). In this lecture,
we are not interested in this fact, but we dovote ourself to

the study of the representation of A From this standpoint,

I
we assume the above statement, while (H-2) is replaced by a
weak Hypothesis (H-2)'.

Now observe that (TL(t) - 3(t)) is a menbef of ¢C
for every ¢ in B. From Hypothesis (H-2)', for every o

in B¥ we can represent <a, (TL(t) -~ S(t))¢> 1in terms of

Stirtjes integral. This implies the following Proposition.

Proposition 1. For every o in B¥ and every ¢ 1in B,

11 1l % =
im <t [TL (t) - s*¥(t)Ja, ¢> = )

-ni(u;O—) Li(¢).
t->0+ i .
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Let Gi(¢) and Li(¢)‘ denote the i-th component of
D(¢) and L(9), respectively. Hypothesis (H-3) implies
that Si is an element of B¥; clearly, Li is also in B¥.
From the definition of infinitesimal generators and dual op-

#

erators, we have the following proposition.

Proposition 2. Every 8t belongs to the domain of AL*;

and AL*Gl =L for i=1, ..., n.

Define an operator P:B¥ » B¥ Dy the relation

n .
Pa = -n(a3;0-)*D = —ni(a;O—)Gl for o in B¥,
i=1
It is easy to see that PP = P; while Hypothesis (H-4) implies

‘that P 1s continuous. Therefore P 1is a continuous pro-

jection on B¥. Now we state the main theorem.

Theorem 3. Suppose Hypotheses (H-0,1,3,4,5) and (H-2)"'
hold and 1let AL be the infinitesimal generator of the solu-
tion semigroup TL(t) of Equation (1). Then the domain of
AL* i1s independent of the choice of the continuous linear
operator L:B - ¢, If the above projection P 1is rest-
ricted on this common domain 0¥, then the restriction, de-
noted by P again, 1s also a projection on D¥. The all

operators AL*, B¥ and P are transformations.of D¥ into

B¥ and they are related with each other in the manner
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% = R¥ *
AL B* + AL P.

It 1s not difficult to prove this theorem if we use
Proposition 1, 2 and the following result (cf. [1, p. 49]):
the dual operator of the infinitesimal generator of a semi-
group of class (CO) is equal to the weak¥* infinitesimal gene-
rator of the dual semigroup. Notice thet, along this line,

we can agaln prove the existence of the common domain D¥.

3
¢

Corollary 4. The domain ©D¥ 1is decomposed into a direct

sum D¥ = NL* C)ML* as follows:

(i) AL*a = B¥y 1f and only if o dis in NL*.

(ii) The restriction of AL* on ML* is anisomorphism
of ML* onto the linear manifold generated by {Li, cees L"}.
(iii) ML* is contained in. PD¥ and (I - P)D¥ 1in NL*.

On the other hand, the following conditions are equivalent:
(a) ML* = PD¥, (Db) NL* = (I - P)D¥, (c) the family

™)

{Ll, vee, L are linearly independent.
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