goooboooogn
0 436 O 1981 0 261-280

261

Natural Language as a Specefication

Language for Programs

by

Kazuhiro Fuchi

Electrotechnical Laboratory

262

Abstract

Using an example it is discussed how to derive formally
a formal specification of a program from a natural language
description. This is done in a Montaque-like framework.
As a next step a (logic) program is derived from this formal

specification through logical transformations.

- 263

1. Introduction

Natural language would be one of the best condidates
as a specification language for programs. However, many
problems are still remained to be solved for practical use
of natural language as a specification language. Here‘is
picked up one problem of converting natural language
descriptions into more formal ones.

In the following, one specific problem is treated as an

example. The problem is to find k such that

k is the maximum length of an upsequence

contained in A[0]...A[n-1] (1)

A detailed (and informal) description is found in
Dijkstra (1980).
This problem can be expressed more formally in a first

order logic form like

du.up(u,n,k) & ¥j (du.up(u,n,j) > j<k) (2)

assuming up(u,n,%) means that u is an upsequence of length %
contained in A[O0]...A[n-1].

The problem here is how these two expressions (1) and (2)'
are related, or how (2) can be derived from (1).

Another problem will be how up(u,n,%) is defined in a

more formal way.

-264

2. Framework

The method used here is a simplified version of Montague's
theory (PTQ). PTQ is based/on intensional logic, but here an
ordinary lambda calculus is used. (Intensional logic is
actually an extention of lambda caiculus.)

Look at the following sentence.
every woman talks ' (3)
The corresponding logical expreésion shbuld be
ux (W(x) > T(x)) | |)

Here W and T are to stand for 'woman' and 'talk'. To
see a correpondence between (3) and (4), let us tfy to’apply
lambda abstraction to (4).

Vx(sz) > T(x))
<=’[>\Q.'\1X(W(X) > Q(x))] (T)
¢=[[XP)\QTVX(P(X) > Q(x)] (W)] (T)

The structure of functional application of this

expression can be illustrated in a tree form.

APAQ.¥x (P (x)~> Q(x)) W T

On the other hand the syntactic structure of (3) would

be

265

7

-

every woman talk

These two structures can be voverlapped. Then the_three

words in the sentence can be defined as folldws.

woman = W

talk = T

every = MPAQ.¥x(P(x) + Q(x))

Conversely, representing the structure of (3) as

(every (woman)) (talk) (5)

then substituting a definition for each word and applying

lambda conversion, the logical expression (4) can be obtained.
This approach is one of the main features of Montague's

PTQ theory, which realizes Fregean functionality priciple.

Applying the method to

a woman talks: — adx (W(x) & T(x))

Mary talks — T (m)

we obtain the definitions of 'a' and 'Mary'. .

Summarising,

every Df APAQ. ¥x(P(x) » Q(x)) (6)
a Df ApAQ. Ix(P(x) & Q(x)) (7)
Mary Df AP.P(m) ' (8)

266

The definitions of 'is' and 'the' are obtained from

other sample sentences.

is

APAxX.P (Ay.x=y) (9)

= 1R

the APAQ.Q(1x.P(x)) (10)

Here 1x.P(x) (iota description) denotes x such that x

exists uniquely and P(x) holds.

267

3. Application to the Example

Suppose M stands for 'maximum length of an upsequence
contained in A[0]...A[n-1]".

Then (1) can be written as .
k (is (the (M)))

assuming a proper syntactic analysis. k should be AP.P(k)’
like (8). Then applying a series of lambda conversions

using (92) and (10), -

the (M) = [APAQ.Q(1x.P(x))] (M)
= AQ.Q(1x.M(x))
is (the M) = [APAx.P()\y.x=y)] (the M)
= Ax. the M (Ay.x=y) |
= ax. (12Q.Q(1x'.M(x"))] (Ay.x=y))
= Ax. ([Ay.x=yl (1x'.M(x")))
= Ax. x=1x'.M(x')
k(is_the M) = [AP.P (k)] (is_the M)
= is the M(k)
= [Ax.x=1x'.M(x")] (k)
=k = 1x'.M(x')
From the meaning of iota
M)

On the other hand, lambda-abstracting (2),

(2) « [M(du.up(u,n,?) & ¥j(du.up(u,n,j) > j<R))1 (k).
So, we can put

M = A%(...)

