QUASI-POLYNOMIAL ALGEBRAS

Ву

Teruo ASANUMA (Toyama University)

Introduction.

Let R be a commutative ring, and let $R^{[n]}$ be a polynomial ring $R[X_1, \ldots, X_n]$. For a prime ideal $\mathscr O$ of R, we denote by $j(\mathscr O)$ the integral closure of $R/\mathscr O$ in its quotient field $k(\mathscr O) = R_{\mathscr O}/\mathscr O R_{\mathscr O}$. There are natural injections $R/\mathscr O \subseteq j(\mathscr O) \subseteq k(\mathscr O)$, and hence $j(\mathscr O)$ may be considered as an R-subalgebra of $k(\mathscr O)$.

Definition. An R-algebra A is called a quasi-polynomial R-algebra in n-variables if the base extension $j(\varphi) \otimes_R A$ is $j(\varphi)$ -isomorphic to $j(\varphi)$ [n] for each prime ideal φ of R.

Of course the polynomial ring R^[n] is a trivial example of quasi-polynomial algebras. Conversely if R is an integrally closed local domain, then any quasi-polynomial R-algebra is a polynomial ring over R. But there is a non-trivial example of quasi-polynomial R-algebras in general as follows:

Example. (a): Let k be a field of positive characteristic p, and let $R=k[Y^2,Y^3]\subset k[Y]\cong_k k^{[1]}$. If we set $A=R[Z^p,Z+YZ^p]\subset k[Y,Z]\cong_k k^{[2]}$, then $A^{[1]}\cong_R R^{[2]}$ and $A\not=_R R^{[1]}$. Moreover A is a quasi-polynomial R-algebra in one-variable ([2],[12]).

(b): Similarly if we set $R = \mathbb{Z}[2\sqrt{2}]$ and $A = R[Z^2, Z + \sqrt{2}Z^2]$, then

 $A^{[1]} \cong_R^{[2]}$ and $A \nsubseteq_R^{[1]}$. This is another non-trivial example of quasi-polynomial R-algebras ([3]).

The pourpose of this article is to discuss some topics related to quasi-polynomial algebras. For the detail we refer to [5] and [6].

1. Generalities.

We will need some definitions from [7] and [9].

Definition. An R-algebra A is called weakly projective if A is a retract of a polynomial ring $R^{[n]}$, i.e., there is a pair of R-homomorphisms

$$A \xrightarrow{g} R^{[n]} \xrightarrow{f} A$$

such that $f \circ g = id_A$, the identity map on A. An R-algebra A is called invertible if there is an R-algebra B such that

$$A \otimes_{R} B \cong_{R} R^{[n]}$$
.

An invertible algebra is weakly projective but the converse does not necessarily hold.

Definition. An R-algebra A is called strongly projective if there is a projective A-module M such that the symmetric algebra $S_{\Lambda}(M)$ is R-isomorphic to $R^{[n]}$.

In this case the symmetric algebra $S_{\overline{A}}(M)$ is considered as an R-algebra by natural homomorphisms $R \longrightarrow A \longrightarrow S_{\overline{A}}(M)$. These three types

of algebras are very closely related to quasi-polynomial algebras. It is easy to see that the symmetric algebra $S_R(N)$ of a finitely-generated projective R-module N is a typical example of these three algebras.

Theorem 1.1. Let R be a noetherian ring, and let A be a finitely-generated, flat, quasi-polynomial R-algebra such that the differential A-module $\Omega_{\rm R}({\rm A})$ is projective. Then A is a strongly projective R-algebra.

In the case that R is reduced, we can omit the assumption of $\Omega_{\rm R}({\rm A})$ to be projective from Theorem 1.1. Thus we have the following corollary of Theorem 1.1.

Corollary 1.2. Let R be a reduced noetherian ring, and let A be a finitely-generated, flat, quasi-polynomial R-algebra. Then A is a strongly projective R-algebra.

In the following we consider some applications of quasi-polynomial algebras.

2. Algebras stably equivalent to $R^{[1]}$.

Definition. An R-algebra A is called stably equivalent to an R-algebra B if $A^{[n]} \cong_R B^{[n]}$.

Lemma 2.1. Let A be a strongly projective R-algebra. Then A is stably equivalent to R^[n] if and only if Ω_R (A) is stably equivalent (as an A-module) to a free A-module Aⁿ of rank n,

i.e., $\Omega_{R}(A) \oplus A^{r} \cong A^{n+r}$.

Proposition 2.2. Let R be a noetherian ring, and let A be a finitely-generated, flat, quasi-polynomial R-algebra. Then A is stably equivalent to $R^{[n]}$ if and only if $\Omega_R(A)$ is stably equivalent to A^n .

Proposition 2.3. Let R be a noetherian ring, and let A be an R-algebra. Then the following two conditions are equivalent:

- (i) A is stably equivalent to $R^{[1]}$.
- (ii) A is a quasi-polynomial R-algebra in one variable such that $\Omega_{\rm p}({\rm A})$ is free.

Definition. We say that an R-algebra A is R-invariant if any R-algebra B stably equivalent to A is R-isomorphic to A ([1]).

