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Introduction. The quartic surfaces in EP3:

(x,y,z,wﬁl ﬁith only rational double singular points are

K3 surfaces of degree I | when desingularized minimally
(Brieskorn [2,3]). (The converse 1s not true, which is the
sourse of difficulty of the problem below.) Since the
intersection form on the middle homology group has index
(+#3,-19) for K3 surfaces, the sum of the ranks (the
Milnor numbers) of the singular points cannot be greater
than 19. If one restricts attension to a single rationail
double point on a quartic, one might naturally ask, how

high could the rank be, i.e. whether there would really exist

A or Dl§ on quartics. In this paper we shall answer
’

19
this question, giving normal forms of quartic surfaces with
Ak(or Dk? singularity at a fixed point of EP3 for any k.
Our method is roughly described as follows: We first write
the equation of the general quartic surface S with a

double point at, say p=(0,0,0,1). The coefficients of the
equation should be regarded as the parameters on which the
surface depends. Now, for avfixed k, the condition for the
singularity (S,p) to be Aa(or Pl) with &>k, defines

a subvariety Vk in the pa;ameter space; furthermore we

see that Vk is defined in VR:1~ as the zero locus of a
polYnomial (in the coordinatés of the parameter space);

thus we obtain a series of polynomials Fk:

the varieties Vk' Fortunately, there is an efficient

computation scheme for Fk's. Before computing them we

should, of course, reduce some of the parameters by suitable

which give us

Projective transformations or by using some elementary local
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analytic transformations at p and so on. Even after all
of this, the computor (BEDUCE 2 on DEC 2020) gives us
combersome poljnomials ?19?;18? ete. But, for lower k's,
the polynomials Fkt are not so complicated, and we can in
fact go up little by little by introducing, at each step k,
suitable new parameters for Vk’ and killing at each step
one more parameter from among those chosen for Vk 1 In
this way,as a side effect we have proved the rationality

m s&mrw

of irreducible components of the moduli space 4£Q(A) (or
5rL,1\/\ A
4&k(D>) of projective equivalence classes of quartlc

surfaces havingb(at least one) Ak (or D ) with 22k, o#serving

the natural mappings V. *‘gk(A) (or ié& (D))

2
e

L Main Theorem. The 1rredu01b1e components of ¢M~k(A)

A
thd

e P

or Q“AR(D) are rational for any k<<19 //ﬁ (A) ig

2

{F s

irreducible except for k ll 15,17 and for k= 17 resp 15 ll it has

twe resp. tﬁreé irreducible compornents. {Zlﬁ(D) is

i

irreducible eXcept»for k=12,16, 19 For k 12,16 iAAk(D)

has two irreducible components and fﬂz 9(D) is empty.

We know by the theory of period mapplng (Kullkov [7 1,

/\“'mt —Donat [14], Shah [13]) that @g \(A)

(or 1g(,(k(D)) is purely 19-k dlmen51onal prov1ded 1t is
non-empty. Thus, in particular, the quartic surface with
1@ is unique and its explicit equation is.given in Section 5.
There is also given in Sectlon 10, without any detailed |

discussion, the quartic surface with Digt.and AT\ which

is also unique. These add two examples to the K3 surfaces

-2 -
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with the maximal Picard number, which Hirzebruch is particu-
1arly interested in. We should say here that the present
method by itself is not adequate to enumerate all possible
combinations of rational double points,onfduartics; at this
point, the intrinsic theory of period mapping has a great
advantage, although it seems to be a non-trivial problem to
give explicit equations of, the family of surfaces corresponding
to a given combination, or to decide the question of rationa-

lity of the_parameter_space.

Umezu and Urabe proved ;

iﬁdependently = the existence of Alé.‘and ?18» and the
non-existence of le on quartics, combining the theory of

\
period and the theory of lattices in the second homology
group of the K3 surface as in Nikulin [12]. They decided to publist

their result as an appendix to this paper, for which we are grateful.

We would like to thank K. Saito, M. Saito and all other
members of the singularity seminar at the institute for
mathematics of the Kyoto University for their encouraging
interests and useful suggestions. Especilally to M.Spivakovsky
we are moreover indebted for the English revision. The
second anthor is very grateful to Professor Hirzebruch for

the inspiring discussions during his stay in Kyoto.

