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Some Topics in Integral Group ‘Rings

Ken-Ichi Tahara, Kazunori Horibe
Masao Shimizu and Akinori Hosomi

Aichi University of Education
We shall talk about two topics in'ihtegral group rings:
the first is a result on the augﬁentation quotients of integral

group rings, and the second is one on the circle groups.

I.. Augmentation Quotients of Integral Group Rings

Let G be a group, %G its integral group ring of G
over the ring % of all rational integers, and A'=A(G) the
augmentation ideal of %G. Consider the augmentation

guotients Qn(G)= An/An+l

for all natural integers n.
(1) Bachmann-Grunenfelder [1] proved the following:

Let G be a finite nilpotent group of class c. Then
there exist natural numbers n,, m such that = divides the

least common multiple of integers 1, 2, .-+, c, and Qn+ﬂ(G)

~Q_(6) for all n >n,.

The proof of the existence of n, and 7 1is a consequence

of Jordan-Zassenhaus' theorem:
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| {M : G-module of Z-rank (|G|=1)}/~ | < &
Vil
[{a™ |n>1}/~ |

‘ , ne+mT™
Then there exist natural integers n,, ™ such that A =

n, ; ;
A . We have the following commutative diagram of G-module

homomorphisms

ng+m n +m n +m+l
0,——->H1(G,A ) —> A A — A — 0 : exact

¥ ¥ d

n n n,+1

O—-—)Hl(G,AO)——9A°®A-—>A .-—?O:exact

ny+mw+l ny+1l

and hence A ~A . Thus we get AnHT:An

and hence
Qnﬂr(G)«:r Qn(G) for all n>n,. The proof of the result that
m divides the least common multiple of 1,2, -+-,c is not

easy and is omitted here. The key point is that the Poincare

series of G 1is a rational function. See [1] for details.

For any finite group G, the structure of Ql(G), Q2(G) ’
Q3(G) and Q4(G) is completely determined ([8, 9, 10, 111),
and Losey-Losey [6] called the sequence Qno(G) , Qn°+l(G) , T,
Qn°+1r-l(G) the stable bahavior of Q (G).

(2) Passi [7} determined completely the stable behavior for

all cyclic groups and all elementary abelian p-groups.

(3) Losey~lLosey [5] determined elegantly the stable behavior

for any finite p-group G with the lower central series G=
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- p :
Gl)GZD >Gc>G¢+l_l such that GiC%Gip‘ for all iz1.

(4) Losey-Losey [6] determined also the stable behavior for

all p-groups of order p3.

(5) Problem. Determine the stable bahavior for all p4groups

of order p4 .

For this problem, K. Horibe determined the stable
behavior for six some p-groups of order p4 with an odd prime
p.

We explain how to determine the stable behavior for these

groups using the following group G as an example:
p_.p_.p P,
G=<x,y,2z| x =y =2 =[x, z]l=ly, zl=1, [x, yl=z" > .
Any element g of G can be uniquely written as follows

g=thlZJ(Zp)kr 0<h, i, jlk;p’

/
Here x,y and 2z have the weight 1, and _zp has the weight

2 with respect to the lower central ceries. In general we
consider 4—Sequences o=(h, i, j, k) with non-negative integers

h, i, j, k¥ and the proper products

P(a)=(x-1) P (y=1) F(z-1) 3 (zP-1)X.

Now o 1is called basic if all integers h, i, j, k are
smaller than p. We partition the set of all 4-sequences

into the following four classes:
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y(1)={(0, 0,3, 0) | §>1}

Y(I1)={(0, 0, 3, k) | k>1}.

¥(111)={(h, i, j, 0) | (h, i)#(0, 0)}

Y(Iv)={th, i, j, k) |(h, i)#(0, 0), k>1}..
For simplicity we put V¥ =¥ (II)\JY(III)\WY(IV). then we have
the followingé.

a E‘P(;I) —_ PH]P(u;E Aj”’“.‘il)sz*mP(P‘l).

ae¥(ITI) == p™p(a)e ARTIFItm{P-1)
ﬂa e?(IVi = meka)e‘Ah+i+j+kp+mp(p-l).”

We write N(o, m) the index of A in the above each case.
For any n:;i we put

m (n)=min{meZ [m>0, N(a, m)2n}.

Then we can easily get

nei- (k=1)p-2-1 . .4
(5T *1]

"] pn-h=i-j=1 .-
moc(n)— —-'p—_l_'l‘l]
n-h-i-j-kp-1
[ SeDn  *1]
. i 0 , . - (< 0)
where [u]=\ .

'the largest ’i'ntegeréu (u>0)
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Now we put Ta(‘n)‘ the rational number which is appeared in
the bracket [ 1 of the above formula on md‘('ri) . The follow-

ing is the key proposition.:

Proposition. For any n2>1,

m_(n)
{(z-1)®, (z-1)™, oo, (z-1)®P72, 5 % "p(a), a e ¥:basic )

is a Z-free basis of An.

Corollary. For any n2>1,

_ m (n)
{p(z-1)", (2 L, (z- 1)n+P 2,0 % 'P(d, oc ¥:basic}

is a Z-free basis of An+l.

n+l

Therefore Qn(G) A /A is-an elementary abelian p-group

of rank Spt
S, =1 v+b# {basic aeV¥ | mog(n;l-l)‘ >rim C VR
On the other hand we put » B
n, =min {n [T (n) 20, ae¥: b‘asic }

then we have easily n,=3p-2. By Caic‘ulating the number-of "
basic o such that mu(n+l) > ma(n) in each case, we have

for any n >n,,

s, = I1+1+ (p2+p) + (pz—l)

=2p2 +p +1,

and hence 7w=1. Thus we have
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2

Theorem If G=<X,Y, z lrxp=yp_= 2P =[x, z]=[y, z]=1,

[x, y}:zp,>, then n,=3p-2, w=1 and

2p2+p+l

Qn(G)= Cp

;, n>n,,
where Cp is the cyclic group of order p.