268

Applying lambda abstraction,
M <« [APA2(P(2)& Yi(P(3) » j<o))] (Xg.du.up(u,n,t))

So, we obtain the definition of 'maximum'.

max Df APAR(P(2) & ¥j (P(3) - j<)) (12) J

This definition seems reasonable.
In this abstraction, we can think A% du.up(u,n,) as
representing 'length of an...'. up(u,n,2) can be rephrased

as
up(u,n, %) = up(u) & in-n(u) & len(u)= 2

supposing 'up(u)' means u is an upsequence, 'in-n(u) ' means u
is contained in A[0]...A[n-1], and ‘len(u)=4%' means th2 length

of u is 2.

ALdu(up(u) & in-n(u) & len(u)=Q)

< M 3u(up(u)& in-n(u)& [Au.len(u)=2}(ui)"

< M ([APTu(up(u)& in-n(u)& P(u))] (Au.len(u)=2))
« [AQ & ([APTu(up(u)& in-n(u)& P(u))](Q(2)))]

(AAu.len(u)=2)

The definition of 'length' can be thought reasonabley as

len Df A2iu.len(u)= & ' (13)

The M can now be put

M = max([xQ...](len))

AQAL ([APHu(up(u) & in-n(u)& P(u))] (Q(e)))

269

<« [APXAQAR.P(Q(2))] (APHu(up(u)& in-n(u)& P(u)))
< [APAQAL.P(Q(2))] ([APAQEU(P(u)& Q(u))]
(Aua(up(u) & in-n(u)))
If we use the definition of 'a' (7),
< [APAQAL.P(Q(2))] (a (xu(up(u)& in-n(u)))

Nouns and adjectives are defined like

Au.up (u) (14)

APAu (P (u) & in-n(u)) ' (15)

%1%

So, now we have

< [APAQAL.P(Q(%))] (a (in-n(up)))

The remaining definition is for 'of'.

(0]
Hh

Df APAQAX.P(Q(x)) (16)

M = max ((of(a(in-n(up)))) (len))

Summarizing we can state the problem as follows.
The original sentence (1) can be expressed by a proper

syntactic analysis, as

k (is (the (max((len) (of (a ((up) in-n))))))) (17)

Noticing that of and in-n are post-fix operators, the

normal form of (17) should be

k (is (the (max ((of (a (in-n(up)))) (len))))) (18)

Substituting the obtained definitions into (18), we can

obtain (2) as a result by lambda conversions.

270

4, Some Observations

(1) The definition of 'of' is same as the combinator of
functional application. 'of' is a very complex word
linguistically, and presumably have many meanings.

However the definition (16) can be thought as representing
one (important) function of 'of',

'‘a' in the sentence (l). The

(ii) Notice the role of
existential quantifiers in (2) come from this 'a' in
(1). Also notice that the definition of 'a' was
obtained by quite a independent motivation, but works

very well.

(iii) Let us look at another example.

weight of a woman (19)
This can be expressed as

(of (a(woman))) (weight) (20)

Let us define weight like len (13).

weight Df Awlx.wt(x) = w (21)
Then
(17) = Aw x (woman (x) & wt(x) = w) (22)

Now let us consider a case of proper nouns.

Mary's weight (23)

171

The structure of (23) is

(of (Mary)) (weight) (24)

Using the definition (8)

of (Mary) = [APAQ Ax.P(Q(x))] (Mary)
= \QAx.Mary (Q(x))
= AQAx ([AP.P(m)] (Q(x)))
= Qx ([Q(x)] (m))
= 20w ([Q(w)] (m))

of Mary (weight)

= [AQAw ([Q (W)] (m))] (Awix.wt (x)=w)
= Aw ([[Awix.wt(x)=w] (Ww)] (m))
= Aw ([Ax.wt (x)=w] (m))

= \w.wt (m) =w (25)

This seems to represent the meaning of (19) properly,
and provides an evidence as for adequateness of the definition
(16) .
(iv) However there are cases the definition (16) does not

apply. For example in case of
upsequence of length k (26)

the definition does not work.