Most of the results have already been announced in [11].
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1l. General remarks. Every quartic surface in EPB:
(x,y,2,w) with a double point at p = (0,0,0,1) is defined

by an equationvof the form:

\

S: f(x,y,z)w2+g(x,y,Z)W+h(X,y,Z) =0

where f,g,h are homogeneous polynomials of degree 2,3,4.
If f, regarded as a quadratic form in x,y,z, is non-
degenerate, then (S,p) 1is an Al-singularity; so we exclude
this case, assuming that the rank\of f, denoted by rk(f),
is not greater than 2. We first want to show that, if

rk(f) = 2, then (S,p) 1is either ﬁﬁ:‘for some k z 2 or

p 1is not isolated in the singular locus of 8. But, before

proceeding, we note a useful principle how to recognize the type

. . . “q,
of singularity: A power series f(z) = zdadz‘. a:(al,...,an),
N o Pl
Yo SR § -n . . . . . :
27 T 2 T2y 1s sald to define a semi-quasi-homcgeneous
N Ltal ¢

isolated singularity at the origin 2z=0 with respect to the

weight system w = (@T,...,Qn) (@i; positive rational
/ ~ Vi . ’ by

numbers) if ad\¢ 0 implies la|&;= 50595 > 1 and if

z=0 1s an isoclated singular point of the hypersurface

.- o OV . g /l | . .
£4(z) 1= X]dlﬁzl\aa% = 0. Now, if (£f;7(0),0) is a rational
N ‘ N ’ [SEat e P A

double point, then (Ffl(o),o) is also a rational double point

of the same type. This follows from Arnold [1l] and it is

used in Bruce-Wall [ 5]. Following [ 5], we call it the
recognition principle (for rational double points). Now we
turn to the case that ©rk(f) = 2. In this case we can assume
f = xy by making a suitable linear change of Xx,y,z and we

operate in the affine coordinates (x,y,z) Dby setting w=1:
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The equation of S 1is:
F(x,y,z) := xy+g(x,y,z)+h(x,y,z) = 0.
Then, by the implicit function theorem, the power series

g =£&(z), n = n(z) are uniquely determined by the condition:

(1.1)

{QF/BX(E,H,Z) = BF/BY(E,U,Z) =0
£ (0) = n(0) 0
We set further:

F(x,y,2z) := F(x+Z(z), y+n(z),z).

v\, ~
Since we also have 5(0) = n/(0) = 0, F =0 defines an equiv-
alent singularity at the origin; F has now an expansion

of the following form:
F = xy+F(£(z),n(z),z)+...

where dots indicate terms of weights higher than 1 with re-

spect to w = (1/2,1/2,1/k) for any k2>3. Thus, if we set
\y
Z/()P\)\Z = F(&(Z),n(z),z),

then the above principle proves:

Lemma 1.1. (S,p) 1is a rational double point of type

A Af and only if Ty = ... =Tp =0, Ty # 0. If all

Qﬁ\ vanish, then p 1s not isolated in the singular locus

of s.

Now we shall discuss the case ©rk(f) = 1. In this
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case we can assume f = x2 by a suitable linear change of

X,¥,Z. We first observe the binary cubic form:

p(y,z) = g(0,y,2)

If this form is separable, then (S,p) is Of type Djj. 1In
fact, in the affine coordinates (x,y,z) the defining poly-

nomial F = f+g+h has an. expansion of the form:

£2+p(y,z)+...

where dots indicate terms of weights higher than 1 with re-
spect to w'= (1/2,1/3;1/3), and this is certainly D&x since
we can assume p = §8+£3 by a suitable linear chanée §f

y>2z. Thus, to exclude this case, we assume that p has a
multiple factor i.e. that p takes one of the following‘

forms:

(1.2.1) £ = y°z

(1.2.2) £ =33

(1.2.3) £ =20

In this section, however,we discuss only the case (1.2.1),
the case which leads to rational double points of D type.

Recall that the defining equation of (3,p) is now of the

form
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F(x,y,2) := x2+y22+xq(x,y,z)+h(x,y,z) = 0

where a(x,¥,2) is a quadratic form. Also in this case we
Qant to solve the equatidn BF/ax(g,n,z)Ké 3F/3y(E,n,z) = 0.
But, for this, 1t 1is convenient to blow up the ambient space
with center p : x =y =2z = 0 and consider the strict trans-
form of S; namely, we introduce a new polynomial F by

Vsetting

Y

F(x,y,x) := F(xz,yz,z)/i2
w oo o
= x2+y2Z+xzq(x,y)+22h(x,y)

where we have set q(x,y) = a(x,y,1), h(x,y) = h(x,y.1).

