Shape fibrations for topological spaces

by

Sibe Mardešić

The notion of a shape fibration $p:E \to B$ was first introduced in [4] for the case when p is a map of metric compacta. In order to generalize it so as to apply to maps of arbitrary topological spaces, the author has introduced the notion of a resolution of a space and that of a resolution of a map [3].

<u>Definition 1.</u> A <u>resolution</u> of a topological space E consists of an inverse system $\underline{E} = (E_{\lambda}, p_{\lambda\lambda}, \Lambda)$ of topological spaces and of a map of systems $\underline{q} = (q_{\lambda}) : E \to \underline{E}$ such that the following two conditions hold:

- $(\mathtt{R_1}) \quad \text{If } \mathtt{P} \quad \text{is a polyhedron, } \mathcal{U} \quad \text{is an open covering of } \mathtt{P} \quad \text{and} \\ \mathtt{h} : \mathtt{E} \to \mathtt{P} \quad \text{is a map, then there exist a} \quad \lambda \in \Lambda \quad \text{and a map} \quad \mathtt{f} : \mathtt{E}_{\lambda} \to \mathtt{P} \\ \text{such that the maps} \quad \mathtt{fp}_{\lambda} \quad \text{and} \quad \mathtt{h} \quad \text{are } \mathcal{U}\text{-near.}$
- (R₂) If P is a polyhedron and $\mathcal U$ is an open covering of P, then there exists an open covering $\mathcal V$ of P with the following property: whenever $\lambda \in \Lambda$ and $f,f':E_{\lambda} \to P$ are maps such that the maps fp_{λ} and $f'p_{\lambda}$ are $\mathcal V$ -near, then there exists a $\lambda' \geq \lambda$ such that the maps $fp_{\lambda\lambda'}$ and $f'p_{\lambda\lambda'}$ are $\mathcal V$ -near.

If all E_{λ} are polyhedra, the resolution is called <u>polyhedral</u>.

<u>Definition 2.</u> A <u>resolution</u> of a map $p:E \to B$ consists of resolutions $q:E \to E$, $r:B \to B$ and of a map of systems $p:E \to B$ such that

p q = r p.

The resolution is polyhedral if $\ \underline{q}$ and $\ \underline{r}$ are polyhedral resolutions.

Definition 3. A level map of systems $\underline{p}=(p_{\lambda}):\underline{E}\to \underline{B}$ has the approximate homotopy lifting property (AHLP) provided for every $\lambda\in\Lambda$, normal covering $\mathcal U$ of E_{λ} and normal covering $\mathcal V$ of B_{λ} there exist a $\lambda'\geq\lambda$ and a normal covering $\mathcal W$ of $B_{\lambda'}$ such that the following condition holds. Whenever $h:X\to E_{\lambda'}$ and $H:X\times I\to B_{\lambda'}$ are maps such that H_0 and $p_{\lambda'}h$ are $\mathcal W$ -near, then there exists a homotopy $H:X\times I\to E_{\lambda}$ such that H_0 and $p_{\lambda'}h$ are $\mathcal W$ -near and $p_{\lambda'}h$ and $p_{\lambda'}h$ are $\mathcal W$ -near.

<u>Definition 4</u>. A map $p:E \to B$ is a <u>shape fibration</u> if there exists a polyhedral resolution $(\underline{q},\underline{r},\underline{p})$ of p such that p is a level map of systems with the AHLP.

The original definition of a shape fibration, given in [3] did not assume that <u>p</u> was a level map of systems. In that more general case the AHLP assumes a more complicated form. However, the notion of shape fibration remains the same. This was proved by Q. Haxhibeqiri in [1]. Moreover, his arguments together with the ones from [3] prove the following theorem.

Theorem 1. Every map $p:E \to B$ of topological spaces admits a polyhedral resolution $(\underline{q},\underline{r},\underline{p})$, where \underline{p} is a level map of systems.

The next theorem is also a consequence of [1] and [3].

Theorem 2. Let $(\underline{q},\underline{r},\underline{p})$ and $(\underline{q}',\underline{r}',\underline{p}')$ be two polyhedral resolutions of the same map $p:E\to B$ and let \underline{p} and \underline{p}' be level maps of systems. If \underline{p} has the AHLP, then so does \underline{p}' .

The next two theorms are proved in [2].

Theorem 3. Let $p:E \to B$ be a shape fibration, let $B_0 \subset B$ be a closed subset, let $E_0 = p^{-1}(B_0)$ and let $p_0 = p|E_0:E_0 \to B_0$. If B is normal, B_0 and E_0 are P-embedded in B and E respectively and p is a closed map, then p_0 is also a shape fibration.

Theorem 4. Let $p: E \to B$ be a shape fibration, let $e \in E$, b = p(e), $F = p^{-1}(b)$. If B is normal, F is P-embedded in E and p is a closed map, then p induces an isomorphism of the homotopy pro-groups $pro-\pi_n(E,F,e) \to pro-\pi_n(B,b)$. Moreover, the following sequence of pro-groups is exact

 $\cdots \rightarrow \operatorname{pro-}\pi_{n}(F,e) \rightarrow \operatorname{pro-}\pi_{n}(E,e) \rightarrow \operatorname{pro-}\pi_{n}(B,b) \rightarrow \operatorname{pro-}\pi_{n-1}(F,e) \rightarrow \cdots$

In the proof of these theorems one uses the following result from [5].

Theorem 5. Let X be a space and $X_0 \subset X$ a subspace. If X_0 is P-embedded in X, then there exists an inverse system of polyhedral pairs $(\underline{X},\underline{X}_0)$ and a map of systems $\underline{p}:(X,X_0) \to (\underline{X},\underline{X}_0)$ such that $\underline{p}:X \to \underline{X}$ and $\underline{p}_0 = \underline{p}|X_0:X_0 \to \underline{X}_0$ are resolutions.

References

- [1] Q. Haxhibeqiri, Shape fibrations for topological spaces, Glasnik Mat. (to appear).
- [2] ——, The exact sequence of a shape fibration, Glasnik Mat. (to appear).
- [3] S. Mardešić, Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981) (to appear).
- [4] S. Mardešić and T. B. Rushing, Shape fibrations I, General Topology and its Appl. 9 (1978), 193-215.
- [5] S. Mardešić and J. Segal, Shape theory, North Holland Publ.
 Co., Amsterdam 1982 (to appear).