Birational-integral extensions Ken-ichi Yoshida (Osaka Univ.) We shall study extensions of rings, especially, integral extensions of rings. Let R be an integral domain and let A be a ring which is birational and integral over R. For this purpose, the seminormalization ${}^+_AR$ of R in A, defined as follows, plays an important role. Definition. (i) ${}_{A}^{+}R = \{\alpha \in A \mid \alpha \in R_{\overline{p}} + J(A_{\overline{p}}) \text{ for any}$ $\{\alpha \in A \mid \alpha \in R_{\overline{p}} + J(A_{\overline{p}}) \text{ for any} \}$ (ii) If $R = {}_{A}^{+}R$, then we call R seminormal in A. (iii) $_{A}^{W}R = \{\alpha \in A \mid \alpha^{p} \in R_{3} + J(A_{3}) \text{ for some non-zero integer n, where p is the characteristic of the residue field <math>k(3)$, $3 \in Spec R$ is called the weak normalization of R in A. The seminormalization and the weak normalization are characterazied by the following proposition. Proposition 1. ${}^{+}_{A}R$ (resp. ${}^{W}_{A}R$) is the greatest subring R' of A such that R' \supseteq R, and (i) for any $\mathfrak{F} \epsilon$ Spec A, there is exactly one $\mathfrak{F}' \epsilon$ Spec R' lying over \mathfrak{F} , that is, the canonical map Spec R' $$\longrightarrow$$ Spec R is injective (especially, since R' is integral over R, this map is an isomorphism). (ii) the canonical homomorphism $$k(z) \longrightarrow k(z')$$ is an isomorphism (resp. gives a pure inseparable extension), where k(3) is the residue field of R . Corollary 2. We have - (i) ${}_{A}^{+}({}_{A}^{+}R) = {}_{A}^{+}R$, that is, ${}_{A}^{+}R$ is seminormal in A. - (ii) Let $R \subseteq B \subseteq {}_{A}^{+}R$. Then ${}_{B}^{+}R = B$. The proof of this corollary is easy. Definition. Let $\mathfrak{F}_1,\ldots,\mathfrak{F}_t$ be prime ideals of R and let P_{ij} , $1 \le j \le e_i$, be all prime ideals of A lying over \mathfrak{F}_i . We call a subring B of A the gluing of A with respect to $\{\mathfrak{F}_1,\ldots,\mathfrak{F}_t\}$ if $$B = \{\alpha \in A \mid \alpha(P_{i1}) = \dots = \alpha(P_{ie_i}) \in k(\beta_i) \text{ for all } i\},$$ where $\alpha(P_{ij})$ is the residue class of α with respect to P_{ij} . Put $P_i = \{\alpha \in B \mid \alpha(P_{i1}) = \ldots = \alpha(P_{ie_i}) = 0 \}$. Then $P_i = P_{ij} \cap B$ for all j, P_i is the only prime ideal of B lying over β_i , and we have $k(P_i) = k(\beta_i)$. Proposition 3. If B is given by the gluing of A with respect to $\{\mathfrak{F}_1,\ldots,\mathfrak{F}_t\}$ C Spec R, then B is seminormal in A and $\mathrm{Ass}_{\mathrm{B}}(\mathrm{A/B})\subseteq\{\mathrm{P}_1,\ldots,\mathrm{P}_t\}$, where $\mathrm{Ass}_{\mathrm{B}}(\mathrm{A/B})$ is the set of all the associated prime divisors of the $\, B \, - \, module \, A/B \, . \,$ Conversely, we have: Theorem 4. If B is seminormal in A, then B is given by the gluing of A with respect to $\mathrm{Ass}_{\mathrm{R}}(\mathrm{A/B})$. The proof of the above results is shown in [2] and [3]. Therefore, we know that if A/R is an integral extension, then ${}^+_AR$ is given the gluing of A with respect to ${}^+_{AR}R$. Hence we ask what is the extension ${}^+_AR/R$. For convenience, put $C = {}^+_AR$. Then ${}^+_CR = C$, that is, the seminormalization of R in C is equal to C, itself. Let \mathcal{F}_A be a homomorphism of A to $(A \otimes A)_{R}$ over R, such that $$\widehat{\varphi}_{A} \colon A \longrightarrow A \otimes A \longrightarrow (A \otimes A)_{\text{red}}$$ $$\alpha \longmapsto \alpha \otimes 1 - 1 \otimes \alpha \longmapsto \overline{\alpha \otimes 1 - 1 \otimes \alpha}.