We now ‘have

N v

- —_ —_ D —
= .+ B o’
?X, 2x+qukngxiz gxk

Ve N /

-1 I
F. = 2y+x0. +zh.
2 Fy T SYTXAgTEg

where we have used the abreviations Ff, 95 etc. for 3F/3x,
AR AN

99/9x etc. Thus, in particular, we can write
§§(2 = x—zgméx,y,z)
B(22 “Sfa(h = v-20(x.¥,2)

Where Gi? ng are polynomials in x,y,z. This also implies

-7 -
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that there also exist unique power series £ = E(z), n = n(z)

such that

fl

Z/Gri (Ea-ﬁaz )
(1.2) '

=1

= ZCjQ(\f:ﬁ,Z)
Just as in the previous case we set now
F(x,y,z) = F(x+zE(z),y+zn(z),2)

which has the expansion:

-\2 E \.\2 s _ _
x“+y"z+F(z&E(z) ,zn(z) ,z)+...

N

R )
= X

2+y

Z+i2F(E,ﬁ,z)+...
where dots indicate terms with weights higher than 1 with

respect to any w = (1/2,(k-2)/2(k-1),1/(k-1)) (k>5). We

also set:

As before from the recoghition principle we get the following:

Lemma 1.2. With the notation and the assumption just

if

as above, (8S,p) 1s a rational double point of type Dy

and only if Ty, = ... = Iy2o = 0, Fk:I\f 0. If all T

Ve

vanish, then p 1is not isolated in the singular locus of S.

-8 -
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In [10] it is proved that both in cases of (1.2.2) and
(1.2.3) the singularity (S,p) 1is either of type Ek for
some 6 < k < 8 or a singular point with pg > 1 (The rational
double points are characterized as the singularities
with pg =0 [6]) and it is also trivial to determine the type of (S,p)
in these cases provided it is rational double (see [10]).
Thus, we can say that we have obtained a computational method
fordeterminingﬁhe type of a given rational double point on
a quartic surface. The problem now is whether this
can be done 1in practicé by some good computor or not. But,
pefore using a computor, we should of course minimize the
computation by introducing an effectivg}way of approximating
power series §&(z), n(z), F(&,n,z), égﬁ(ggn,z) or by eliminat-
ing as many parameters as possible which the defining
equation depend on. Leaving the reduction of parameters to
the next section, we devote the rest of this section to the
appoximation theory of §&(z), n(z) ete. Let us begin with
the case f = xy and let £, n be defined by (1.1). We
first introduce a series of operations Zﬁ on powér series in
z. For and f = f(z) = im ~gxgw‘ .

Ly=07v

we set:

) 0’ W
;ﬁgf) - ivgbfv? :
'We set further:
gﬁgz) = ;ﬁsg(z))
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n;(2) Ly(n(z))

¢ (z) = ] (F(&(z),n(z),2))

vawe write the derivatives of F 1in the form:

F, = y-G'(x,y,2)

—
g

5

X—G'(X,y,Z),

then the polynomials d’, G" both consist of terms of degree

higher or equal to 2. This implies d’(g,n,z) = G‘(gn:l,
+1- oo

“q ]
z) mod z -~ where

Mp-102)> G7(E,N,2) = GH(E, 2 m
by < convention > A = B mod M eans that A-B  is
divisible by z™ in the power series ring. But this con-

gruence implies further

at
[}

zﬁ<d1(§n:1fnn¥lfz))

(1.3)

3
1

In(@" (82 5nn2052))

Since go =ng = 0, we can thus compute inductively En’ N,

by (2.3). Now we obtaln a very good approximation formula:

(1.4) Poni1 = lomr1 (F(E,n,52))

This follows from (1.1) and the Taylor expansion of F(gﬁ)

nn:Z) at (€,H,Z):

%

- 10 -
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F(En,nn,Z) = F(gan ,Z)

P (E,n,2) (£, -E)+F (E,n,2) (ny-n)

+%?xxf€,n,z>(gnf€92+3f&(g’”’z)(gn'g)(Tnf”>

1 ‘2
+§Fyy(£’n ,Z)(‘nn—n) +...

As remarked in the introduction we need only calculate @20
to determine the largest number k for which there is a
quartic surface with Ak singular point. By the same rea-

soning we obtain also:

™
i

= 1n(261 (5,090, 952))

(1.5) 1 M = (20 (Ey oq5m)552))

3
|

— _ 2 =
| Fontz = Lon33 (2 F(Ey,0502))
where we have put as before Eﬁ\f ZnSg), ?n:= Znsn), ?ﬁlg

zn( Zzﬁ(gsﬁsz ) ) °\I‘

2. Reduction by projective transformations. So far we

did not use any projective transformation in the space

.\ < )
EP3 : (x,y,2). But, using them, one can obviously anihilate
or fix some of the coefficients of the polynomials g and

h in the defining equation of the surface S. This is

- 11 -
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important since an extra coefficient could increase the size of
Rgfs, which are polynomials in the coefficients of g and h,
P ,