Thus under the assumption that $R^{[1]}$ is R-invariant a finitely-generated, flat, quasi-polynomial R-algebra A in one-variable is R-isomorphic to $R^{[1]}$ if and only if $\Omega_R(A)$ is free. As shown in the introduction, $R^{[1]}$ is not always R-invariant. We give a necessary and sufficient condition on R for $R^{[1]}$ to be R-invariant. (See [2],[3],[5],[12])

Definition. Let R be a subring of a reduced ring S. We say that an element $a \in S$ is of F-type over R if a^2 , a^2 , $na \in R$ for some positive integer n. If each element $a \in S$ of F-type

over R is contained in R, then R is saied to be F-closed in S. If a reduced ring R is F-dosed in any reduced ring S containing R as a subring, then R is called an F-ring ([3]).

A reduced ring containing a field of characteristic zero is a typical example of F-rings. A semi-normal ring (i.e., a reduced ring R such that the Picard group Pic(R) is canonically isomorphic to $Pic(R^{[n]})$ for any $n \ge 0$) is another example of F-rings ([12]). On the other hand $k[Y^2,Y^3]$ and $\mathbb{Z}[2\sqrt{2}]$ are the examples of non-F-rings, where k is a field of positive characteristic p.

Theorem 2.4. $R^{[1]}$ is R-invariant if and only if $R_{red} = R/\sqrt{(0)}$ is an F-ring, where $\sqrt{(0)}$ denotes the nil-radical of R.

Let R be a reduced ring with a finite-number of minimal prime ideals. The F-closure F(R) of R is defined as the intersection $\bigcap_{\lambda} R_{\lambda}$ of all F-rings R_{λ} such that $R \in R_{\lambda} \subset K$, where K is the total quotient ring of R. We note that R is an F-ring if and only if F(R) = R. If R is of prime characteristic p, then for any element $a \in F(R)$ there is a positive integer e such that $a^p \in R$. (The integer e may depend on a)

Theorem 2.5. Let R be a reduced noetherian ring of prime characteristic p, and let A be an R-algebra. Then the following two conditions are equivalent:

(i) A is stably equivalent to $R^{[1]}$.

(ii) $A \cong_R R[z^p^e, z+a_1z^p+\ldots+a_rz^{rp}]$, where $a_i \in F(R)$ such that $a_i^p \in R$.

Theorem 2.6. Let R be a ring containing an infinite field k. Let A and B be any pair of R-algebras stably equivalent to $R^{[1]}$. Then $A \otimes_R B \cong_R R^{[2]}$.

When R does not contain a field, there is a counterexample of Theorem 2.6 as follows:

Proposition 2.7. Let R be an integral domain with the quotient field K. Suppose there is an element $t \in K$ such that $t^rR[t] \subset R$ and $4t^2 \notin 2R + t^rR[t]$ for some positive integer r. We can choose an element $F \in R[t,Z]$, so that $F+tF^2 \equiv Z \pmod{t^r}$. If we set an R-algebra $A = R[F] + t^rR[t,Z]$, then $A^{[1]} \cong_R R^{[2]}$ and $A \otimes_R A \not\cong R^{[2]}$.

Example. Let $R = \mathbb{Z}[2t]$ and r = 9, where $t^3 = 2$. Then $R = \mathbb{Z} + \mathbb{Z} 2t + \mathbb{Z} 4t^2$ and $R[t] = Z + \mathbb{Z} t + \mathbb{Z} t^2$. Thus $2t \in R$ and $t^9 R[t] = 8R[t] \subset 2R$. If $4t^2 \in 2R + t^9 R[t] \subset 2R$, then $4t^2 \in \mathbb{Z} 8t^2$. This shows that $1 \in 2\mathbb{Z}$, which is a contradiction. Therefore $4t^2 \notin 2R + t^9 R[t]$. Thus $R = \mathbb{Z}[2t]$ satisfies the condition in Proposition 2.7.

Let k be an algebraic closed field of characteristic $p \ge 0$, and let R be a one dimensional affine k-domain. Then R is k-invariant ([1]). Now we consider the k-invariance of $A = R^{[1]}$.

If $R \cong k^{[1]}$, i.e., $A \cong k^{[2]}$, then A is k-invariant ([10],[13]). On the other hand, if $R \not\cong k^{[1]}$, then any k-isomorphism $f: R^{[n+1]} \rightarrow B^{[n]}$ implies $f(R) \subset B$, where B is an affine k-domain ([1],[8]). Therefore we have the following:

Theorem 2.8. Let k be an algebraically closed field of characteristic $p\geq 0$, and let R be a one dimensional affine k-domain. Suppose B is a k-algebra such that $R^{\textstyle [n+1]}\cong_k B^{\textstyle [n]}$.

(i) If p = 0, then $B \cong_k R^{[1]}$.

(ii) If p>0, then $B^{[1]}\cong_k R^{[2]}$ and $B\cong_k R[Z^{p^e},Z+a_1Z^p+\ldots+a_rZ^{rp}]$, where $a_i\in F(R)$ such that $a_i^{p^e}\in R$. In particular $R^{[1]}$ is k-invariant if and only if R is an F-ring.