The appropriate logical form for (26) would be
M (up (u) & len(u)=k) (27)

For this case a more appropriate definition of 'of'

should be

-10-

212

of! Df AWPAAx (P(x) & Q(x)) (28)

The proper selection among the two definitions would be
possible by type-checking.

Following (14) and (15)

important Df AAX (imp (x) & Q(x)) (29)
importance Df Ax.imp(x) (30)
Then,

of ' (importance)
= [APAQAX(P(x)& Q(x))] (Ax.imp(x))

= AQAX (imp (X) & Q(x)) = important

This will be another motivation for the definition (28).

-11-

273

5. Derivation of a Logic Program

The formal description (2) can be used as a basis for

derivation of a program.

5.1. -Formal Specification

Let's define some predicates:

max(n)= k: k is the maximum length of an upsequence
contained in A[0]...A[n-1]

up(u,n,%): u is an upsequence of length % cortained in

A[0]...A[n-1]

Then,

max (n)=k <«->

du.up (u,n,k)& ¥j(du.up(u,n,j) » j < k) (31)

(31) can be taken as a formal specification for the
problem. Starting from (31l), we are going to derive a
program. In order to do so, we need to know the properties

of 'up'.

5.2. Some Knowledge

seq(s): s is a sequence
up (u) : u is an upsequence
sub(s,s'):s is a subsequence of s'

len(s)=%: 2 is the length of s

r(s): the right-most element of s
s.a: a structure composed of s and a
A(n): the sequence A[0].A[l].....A[n-1]

-12-

214

Assuming a is an atomic element,

seq(a). len(a)=1
| seq(s.a) <« seq(s) | len(s.a)=len(s)+l
(r(a)=a ,up(a).

r(s.a)=a Lup(u.a)« up(u)& r(u}za
" sub(a,a). (&(1)=a[0]

sub(a,s-a) . | A(n+l)=A(n) -A[n]

sub(s,s'+-a)« sub(s,s')

sub(s-a,s'+-a) «+ sub(s,s"')

up(u,n,%) = up(u)& sub(u,A(n))& len(u)=g

So,| up(Alo0]}l,1,1).
up (A[n],n+1,1).

up (u,n+1,2) «up(u,n,)

§ up (u-A[n],n+l,2+1l) «up(u,n,)& r(u)<Aln]

Upsequences are generated only by the above rules, so,

| up(u,n+1,2) <>up(u,n,2) v (u=Aln] & 2=1) vy

du' (up(u',n,2-1)& r(u')<A[nl& u=u'+A[nl) (32)

5.3. Mathematical Induction

The problem is equivalent to prove (constructively) that
for all natural number u, Hk.max(n)=k.

fhe problem itself and (32) suggest to use mathematical
induction on n.
[step 1] n=1
max (1)=k < k=1

. max(l)=1. ‘ (33)

-13-

[step 2] Assuming max{n)=k, that is,

du.up(u,n,k) (34)

and Vj(du.up(a,n,j) - j< k) (35)

it should be proved that max(n+l)=k',

i.e.
Fu.up(u,n+l,k')& vj(Zu.up(u,n+l,j) -~ j<k') (36)
Ju. upf(u,n+l,k") (using (32))