N

moré than ten times bigger. It is also helpful to compute by
hand the first several terms of the series fy3,;u?... or
fu?TS,..., which we however leave to the next'section. Let
usrbeéin with the case of A type i.e. the case f = xy.
If g(0,0,z) # 0, then (S,p) is of type églhsince F(x,y,2)
= xy+z3+... where dots are term of weight .higher than 1
with respect to w = (1/2,1/2,1/3). We will, therefore, exclude
this case and assume rg(0,0,z) éO,?and we write g 1in the
form lgiﬁg,y);2;§2{x,y)z+§3{§,y). Now we can assume, by a
scale change of x and Yy, that 51\ is written in one of
the following forms: %lnf x+y; %1\5 k; %Ix= 0; First we
discuss the case %i*f x+ty. Since we want to use projective
transformations, we céme ij;back to the homogeneous coordinates
(x,y,2,w). Replacing 2z by a sultable gz+ax+by, we can
bring 85 into the form c¢xy. We then replace w by a
suitable w+ax+by+cz so that g is of the form (x+y)z2+
a£3ib§3f Next we discuss the case %I\T x. But this case
separates into two cases gggo,y) # 0 and gQ(O,y) = 0.

/N VAN

In the first case we can assume by a scale change of coor-

A, S
dinates that gg = yg axy+bx~; we can moreover assume b = 0
AN
by replacing 2z by z+bx/2 if necessary. But now we can

achieve gégo,y)=o by replacing 2z by a suitable z+cy.
VRN
We finally bring g into the form g = x22+y22+ax3 by re-

placing w by a suitable w+bx+cy+dz. 1In the latter case:

Y ]
g2(0,y) = 0, we can put g into the form g = xz2+a£3+by

in a similar reasoning. In the case gp = 0; that is, the

- 12 -



case gi_ vanishes identically we do not make any reduction
here. To sum up, we obtain the following coarse normal forms
for the singularity’of A type:

(2.1.1) xng4{(X+y)z2+a23+b§3}W+h(x,y,z) =0

I
o

‘\ . -\ \“v ; N ‘
(2.1.2) xyw2+{x£2+y2z+ax%w+h(x,y,z) =

[
(@]

\ YN g
(2.1.3) xyw2+{xzz+ax3+by3m+h(x,y,z)

S, ~

2 2, 12
(2.1.4) =xyw +{(a1x +p1y )z+(g2x

37 3/
3 b2y3)}w+h(x,y,z) =0

More precisely we have:

Lemma 2.1. Any quartic surface with an A

ksingularity

at p = (0,0,0,1) for k>3 can be transformed into one

of the forms (2.1.1)-(2.1.4) above by a suitable projective

transformation (fixing p).

We only state the corresponding lemma for the D type

without any detailed discussion:

Lemma 2.2. Any guartic surface with Dy singularity

N

at p = (0,0,0,1) for k>5 can be transformed by a suita-

ble projectivé transformation (fixing p) into one of the

following forms:

(2.2.1) £2W2+{§22+2x£2}w+h(x,y,z) =0

- 13 -
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2. 2

(2.2.2) x°w +y2zw+h(x,y,z) = 0

3. Further reductions. In this sectlon we will concern

ourselves with the reduction of parameters which uses some
simple analytic change of local coordinates near p = (0,0,0)
in the affine space (x,y,z). Let h be as in the previous
section. Regarding h as a polynomial in 2z we set:

N \, L
2 e
h(x,y,2) = Jhy(x,y)z >
. /\ L, «

Then hi\ are binary forms of degree 1; in particular h@\
Ve
is constant. Let us now assume that (in the affinevspace)

the surface S 1is defined by

1]
()

o \3 \3
F(x,y,2z) = xy+{(x+y)z“+ax~+by?}+h(x,y,2)
By the coordinate change of the form x = X-z2°, y = Y—22;
the surface S 1is transformed into the new surface 33\

\

xy+(nz-1)z "

+... =0

where dots indicate terms with weights higher than 1 with

respect to (1/2,1/2,1/4). Thus we see that, if hy # 1,

i
—

then (S,p) 1is of type A§; therefore we assume hgj.
SN e

Then?transformed surface Sm\ is now of the form:

-

xy+higl,l)z +... =0

- 14 -
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where dots indicate terms with weights higher than 1 with
respect to (1/2,1/2,1/5). Thus we see -~ that, if ,hl(l’l)
# 0, then (S,p) 1is of type 9ﬁ; so we further assume that hl(l,l)
= 0. Then hl(x,y) = s(x-y) for.some constant s. Now
« 3

we transform S by x = X—22+si3, y = Y—zz—sz (or équiva—

lently Si by x = X+sz3, y = Y—szs) to the new surface §é;