$$ M. Manaresi proved in [1] the following: Proposition 5. Ker $\overline{\varphi}_A = {}^W_A R$, that is, the kernel of $\overline{\varphi}_A$ is equal to the weak normalization of R in A. In our situation, since $C = {}^+_C R$, we have $C = {}^W_C R$. Hence we have $\overline{\varphi}_C(C) = (0)$, i.e., $\overline{\psi}_C$ is the trivial map. Let I_C be the kernel of the canonical homomorphism $$\mathcal{F}_{C}: C \underset{R}{\bullet} C \longrightarrow C$$. Then I_C is generated by $\{\alpha \otimes 1 - 1 \otimes \alpha \mid \alpha \in C\}$. Since $\varphi_C(C) = (0)$, that is, $\alpha \otimes 1 - 1 \otimes \alpha$ is nilpotent and I_C is a two-sided ideal of $C \otimes C$, we have that I_C is nilpotent, say $I_C^{q+1} = (0)$. Therefore we see that the q-th differential module $\Omega \subset C$ is isomorphic to $I_C / I_C^{q+1} = I_C$. Hence there exists a canonical q - th derivation of C over R such that and $\Delta_{\mathbf{q}}^{-1}(0)$ is a subring of C containing R. More generally, we have: Proposition 6. Let N be a C \bigotimes C - submodule of Ω^q_C (for example , I_C^t , where t is an integer). Then $\Delta_q^{-1}(N)$ is an intermediate ring between R and C. Proof. Let α , β be any elements of $\Delta_q^{-1}(N)$. Then $\Delta_q(\alpha+\beta)=\Delta_q(\alpha)+\Delta_q(\beta)\in N \text{ and }$ $\Delta_{\mathbf{q}}(\alpha\beta) = \alpha\beta \mathbf{Q} \mathbf{1} - \mathbf{1} \mathbf{Q} \alpha\beta = (\alpha\mathbf{Q} \mathbf{1}) (\beta \mathbf{Q} \mathbf{1} - \mathbf{1} \mathbf{Q} \beta) + (\mathbf{1} \mathbf{Q} \beta) (\alpha\mathbf{Q} \mathbf{1} - \mathbf{1} \mathbf{Q} \alpha)$ $\boldsymbol{\epsilon} \mathbf{N}.$ Therefore we have $\alpha + \beta$, $\alpha\beta \in \Delta \frac{-1}{q}(N)$. In the paper [4], Lipman introduced the following notion: For a ring A and a subring B of A, we call $$_{A}^{\star}B = \{ \alpha \in A \mid \alpha \otimes 1 = 1 \otimes \alpha \text{ in } A \otimes A \}$$ the strict closure of B in A. If $B = {*B \atop A}B$ then we say that B is strictly closed in A. Using these notations, we have: Proposition 7. In the above notation, $\Delta_{\mathbf{q}}^{-1}(\mathbf{N})$ is strictly closed in C. Remark. If D is a high order derivation, then $B = \left\{\alpha \in C \mid \alpha D = D\alpha\right\} \text{ is a subring of C and strictly closed.