<« du(up(u,n,k') v (u=A[nl& k'=1l) v

du' (up(u',n,k'-1)& r(u')<A[nl& u=u'+A[ln]))
<« Hu.up(u,n,k') Vv Zu(u=A[nl& k'=l) Vv
Ju' (up(u',n,k'-1)& r{(u')2A[nl& Fu.u=u'*Alnj)
<« k'=k V.k'=1 Vv k'=k+1 & du(up(u,n,k)& r(u)<aln])
(using (34))
¥j (du.up(u,n+l,j) > j<k') (using (32))
< ¥j(up(u,n,j) > i<k') & ¥j(u=A[nl& j=1- j<k') &
¥j(du' (up(u’',n,j-1)& r(u')<A[n]& Fu.u=u'-A[n])>j<k")
< k<k' & 1<k' & (du(up(u,n,k)& r(u)<A[n]) > k+l<k')
(using (35))
(Writing Q for Hu(up(u,n,k)& r(u)<Aln]))
max (n+l) =k’
< (k'=k V k'=1V k'=k+1 & Q) & k<k' & 1<k' & (Qok+1<k')
< (k'=k V k'=k+1 & Q)& (~Q Vv k+l<k')
< k'=k & QV k'=k+l &~Q (37)
(= true)

So, step 2 is proved. Summarizing,

-14-

215

276

max (1)=1.
4Ag_ﬁax(n)=k & Hu(up(u,n,k)s& r(u);A[n])
~ max(n+l)=k+1l.
max (n)=k & ~ Hu(up(u,n,k)& r(u)a[n])

- max (n+l)=k.

(38)

(38) can be seen a specification a little bit elaborated.

It seems to be approaching to a’program (algorithm). Note

that the quantifier V¥j was eliminated.

5.4. Minimum Element

It would be desirable to eliminate Hu from (38), so

let's try to find m which is independent of particular u's,

such that,

du(up(u,n,k) & r(u)<x) <> mx (39)
Hu(up(u,n;k)& r(u)<x) > m<x
<= Yu (up(u,n,k) & r(u)<x > m<x)
&= Yu(up(u,n,k) > x<r(u) v m;x)
<« Yu(up{u,n,k) - qir(u))

r(u);x & x<m » r(u)<m
o mer(u) » x<r(u) V m<x

du(up(u,n,k) & r(u)<x) « mex
< du(mx > up(u,n,k) & r(u)<x)
< Zu(up(u,n,k) & (m<x - r(u)<x))
<« du(up(u,n,k) & m=r(u))

So, (39) <«
Hu(up(u,n,k) & m=r(u)) & Yu(up(u,n,k) - m<r (u)) (40)

-15-

277

(40) is intuitively seen as representing 'minimum’.

(40) can be written more exactly

So 'Skolemizing' m, m=min (n,k)

min(n,k)=m <-

du (up (u,n,k) & m=r(u)) & vu(up(u,n,k) »>m<r(u)) (40)"

If we have a program to compute min(n,k), then (38) can

be rewritten as,

max(l)=l.
max (n)=k & min(n,k)<A[n]~> max(n+l)=k+1.

max(n)=k & A[n]l<min(n,k)~-» max(n+l)=k. (41)

and, this is almost a program.

5.5. Mathmatical Induction Again

Looking at (40)', let's try to prove

¥nV¥jdm.min(n, j)=m

[in case of j=1]

Ju (up(u,n+l,1)& r(u)=m')

< Hu(up(u,n,l)& r(u)=m') Vv (u=A[nl& r(u)=m")
<« m'=ml Vv m'=A[n]

¥Yu (up (u,n+1,1)> m'<r(u))

<= Yu(up(u,n,l)- m';r(u))& (u=A[n]—+m';r(u))

<= m'<m, & m'<A([n]

1

(m'=ml V m'=A[n])& m'_iml & m'<A[n]

<= m'=ml & m'<A[n] V m'=A[n]& m';m

&= '=

1

ZA[n] V m'=A[n] & A[n];m

1 1

-16-

e and

218

[in case of j=k+1] where max(n)=k
du(up(u,n+l,k+1l) & r(u)=m'
= dudu' (up(u',n,k) & r(u')<A[n]
& u=u'+A[n] & r(u)=m')
< mc<Aln] & m'=r (u'-A[n])
< mk_g_A[n] & m'=A[n]
¥Yu (up (u,n+l,k+l) »m'<r(u))
< Yu¥u' (up(u',n,k) & r(u')<A[n] & u=u'-A[n]
> m'<r(u))