6+... = 0

xy+{h2(1,l)+§2-a—b}£
where dots denote terms with weights higher than 1 with re-
spect to (1/2,1/2,1/6). Thus (S,p) 1s of type %ﬁ if
hz(l,l) # a+b—§2; SO we assume moreover that pé(l,l) = a+b—32
which means now that @é(x,y)—agg—by2+sxy is divisible by
X-y; in other words, we can set:

2

hs(x,y) = ax?+by+(x-y) (ux+vy)-s°xy

where u, v are constants; this implies that F(x,y,z) -
{x+z2+ay2+x(sz+ux+vy)}{y+é2+a22-y(sz+ux+vy)} is of order
<1 with respect to =z. Thus, in the homogeneous coordinates,

the equation of S now has the following form:

\

{xw+22+ay2+x§(x,y,z)}{yw+zz+aie¥y§(x,y,z)}+

+¢(x,y)z+yp(x,y) = 0

where we have set ©6(x,y,z) = sz+ux+vy. One sees immediately

that, if S decomposes into two quadrics passing through p,

- 15 -
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then ¢ = ¢ = 0; and the converse is obviously true. In
exactly 'this sense, it is 1likely that the coefficients of
9,6, might be good parameters for the surface S. As we.
will see later, there is a sharp distinction between the case

s # 0 and the case s = 0. If s # 0, then we can assume»that

2y,t2), tel* = I\{0},

s=1 .by using the T*-action (x,y,z)-*(ézx,é
and, if we assume this, then the parameters of the surface
are almost rigid; in fact, there is only an involutive auto-
morphism of the parameter space extending the transposition
X++y 1in mé3 : (x,y,z). But, if s = 0, this d*-éction
induces naturally}iﬁﬁéction on the parameter space. At any

rate we obtaln two types of families of quartic surfaces cor-

responding to (2.1.1):

(1) Fi(x,y,z,w) 1= {Xw+ze+xz+a§2+xe(x,y)}

) {ywtz2-yz+ox2=y6 (x,7) 1+ (x,y)z+p(x,y) = O

\, N

(II) F;(x,y,z,w) := {xw+224by2¥xe(x,y)}

/

x{yw+£2;ak2¥ye(x,y)}+¢(X,Y)Z+w(X,Y) =0

Lemma 3.1. If S 1s given by (2.2.1) and (S,p) is

of type Ay (k>6), then S can be written in the form (I)

or (II) above.

o

We suppose now that the surface S 1is written in the

form (2.1.2), and that h 1is also set to be Zh{(x,y)ilf
/,1 "\

- 16 -
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By the transformation of the form y = Y—ZZ, we see that,

if h, # 0, then (S,p) 1is an A,; and that, if we assume

0 33
hO = 0, then, in the new coordinates, S is given by

xy+{1-hl(o,1)}é5+... = 0

where dots indicate terms with weights higher than 1 with

prespect to (1/2,1/2,1/5). This means that (S,p) 1is an

Ay if hO =0, hISO,l) # 1; SO now we assume @O\f 0, higO,l)

=1 and we set hi\= sx+y. With the new x,y,é we make the
3 3

transformation x = X+é‘, y = Y-sé‘, which turns the equation

of S into:l
; N6, -
xy+{h2§0,l)+s}z +... =0

where dots stand for terms of weights higher than 1 with respect

to (1/2,1/2,1/6). Thus (S,p) is of type Ag 1f h,(0,1)

+s # 0. Therefore we assume further h2{0,1)+s = 0. But

this means that we can set
hs. = x6(x,y)-sy(sx+y)

where ¢ 1is a linear form of x,y. Now the difference
F(X,y,z)-{x+(sx+y)z+xe}{y+é2ésyz+ai24ye} is of first order

In =z; that is the surface is given by

(111) Fa(x,y,2,w) = {xwt(sx+y)z+xe(x,y)}

x{yw+z2—syz+ax2—ye}+¢(X,y)z+¢(x,y) =0

- 17 -
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The same remark as before applies to this case: The surface
decomposes into two quadrics if and only if ¢ =y = 0. If
s # 0, we can put s = 1; if s = 0, the family admits a C*-
action extending (x,y,z) - (£3x,£2y,tz), teC\{0}. But we
do not make any distinction between the two cases, so as not to
introduce too many types of surfaces.