We summarize all the stable behavior for six groups of

order p4 which we could compute completely.

(6) These six groups have the following stable behavior :
a) G=Cp x<x,y,2z| xP=yP=2P=[x, zl=1ly, zl1=1, [x,yl=1z>
0 (@)= C -;T(p+l) (P2+p+l) Q (G)=C —;—(p+l) (’p2+p+l) +1
3p-2 o) ! 3p-1" p
p p 2 p
b) G=<x,vy, 2z l X =y =ZP\=[XI ZJ=IYr zl=1, I[x,yl=z">

n, =3p-2, T =1

2p2+p+l
P

05, ,(G)=C
c) 3G=Cpx<xiy l’X =Y =1, [XIy]=yp>
n, =3p-2, m=1

Q3p-2 P

d) G=C_xC_xC
) P P 2
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2 :
e) G=<x,y,z|x*=yP=2F =[x, yI=[x, 2P1=1, [x,zl=y, ly, z1=2° >
n°=4p— 3, ’[‘[:2
(G)=

(G)= c_3Gp +2prD) ¢ S(3p H2pr) AL
p p

Qap-3 v Qp-2

2
£) G=<x,y,2z | P =yP=2P =[x, yI=1y, z1=1, Ix, zl=y >

n, =4p-3, m=2
i..2 i...2
- 3 (3p +p~1) -1 : _ =(3p~+p-1)
Q4p_3 (G)=C xC_ 2 (G)=cC e sz .

Q

IT. Circle Groups

We shall define a circle group. Let R be -a ring. For

any elements a, b of R we put',
acb=a+b +ab.

If the set R 1is a group under the operation o, we call
(R, o) the circle group of the ring R. We have easily the

following.

n+l=

If R')Rz) .-+ DR"DOR 0 is a nilpotent ring of index

n+l, then (R, °) is a nilpotent group of class < n.

Problem. Which groups is realized as circle groups of
rings ? Moreover when groups are restricted to nilpotent
groups, which nilpotent groups of class n are realized as

circle groups of nilpotent rings of index (n+1) ?
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(7) The case that groups are abelian.
Let G be an abelian group. Then G can be made a ring
by defining gh=0 for all g,h of G, and the group G

is isomorphic to the circle group - (G, o).

(8) The case that groups are nilpotent of class 2.

Hales-Passi [2] ‘proved the following.

Proposition. The following are equivalent:

(1) - G is the circle group of a nilpotent ring of index 3
(ii) there exists a normal subgroup N such that
a) Z(G)2 N2D,(G)=G,, the second dimension subgroup

b) the short exact sequence

i A% (G rA M) BG
A3 @ +amae)

0 —» N

> 0, (G/N) — 0

splits, where i(x)=%x-1, j((gl-l)(92~1D=(51‘I)(§2‘T7

+ /).

We want to éxtend the result for nilpotent groups of
higher class. In fact we could do for the case of class 3.
This is the maste;_thesis of A. Hosomi.

Before we mention the result for thé case of class 3,
we introduce the notation we use here. Let G be a group
with a normal subgroup N, and O ‘be a canonical -
homomorphism from G to G/N. We can extend ¢, a ring

homomorphism ?EN : G —— Z (G/N) by linearity.



Theorem. The following are equivalent:
(i) G is the circle group of a nilpotent ring of index 4
(ii) there are two normal subgroups M, N with MDN which
satisfy a) ~ e): ‘
a) 7Z(G) DN)D (G), the thlrd dimension subgroup
b) Z(G/N) )M/N )D (G/N), the second dlmens1on subgroup

¢c) the short exact sequence

o3 3 : .
0N A & (OHAMZEE N, o (g/N) —> 0

vy A4(G)_+A (N)A(G)

splits, where 11(x)= x-1, J;((g;-1) (92—1) (g5-1) )=
(9171 (g,-1) (g4-D)+ st (e/N), ana ¢; is the splitt-
ing. homomorphism of il

d) the short exact sequence

2 A (G/N)+A (M/N) 4 (G/N) 2 > Q2 (G/M) —5 0
‘Pz A (G/N) +A (M/N)A(G/N) ‘ ‘

0 —> M/N &=—=»

sp.litsy, where 1 (x)—x 1, 32((91 1) (92 l.))—
~(gl 1) (92 l)+ N (G/M), and v, is the skpllt't’ing
homomorphlsm of. 12‘. ' N

e‘)‘“; there is an ideal Lé of G .oontaj;ned in A2(G)+l
BN TG such that Ker v, =Ty (Ly)/a% (6/N)+a M4/N)a (G/W),
and there is a homomorphism q)3 L2+ A(N)ZG ——>N with
'¢3(a)—¢l(a+A (@+4(MA(@) for all aca’(@)+

A(N)ZG such that Ker y, is an ideal of G.

4 Roughly speaking, a g‘roup G is the circle group of a

nilpotent ring of index 4 if and only if the group G/N
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satisfies the criterion of Hales-Passi and the short exact

sequence of degree 4 - for G itself splits.
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