Local rings with multiplicity two

Shin Ikeda

(Nagoya University)

Let (A,\underline{m},k) be a Noetherian local ring and let e(A) be the multiplicity of A. It is well known that A is regular if and only if A is unmixed and e(A) = 1. But, in general, a local ring with multiplicity 2 is not a hypersurface even if it is unmixed.

Example. Let k be a field, $d \ge 2$ an integer and $X_1, \dots, X_d, Y_1, \dots, Y_d$ indeterminates over k. We put

$$A = k[[X_{1},...,X_{d},Y_{1},...,Y_{d}]]/(X_{1},...,X_{d}) \cap (Y_{1},...,Y_{d}).$$

Then, A is unmixed and e(A) = 2, but A is not a hypersurface. Note that A does not satisfy (S_2) .

In a recent work [1], S. Goto studied Buchsbaum rings with multiplicity 2. Inspired by [1], K. Watanabe raised the following questions.

- (1) Is a local ring with multiplicity 2 satisfying (S₂) a hypersurface?
- (2) Is a local ring with multiplicity 3 satisfying (S_2) Cohen-Macaulay? In this note we give an affirmative answer to the question (1) under some additional coditions and we give a counter example to the question (2).

Throughout this note a ring means a commutative Noetherian ring with a unit.

/

1. Preliminaries.

First we recall basic properties of the multiplicity of local rings.

Let (A,m,k) be a local ring. We put

$$Assh(A) = \left\{ p \in Ass(A) \mid dim A/p = dim A \right\}$$
.

The following result can be found in [2].

(1)
$$e(A) = \sum_{p \in Assh(A)} \underline{1}(A_p)e(A/p)$$

Let $p \in Spec(A)$. If ht p + dim A/p = dim A and A/p is ana-(2) lytically unramified, then $e(A_p) \le e(A)$.

The notion of ideal transform plays an important rôle in the sequel. We recall the definition: let R be a ring, I an ideal of R and M a finitely generated R-module; we define

$$D_{I}(M) = \underbrace{\lim_{n \to \infty}} Hom_{R}(I^{n}, M)$$

and call it the ideal transform of M with respect to I.

Proposition 2. Let R, I and M be as above.

(1)
$$H_{\mathrm{I}}^{\mathbf{i}}(D_{\mathrm{I}}(M)) = \begin{cases} (0) & \text{for } \mathbf{i} \leq 1 \\ \\ H_{\mathrm{I}}^{\mathbf{i}}(M) & \text{for } \mathbf{i} \geq 2 \end{cases}$$

(2) we have the following exact sequence

$$0 \longrightarrow H_{\mathbf{I}}^{0}(M) \longrightarrow M \longrightarrow D_{\mathbf{I}}(M) \longrightarrow H_{\mathbf{I}}^{1}(M) \longrightarrow 0$$

and

(3)
$$D_{I}(M)_{p} = M_{p} \text{ for } p \notin V(I).$$

We need a result of M. Hochster, the "direct summand conjecture" (cf. [3]).

Proposition 3. Let R be a regular ring containing a field and let S be a module-finite extension algebra of R. Then, R is a direct summand of S as an R-module.

2. Local rings with multiplicity 2.

First we give an affirmative answer to the question (1) under the condition that the local ring is complete and contains a field.

Theorem 4. Let (A,\underline{m},k) be a complete local ring containing a field. Assume that A satisfies (S_2) and e(A) = 2. Then A is a hypersurface with multiplicity 2.