We suppose now that S is defined by (2.1.3). Just
as in the discussion above, if po # 0, then (S,p) 1is of
type A3, and if h0 = 0, ?i(o,lj # 0, then (S,p) 1is of

type A,; so we assume h, = h_ (0,1) = 0 and we set h, =
Sl 0 1 pan |
3

5

SX. By making the transformation y = Y—z2-si , we see then

that, in the new coordinates, S 1is given by
6 )
Xy+{h2(0,l)—b}z +... =0

where dots are terms of weights higher than 1 with respect
to (1/2,1/2,1/6). 1If we assume, further, that h2(0,l) = b, then

we can set

2_.2

hy(x,y) = by“-s xy+x6(x,y)

where 6 1s a linear form. This implies as before that S

is given by

(1IV) Eu(x,y,z,w) := {xw+sxz+byz+x6(x,y)}

2

x{yw+£ —syz+a£2-y8(x,y)}+¢(X,y)z+¢(X,Y) =0

- 18 -
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For this type we also do not make a separate discussion of

Finally we suppose that S is defined by (2.1.4). Then

'(S,p) is an 53k~if PO # 0; so we assume hg = 0 and trans-

form S Dby the coordinate change x = X—h£z3, y = Y—hiz3

into the following form:

bl =0

xy+hihy

where we have put hl = @ix+h£y and dots indicate inessential

terms with respect to (1/2,1/2,1/6). Thus (S,p) 1is of

s

171
\?Thén we méy assume ﬁ{ = 0 by transposition of
;

;
~

type A§ if diﬁ{‘# 0; so we assume h!h! = 0, ,

x,y 1if necessary; we set namely hi~? sx. Now, if s = 0,
then the line x =y = 0 1s in the singular locus of S. Thus
we can assume that s # 0 or even s = 1 by a scale change.
Then, in the new coordinates, S 1is defined by:

7

szt =0

xyfbl

where dots are negligible with respeect to (1/2,1/2,1/7).
This shows that (S,p) 1is an Ag if Dby # 0, and we assume
bi‘= 0. The original equation of S 1is now:

3

(V) F5 (X, ¥,2 3W) = Xy\::l2+{alx22+a,2x3+b2§\’3}W+XZ\

+h2(X,y)22+h3(x,y)2+h4(x,y) =0
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In this last case the discussion is particularly simple so

that we can even compute by hand that only A, Ag, -+,

A9, Ali’ are possible as the isolated singularities of
(S,p). But we will rather stop here.

Now we denote the rest of this section to the study of
the D type. Assume that S is defined by (2.2.1). By

X—22 we see that, in the new

making the transformation x

coordinates, S 1is given by

i2+§2z+(ho-1)éu+...

n
(@]

where dots are ferms of weights higher than 1 with respect
to (1/2,3/8,1/4). Thus (S,p) 1is of type ng if hg £ 1;
SO we assume hg = 1. Setting h; = §i3+ﬁ¥y,we further
change the coordinate by y = Y—@Eé2/2. Then the new equa-

tion of S is:
x2+y2z-(n+(n) /M2, . = 0

with the rest negligible with respect to (1/2,2/5,1/5). Thus
(S,p) 1is of type 9@ if ﬁfg;Mhif% 0. Therefore we set

h, = 2sy—§23, excluding the’case of Dg. If s # 0, we can assume
that s = 1 Dby a suitable scale change; if s = 0, the

family of surface still admits a nontrivial é*—action, as

one can easily see. We will now make a further transformation

of the form x = X-g223/2 so that the resulting equation is

of the form:
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AN

£2+yez+(h2(l,s)—é‘}M)£6}... =0

where dots are negligible with respect to (1/2,5/12,1/6).
Thus, 1f h2(1,s) # éq/ﬂ, then (S,p) 1is of type Qf’ We
thus arrive at the equation:

(T AV 5. )y PSR
(VI) EG(x,y,z,w) := x2w2+{y2z+2xz2}w+z +(2sy—s2x)z3”

+§2(X,Y)£2;93(x,y)z+hﬁ{x,y) =0

with the condition:

AV
(3.2.1) hy(1l,s) = s /4

for the surface S with DE singularity (k>8) at p =
/ . -

(0,0,0,1). Later we will discuss the cases s # 0, s = 0
separately for this type.
Now we deal with the case in which the surface S 1is defined
by (2.2.2). With respect to weight system (1/2,3/8,1/4)
the essential part of the defining equation is ;2;;22+hogy
in this case also; so we simply assume ?O\= 0 as befofeil
The next step is to make the coordinate chénge y = Y-3E2272
and this leads to the equatibn: J

A7
e

x2+y2

2-(n1)%25/4+... = 0

where dots are terms of weights higher than 1 with respect

to (1/2,2/5,1/5). Thus we should assume h£j= 0, excluding
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D6. We now make the transformation x = X—hiz372 so that

;

the equation of S 1s put into the form

i2+yzz—(hi)226/a+... =0

where dots are terms of weights higher than 1 with respect

to (1/2,5/12,1/6). Thus (S,p) 1is of type Dz unless
1 0. If we exclude D7, also, then we have to set bo =

hI = 0, which however implies that the line x =y = 0 in

e
1}

<
EP3 lies in the singular locus of S. Thus we see that we

need not discuss this case any more.

