On skew group rings

Yasuyuki Hirano

Let R be a ring with 1, and G a group. U(R) denotes the group of units of R. Given maps $\alpha\colon G\to Aut(R)$ and $\gamma\colon G\times G\to U(R)$ such that

(i)
$$\gamma(g,h)\gamma(gh,i) = \gamma(h,i)^{\alpha(g)^{-1}}\gamma(g,hi)$$

and

(ii)
$$\gamma(g,h)r^{\alpha(gh)^{-1}} = r^{\alpha(g)^{-1}\alpha(g)^{-1}}\gamma(g,h)$$

for all g, h, i ϵ G, r ϵ R, we define the crossed product R*G to be a free R-module with basis $\{\overline{g} \mid g \epsilon G\}$. The multiplication is given by the rule

$$(r_g\overline{g})(r_h\overline{h}) = r_gr_h^{\alpha(g)^{-1}}\gamma(g,h)\overline{gh}.$$

This makes R*G an associative ring with unit element $\gamma(1,1)^{-1}\overline{1}$. The map $r \to r\gamma(1,1)^{-1}\overline{1}$ is a ring monomorphism of R into R*G. We therefore consider R as a subring of R*G. If $\gamma(g,h)=1$ for all g, h ϵ G, R*G called a skew group ring, and if $\alpha(g)=1$ for all g ϵ G, R*G is called a twisted group ring.

Let S be any ring. Let R*G be a crossed product with G a finite group, and V, V' (S,R*G)-modules. For g ϵ G and k ϵ Hom $_{(S,R)}(V,V')$, we define $k^g(v)=k(v\overline{g}^{-1})\overline{g}$ for all v ϵ V. One may check that $k \to k^g$ defines a group action of G on $\text{Hom}_{(S,R)}(V,V')$. It is clear that the fixed submodule is $\text{Hom}_{(S,R*G)}(V,V')$. Therefore $t_{\underline{G}}(k)=\sum_{g\in G}k^g$ is an (S,R*G)

omomorphism for every k ϵ Hom $_{(S,R)}(V,V')$. If there exists an h ϵ End $_{(S,R)}(V')$ such that $t_G(h)=l_{V'}$, then $\hat{k}=t_G(hk)$ is an (S,R*G)-homomorphism and $\hat{k}=k$ on every R*G-submodule of V. C(R) denotes the center of R. If there exists an element c ϵ C(R) such that $t_G(c)=\sum_{g\in G}c^{\alpha(g)}=1$, then $t_G(T_c)=1$, where T_c ϵ End $_{(S,R)}(V')$ denotes right multiplication by c. If V' is |G|-torsion free and $V\cdot |G|$, then we can define an element h ϵ End $_{(S,R)}(V')$ by $h(v)=|G|^{-1}v$ for all $v\in V'$. Clearly, $t_G(h)=1$.

Now, the proof of the following is easy.

Proposition 1. Let W C V be (S,R*G)-modules. Suppose there exists an element c ϵ C(R) such that $t_G(c) = 1$. If W $\bigoplus_{S} V_R$, then W $\bigoplus_{S} V_{R*G}$.

We note that if the order of G is invertible in R, then $|G|^{-1} \in C(R) \quad \text{and} \quad t_G(|G|^{-1}) = 1.$

A ring R is said to be fully right idempotent if every right ideal of R is idempotent. For example, von Neumann regular rings, right V-rings, and ring which are direct sum of simple rings, are fully right idempotent.

Corollary 1. Let R*G be a crossed product with G a finite group. Suppose there exists an element c ϵ C(R) such that $t_{\rm G}(c)$ = 1.

(1) If R is fully right idempotent, then so is R*G.

- (2) If R is regular, then so is R*G.
- (3) If R is a right V-ring, then so is R*G.
- (4) If R is a direct sum of simple rings, then so is R*G.

Proof. We prove only (3). If K is a maximal right ideal of R*G, then there exists a maximal submodule M of R*GR which contains K. It is easy to see that $\bigcap_{g \in G} M\overline{g} = K$. Therefore P=R*G/K is a direct sum of simple right R-modules, and hence P is an injective R-module. Let E be an injective hull of P_{R*G} . Since P \bigoplus ER, P=E by Proposition 1.

Let G \subset Aut(R) be a finite group, and R*G a skew group ring. R can be viewed as a right R*G-module by denining $r \cdot \sum x_g g = \sum (rx_g)^g$; for x_g and r in R. If we set $f = \sum_{g \in G} g$, then R \cong fR*G as right R*G-modules. The fixed subring is denoted by R^G; R^G = {r \in R | r^g = r for all $g \in$ G}. For a module V over a ring S, let $L(V_S)$ denote the lattice of S-submodules of V.

Lemma 1. Let $G \subset Aut(R)$ be finite. Suppose there is an element $c \in R$ such that $t_G(c) = 1$. Then the following are equivalent:

- 1) R_{RfR} is s-unital; that is, r ϵ r·RfR for all r ϵ R.
- 2) $L(R^{G}(R^{G})) \rightarrow L(R_{R*G})$; I \rightarrow IR, is a lattice isomorphism.

Proof. Since $t_G(r \cdot R * G)R = r \cdot RfR$ for every $r \in R$, the assertion is clear.

Corollary 2. Let R be a fully right idempotent ring, and G C Aut(R) finite. Suppose there is an element c ϵ C(R) such that $t_G(c) = 1$. Then the lattice of right ideals of R is isomorphic to the lattice of G-invariant right ideals of R.

Proof. We set Q = R*G. By the part (1) of Corollary 1, Q is fully right idempotent. Let r be an element of R. Then, fr ϵ (frQ)² C fr(RfR) and so r ϵ $r \cdot (RfR)$.

References

- [1] Y. Hirano: On fully right idempotent rings and direct sums of simple rings, Math. J. Okayama Univ., 22 (1980), 43-49.
- [2] —: Regular modules and V-modules, Hiroshima Math. J., 11 (1981), 125-142.
- [3] M. Lorenz: Primitive ideals in crossed products and rings with finite group actions, Math. Z., 158 (1978), 285-294.
- [4] M. Lorenz and D.S. Passman: Observations on crossed products and fixed rings, Comm. in Algebra, 8 (1980), 743-779.
- [5] : Two applications of Masch's theorem, Comm. in Algebra, 8 (1980), 1853-1866.

Department of Mathematics
Okayama University