}$ Especially, if D is a derivation (of 1 - st order) of C over R such that D: C — M, where M is a C - module, then $D^{-1}(0) = \left\{\alpha \in C \mid D(\alpha) = 0\right\} = \left\{\alpha \in C \mid D\alpha = \alpha D\right\}$ is a subring and strictly closed in C. Proposition 8. Let A be a ring containing a field k and let \mathbf{w} , be a maximal ideal of A and assume that $A/\mathbf{w} \supseteq k$. Let Q be a primary ideal belonging to \mathbf{w} and assume that $Q \supseteq \mathbf{w}^{q+1}$. Then $$\Delta \colon A \longrightarrow {}^{m}/Q ,$$ $$\alpha \longmapsto \overline{\alpha - \alpha(m)}$$ where α (m) is the residue class of α and we regard α (m) as an element of k, hence of A. Then Δ is a q-th order derivation and we have $$R = \left\{ \alpha \in A \mid \alpha \Delta = \Delta \alpha \right\} = k + Q.$$ Remark. Let A be a noetherian domain containing a field k and ? be a prime ideal of A. Then the completion A of A has a coefficient field. Let K be the coefficient field and let q be a primary ideal belonging to ?. Hence we have a canonical high order derivation $$\Delta: A \longrightarrow A_{\widehat{\mathfrak{J}}} \longrightarrow \widehat{A}_{\widehat{\mathfrak{J}}} \longrightarrow \widehat{\widehat{\mathfrak{J}}}/\widehat{q}$$. On the other hand, the following results are well known (see [5]). (ii) A / B is epimorphic and integral if and only if A = B. For convenience, let $C = C_0$ and $C_1 = \Delta_q^{-1}(0)$. Then we have: Proposition 10. If $C_0 \ge R$, then $C_0 \ge C_1 \ge R$. Proof. If $C_0 = C_1$, then we have ${}_C^{\star}R = C$, hence $C_0 = C = R$, because the extension C / R is epimorphic and integral. Continuing this process, we have: Theorem 11. There exist a sequence of invariant subrings with respect to some high order derivations and an integer d such that $$c_0 \neq c_1 \neq \dots \neq c_d = R$$. Remark. In the above C_{i+1} is an invariant subring of C_i with respect to the canonical high order derivation over R, $\Delta_i \colon C_i \longrightarrow \Omega_R(C_i) \, .$ Lemma. If $I_C^t = I_C^s$ for t > s, then we have $I_C^s = (0)$. Proof. Indeed, for $l \gg 0$, we have $I_C^{\ell} = (0)$. Hence $$I_C^s = I_C^t = I_C^{t-s+s} = I_C^{2t-s} = \dots = (0).$$ Therefore there $$I_{C} \supseteq I_{C}^{2} \supseteq \dots \supseteq I_{C}^{q} \supseteq I_{C}^{q+1} = (0)$$. For the canonical high order derivations $$\Delta_{\mathbf{i}} : \mathbf{C} \longrightarrow \mathbf{I}_{\mathbf{C}} / \mathbf{I}_{\mathbf{C}}^{\mathbf{i}} = \Omega_{\mathbf{C}}^{\mathbf{i}-1},$$ let $B_i = \Delta_i^{-1}(0)$. Then $B_i = \Delta_q^{-1}(I_C^i)$, and B_i is the invariant subring of B_{i-1} with respect to $\Delta_{i \mid B_{i-1}}$. Since $\Delta_{i \mid B_{i-1}}$ is a (1-st order) derivation, we have the following: Theorem 12. There exists a sequence of invariant subrings with respect to some derivations and an integer g such that $$C = C_0' \ge C_1' \ge ... \ge C_{\alpha'} = R.$$ Therefore we say that the integral extensions are similar to the algebraic extensions of fields. - [1] M. Manaresi, Some properties of weakly normal varieties, Nagoya Math. J., 77 (1980), 61 74. - [2] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Piza 24 (1970), 585 595. - [3] K. Yoshida, On birational integral extension of rings and prime ideals of depth one, to appear Osaka J. Math. - [4] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649 685. - [5] P. Samuel, Les epimorphismes d'anneaux, Séminaire d'algebres commutative dirigé par P. Samuel, Secretariat Math., Paris, 1968.