4. Stratification of the parameter space given by sin-

gularities. As we have already seen partly, the singularities
which the parametrized surface S can have at p introduce
naturally a stratification in the parameter space. This

might be a most uSeful object, like moduli space, for the vis-
ualiZation of Ethe adjacency relation between the singularities.
This also provides necessary notations for the formulation of our

computational results more concep?ually. To ;

JRSSSSU ————— —ie—"

(Eégin wiéﬁ;.we regard the equationsti) - (VI) as families

of quatic surfaces in m}3 from now on; so, for example, (I)

is a fibre space whose fibres are quartic surfaces and whose

base space is the affine space with coordinates a,b and the coef-
ficients of the polynomials 6,¢,p. This base space will

sometimes be called the parameter space of the family and

denoted by V(1). Similarly the base spaces of the families
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(II),,,.,(VI) are denoted by V(2),...,V(6). The surface S
defined for veV(i) 1is denoted by ?GM if we want to express
that it 1s the fiber over v. Setting F(x,y,z) = Eigx,y,z,l)
15_i§:5, F(x,y,z) = Fg(;,y,z,l), we can define for each family the
power series F(g(z),n(z),2z) F(E(z),n(z),z) and their co-
efficients Ty» tQ\ in the way described in Section 1. We

denote these gg or ?5_ by gggi), expressing their depend-

ence on the family. (Thus Ev<6) = Tv:) 50(;) are polyno-

mials whose variables are the coordinates of the affine space

V(i); so we can introduce now a descending chain of subvari-

eties in V(1) by setting:

‘V’k(i) = {vevV(i); I"/\;\(i)(v) =0 for v<k} 1<1<5
vk(6) = {veV(6); I‘v(i)(v) =0 for v<k-2}

According to Lemmas 1.1-1.2, vé‘Vk(i)\Vk¢l(i) if and only
if (8,,p) 1is of type Ak for 1<i<5 and Veka,(6>\kal;1\(6)
if and only if (SV,p) is of type D, . We set: ‘

N W T

V(1) = 0T (D) 1<1<6

‘.* . . I3 3
yk(l) yk‘(\l)\\zw\(l) 1<iz<hb
For each 1 V&(i) is the set of points v of V(i) for
which p is no longer isolated in the singular locus of Si. Note
VA
ry - . = ;@ . \’*_ .
also that vk<l)\Yk+l(l) Ykgl)\7k+1§1). Thus we can say

that the main objective of this paper is to describe as clearly
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as possible the stratification of V(i) given by the descending
chain Vﬁ(i) of subvarieties. Among the subvarieties Yﬁ(i)
some are irreducible, some are not. But, as we will see/later,
their irreducible components are always rational i.e. their:
function fields are all purely transcendental extensions of
the ground field . Roughly speaking, for a fixed k, a
choice of generators for the function fields of the components
of Vi.(1) 1<1i<5 corresponds toachoice of the canonical
form for quartic surfaces having Ak- singularity at p =
(0,0,0,1), although the choice should be in a way "good" and
all types of such surfaces should be exhausted by the normal
forms.

We end this section by remarking that Vw(i) = Vzbgi).
To show this, consider the Milnor fiber of the\hypersurface
singularity (S,p), assuming that p 1is an isolated singular
point of S. We tobtain a natural morphism of the second
homology group of this fiber into the K3 1lattice by per-
turbing S to a regular quartic. This map preserves the
intersection forms. Since (S,p) 1is rational double, the
form on the Milnor fiber is negative definite. This implies
that the mapping is injective and that the Milnor number can
not be greater than 19 which is the number of \:?;negative

elgenvalues of the form on the K3 1lattice.
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5. The Structure of the parameter spaces for the

family (I). This is the most difficult case, involving the

most complicated computation. Recall that. the equation (I):

4

F,.=0 was written in such a way that the;polynomials T

1) K
ic;6 vanish automatically; that is, the singularity (S,p)

is higher than AS‘ where S denotes the parametrized surface
defined by (I). But, by computing first one or two of the
remaining Fk's we notice that the homogeneous coordinates

of EP3 ~are not the most convenient yet. in fact, we can
make everything much simpler by replacing x, y _by. x%y;

x-y respectively. (We do not know if there ié a deepef
reason for that. For.this is not the case for families.
(Im) - (V).) By making a projective transformation of the

form w=W+ix+my+nz, we obtain an equivalent representation

of the family (I):