& mk;A[n] +m'<A[n]

m'=A[n] & m <A[n] & (m<A[n] >m'<A[n])

< m'=A[n] & m<A[n]

[in case of 1<j<k]

du(up(u,n+l,j) & r(u)=m')

<= du(up(u,n,j) & r(u)=m') V Hudu' (up(u',n,j-1) &
r(u')<A[n] & u=u'+A[n]l& r(u)=m')

<« m'=m. V m'=A[n] & m. -.<Al[n
5 [n] & m,_;<Aln]

Yu(up (u,n+l,3j) »m'<r(u))
< Yu(up(u,n,j) »>m'<r(u)) &
Yu¥u' (up(u',n,j-1) & r(u')<A[n]
& u=u'+A[n] >m'<r(u))
<« m';mj & (mj_]_;A[n] +m'<A[n])
(m =mj V m'=A[n] & mj_l;A[n]) & m';mj |
& (mj_l;A[n] »>m'<A[n])
<« m'=mj & m'_<;_mj & (mj_l;A[n] +m'<A[n})

V m'=A[n] & mj-liA[n] & m';mj & (mj_l_i_A[n] ->‘m'éA[n])

= m'=mj & (mj_l;A[n] ‘*mj;A[n])

-17-

219

| .
v m'=A[n] & mj_l;A[n];mj

P m'=mj’&?~(mj_ ;A[ﬁ]<mj)

1
= ’
v m'=A[n] & mj_l;A[n];mj

Summarizing,
min(l,1)=A[0]

min(n,k)<A[n] - min(n+1,k+1)=A[n]

A[n]l<min(n,l) - min(n+1,1)=A[n]

min(n,j-1)<A[nl<min(n,j) -» min(n+l,j)=A[n]/

e o(’ﬁqﬁ, Care” /\M‘-"“(,M+‘?.3)‘-‘- AT if‘\»,') Y

where k=max(n) and j=1,...,k (42)

Introducing Vector

min(n): a vector of min(n,j)
i=1, ...,k (=max(n))
(. min(n) [j]=min(n,j))

<v[i] :=x>: a vector where

<v([i]: x>[i]l= x

<v[i]: x>[jl=v[j] if ixj

Using a vector notation, (12) can be written as

min(1)=<m,[1]:=A[0]>.
min(n)=m & max(n)=k &

m[k]<A[n] » min(n+l)=<m[k+1]:=A[n]>.
min(n)=m & max(n)=k &

A[n)<m[1l] > min(n+l)=<m[1l]:=A[n]>.

i min(n)=m & max(n)=k & m[l]<A[n]<m[k] &

m[j-1]<A[n]<m[j] » min(n+l)=<m[j]:=A[n]>. (43)

-18-

280

5.6. Merging Two Expressions

(41) & (43) are very similar in their structures, so it

seems possible to merge them. Define

max(n,k,m) «>max(n)=k & min(n)=m

max (N) =K

max (1,1,<my[1]:=A[0]3).

max(n,k,m) & n¥N &
(m[k]<A[n] » max (n+1,k+1,<m[k+1]:=A[n]>),)
! Aln]<m(1] > max (n+1,k,<m[1] :=A[n]>),
| m[1]<A[n]<A[k] & B(3)

i

L > max(n+l,k,<m[j]:=A[n]>))'

i - max{(N,K,m) - (44)

1

[e e I

It

where B(j) m{j-1]1<A[n]<m[j]

Introducing,

b(i,j) <-->m[i];A[n] <m[j]

B(3)

b(1,k).
b(i,j) & ixj-1 & h=i+j div 2 &
! {m[h]<A[n] > b(h,3),}

[A[n]<m[h] > b(i,h) .

b(3-1,3) > . (45)

(45) expresses 'binary search'.
Here we look (44) and (45) combined as a program (a

logic program). So starting the specification (31) and (32)

we have derived a (logic) program.

-19-