Example. Let k be a field of characteristic zero. Let us set $A = k[Y,Z+Z^3,(Y-1),(Y-2),Z,(Y-1),(Y-2),Z^2]$

and

 $B = k[Y,YZ+Y^{3}Z^{3},(Y-1)(Y-2)Z,(Y-1)(Y-2)Z^{2}].$

Then $A^{[1]} \cong_k B^{[1]}$ and $A \ncong_k B$. Thus A is not k-invariant ([4]).

3. Algebras with polynomial fibres

Theorem 3.1. Let R be a noetherian ring, and let A be a finitely-generated flat R-algebra. Suppose $k(\mathcal{P}) \otimes_R A \cong k(\mathcal{P})$ for each prime ideal \mathcal{P} of R. Then A is a locally quasipolynomial R-algebra, i.e., $R_{\mathcal{P}} \otimes_R A$ is a quasi-polynomial $R_{\mathcal{P}}$ -algebra for each prime ideal \mathcal{P} . (cf. [7])

Corollary 3.2. Let R be a noetherian semi-normal ring, and let A be as in Theorem 3.1. Then A \cong_R $S_R(N)$ for some $N \in Pic(R)$.

Corollary 3.3. Let R be a reduced noetherian ring. Then the following two conditions are equivalent:

- (i) A is a finitely-generated, flat, locally, quasi-polynomial R-algebra in one variable.
- (ii) A is weakly projective R-algebra such that (Knull) $\dim k(\mathcal{P}) \otimes_{\mathbb{R}} A = 1 \quad \text{for each prime ideal } \mathcal{P} \quad \text{of} \quad R.$

Corollary 3.4. ([11]) Let R be a noetherian ring, and let A be an R-subalgebra of $R^{[1]}$ such that $R^{[1]}$ is f.flat over A. Then A is a locally quasi-polynomial R-algebra.

Corollary 3.5. Let R be a noetherian ring containing a field of characteristic zero, and let A be an R-algebra. Suppose there is a finitely-generated integral extension S over R such that $S \bigotimes_{R} A \cong_{S} S^{\left[1\right]}.$ Then A is a locally quasi-polynomial R-algebra.

4. Invertible algebras.

Let A be an invertible R-algebra. It is easy to see that $\Omega_R(A)$ is a finitely-generated projective A-module. If $\Omega_R(A)$ is of rank r, then we say that an invertible algebra A is of rank r. If R is an integral domain, then any invertible R-algebra is an integral domain of finite rank.

Theorem 4.1. An R-algebra A is invertible of rank one if and

only if A is stably equivalent to $S_{R}(N)$ for some $N \in Pic(R)$.

Applying [7] to Theorem 2.4 and Theorem 4.1 we have the following Corollary 4.2. Let A be an invertible R-algebra of rank one such that R_{red} is an F-ring. Then $A \cong_R S_R(N)$ for some $N \in \text{Pic}(R)$.

In a similar way we have the following corollary of Theorem 2.5 and Theorem 4.1 by [7].

Corollary 4.3. Let A and B be any pair of invertible R-algebras of rank one. Suppose R contains an infinite field. Then $A \otimes_R B \cong_R S_R(M) \otimes_R S_R(N)$ for some M, N \in Pic(R).

References

- [1] S. Abhyankar, W. Heinzer and P. Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra, 23(1973), 310 - 342.
- [2] T. Asanuma, On strongly invariant coefficient rings, Osaka J. Math. 11(1974), 587 593.
- [3] T. Asanuma, D-algebras which are D-stably equivalent to D[Z], Proc. Intl. Symp. On Algebraic Geometry, Kyoto, (1977), 447 476, (Kinokuniya Tokyo)
- [4] T. Asanuma, Cancellation problem, Report of Symp. On Algebraic Geometry, Kinosaki (1980), 21 34, (Japanese)
- [5] T. Asanuma, On stably polynomial algebras, Preprint.

- [6] T. Asanuma, On quasi-polynomial algebras, Preprint.
- [7] H, Bass, E.H. Connell and D. Wright, Locally polynomial algebras are symmetric algebras, Inventions Math. 38(1977), 279 299.
- [8] S.M. Bhatwadekar, A note on strongly invariant rings, J. Algebra, 50(1978), 297 298.
- [9] E.H. Connel, A K-theory for the category of projective algebras, J. Pure Appl. Alg. 5(1974), 281 292.
- [10] T. Fujita, On Zariski probrem, Proc. Japan Acad. 55(1979), 106 110.
- [11] S. Glaz, J.D. Sally and W.V. Vasconcelos, Lüroth's problem for rings, J. Algebra, 43(1976), 699 708.
- [12] E. Hamann, On the R-invariance of R[X], J. Algebra, 35(1975), 1-16.
- [13] M. Miyanishi and T. Sugie, Affine surface containing cylinderlike open sets, J. Math. Kyoto, 20-1(1980), 11 - 42.

Faculty of Education

Toyama University