(Proof). It is sufficient to prove that A is Cohen-macaulay. If $\dim A \leq 2$ there is nothing to prove. We will prove the assertion by induction on $\dim A$. It is easy to see that $e(A_p) \leq e(A)$ for all p e Spec(A). By the induction hypothesis we may assume that A_p is Cohen-Macaulay for p e Spec(A) $-\left\{\frac{m}{2}\right\}$. In particular, we may assume that $\underline{1}(H_{\underline{m}}^i(A)) < \infty$ for $0 \leq i < \dim A$. Assume that $\dim A = 3$. We may assume that k is an infinite field, so that there exists an S.O.P. a_1, a_2, a_3 such that $\underline{m}^n = (a_1, a_2, a_3)\underline{m}^{n-1}$ for some positive integer n. Set $S = k[[a_1, a_2, a_3]]$. Then S is a regular local ring and A is a module finite extension of S. Using Proposition 3, we get an exact sequence

$$0 \longrightarrow S^{n-1} \longrightarrow S^n \longrightarrow A/S \longrightarrow 0 ,$$

where M = (a_{ij}) is an (n-1) x n matrix with a_{ij} e \underline{n} and \underline{n} is the maximal ideal of S . We want to show that A is Cohen-Macaulay. Assume the contrary. Since $(A/S)_p$ is free for p e Spec(S) - $\{\underline{n}\}$ the ideal generated by the maximal minors of M is an \underline{n} -primary ideal of height at most 2. This is a contradiction. Let dim A \geq 4. Choose a non zero divisor x such that e(A/xA) = 2. We have an exact sequence

$$0 \longrightarrow A/xA \longrightarrow D_{m}(A/xA) \longrightarrow H^{1}_{m}(A/xA) \longrightarrow 0.$$

The ideal transform $D_{\underline{m}}(A/xA)$ is a finite product of complete local rings with multiplicity two and satisfies (S₂) by Proposition 2. Hence $D_{\underline{m}}(A/xA)$ is Cohen-Macaulay by the induction hypothesis. It is easy to see that

$$H_{m}^{i}(A/xA) = (0)$$
 for $2 \le i < \dim A/xA$. From the exact sequence $0 \longrightarrow A \xrightarrow{x} A \longrightarrow A/xA \longrightarrow 0$

we get the exact sequence

$$0 \longrightarrow H^{1}_{m}(A/xA) \longrightarrow H^{2}_{m}(A) \xrightarrow{x} H^{2}_{m}(A) \longrightarrow 0.$$

Since $\underline{1}(H_{\underline{m}}^2(A)) < \infty$, we have $H_{\underline{m}}^2(A) = (0)$ by Nakayama's lemma. Thus, A is Cohen-Macaulay as required.

For local rings not containing a field we have the following result.

Theorem 5. Let (A, \underline{m}, k) be a complete local ring which is not a domain. Assume that e(A) = 2 and A satisfies (S_2) . Then,

A is a hypersurface.

The following result is the main theorem of [1].

Corollary 6. Let (A,\underline{m},k) be a Buchsbaum ring with dim $A \ge 2$ and e(A) = 2. Then, $H^{\underline{i}}_{\underline{m}}(A) = (0)$ for $2 \le i < dim A$ and $\underline{1}(H^{\underline{1}}_{\underline{m}}(A)) \le 1$.

If A contains a field we can give a simple proof of this result by Theorem 4. Another consequence of Theorem 4 is:

Corollary 7. Let R be a regular local ring containing a field and let I be an ideal of R such that e(R/I) = 2 and $pd_{R/I}I/I^2 < \infty$. Then I is generated by an R-sequence.

Example. Let k be a field and let $X_1, X_2, X_3, Y_1, Y_2, Y_3$ be indeterminates over k. We put

$$A = k[[X_1, X_2, X_3, Y_1, Y_2, Y_3]]/(X_1Y_1 + X_2Y_2 + X_3Y_3, (Y_1, Y_2, Y_3)^2).$$
 Then A satisfies (S_2) and $e(A) = 2$. But A is not Cohen-

Macaulay

During the symposium C. Huneke and S. Goto communicated to me the following generalization of Theorem 4.

Theorem. Let A be a complete local ring containing a field.

Assume that

- (1) A satisfies (S $_{\gamma}$), $n \leq \dim A$
- (2) $e(A) \leq n$.

Then A is Cohen-Macaulay.

Reference

- [1] S. Goto, Buchsbaum rings with multiplicity 2, preprint.
- [2] M. Nagata, Local rings, Interscience, New York, 1962.
- [3] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43.