(1) Fi(x,y,z;w):={(x+y)w—£2+(x+y)z—(afb)§2

3

+(x+y)(ux+vy)}-{(x—y)w—z2—(x—y)z—(a+b)§2

-(x-y) (ux+vy) 4o (x,y)z+p(x,y) = 0.
We set, further:
o(x,y) = 90#3'-31(0/,,1#2'*2?,233'4?3?2)
bix,y) = ‘(?if;"u+,d2};3y+‘?3};2y?*%“.’%%y\u .
Thus, for thié family, thg parameﬁer space, denoted also by
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V(1) 1is the affine space with coordinates (a,b,u,v;go,cl,

¢2,03,dl,d2,d3,d4,d5), which are also thought of as the

independent variables for the polynomials FR(I) k=7,8,....
/

We now see the utility of the homogeneous coordinates of

rp3

from the following proposition:

Proposition 5.1. Up to a non-zero constant factor

f7(l) coincides with c¢y, and for 8<k<12 T, (1) is of

ct
|

the form dk:7—'?k<a’b’u’V;¢O’.'"935q1f"’4k:8? up to

non-zero constant factor.

From this we see that the structure of the varieties

V%(l)’v8(1),...,Vi2(l)‘is particularly simple: Yk(l) is

parametrized by (a’b’u’vseifgé’93§QK—6?'"’d5) for T<kgl2.

Thus, to obtain singularities higher than AII for (S,p),

we have to assume that all the polynomials F?(l),---,rlé(l)

vanish; namely, we eliminate Qiedé""’dg\ by setting

N

dk£7== ?k\ 07;1(;12). Thusvfrom now on we are operating

in the affine space Vys(1): (a,b,u,v,cq,¢5,c3).
- . 7/ .

Remark. The system of equations ;k(l) =0 T7<kzx1l2

can obviously by replaced by the equivalent system ?@?‘3:

dy_» = ?E‘ 8 <k<12, where ?kp do not contain any of dy,---

We then have:

2c,=-Csu

-5
O .
]
N
‘_J
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f170 =(”93'892u‘“91““91V‘”?1ﬁ2*9i?)/u

. = —bea- - 2y - 3
P11 bcy 03u 2¢c 2c2v 2029 +glc2 2c1uv ZClu +gl
T =(—hac.—8be-—8be. ulc. le 2 W3ane 2
$15 ( 4a91:8b92‘8b91u 403—U93v Mggg —1602uv—l602u +Mc2
| 2 2 w206 utie Paye
+29103f16¢lpéu—401v -4913 —24§1u —2091u +?1:+4¢1;V

+l6c u -c. 3)/Ll

From these formsvw‘e see, in particular, that 4 = Cs = c':'_(3-,= 0
implies dl-d2 . =d5f=0 i.e. ¢=q)=0 This means that
S decompbses 1nto two quadrics, both of which pass through
p, which implies that p 1is not 1solated ;n the 51ngular
locus of S. Thus the subvariety {§I==92f<%§f Q}. in V12( )
lies in V;(l). We state without a proof that this subvariety
is in facfnthe M-dimensional irreducible component of Yd(l)‘
.Other than this,FYg(l) has Only'one irreducible componenty
which is 3 dimensioﬁal.

~Now, partly for the sake of defining this 3 dimensional
component, we blow up V1 (l) with the center '{911??2T=335=°}-
We restrlcf_attent;on to the cdmplement of the strict transform

of the hyperplane {cs =0}; namely we want to set:
. 1

C/i‘. = SlLl
(5.1) {ey = %122
(C3 = 4423

- 27 -



90

But, before introducing this change of variables, we should
check that the hyperplane {qi==0} cuts out negligible

Vi
sections from the varieties Vﬁ(l) (k >13). To make the

meaning of "negligible" precise, we need fhe following:

Defin;tion 5.1. Let V be an algebraic variety and W
a 1oca11;n;iosed (algebraic) subset of V. W 1is called a
thin subset if it does not contain any Zariski open subset
of V. Suppose that we are given a morphism h of W into
some y§§i) and that an algebraic group G acts on the pull

back of the family of quartic surfaces over Yﬁ(i) defined
A

by E{*=O. W 1s called absolutely thin with respect to h

~ SRSl

if V/G 1is of dimension less than 19-k. We simply cali

W absolutely thin if W 1is a subset of Vg(i) and h 1is

the inélusion. We remark that the absolute thinness of a

subset of Yﬁ{i) does not necessarily imply its thinness.

The importance of this notion consists in the following
idea for proving the rationality of the components of iﬁ(i)

A

or, rather, of the modull space {QE%KA) (resp.{Z@k(D)) of
projective equivalence classes of quartic sﬁrfaces having

(at least) one singular point of A (resp. D) type not
lower than éﬁ\ (resp. ?K{ for each given k: Obviously,

we can throw away a finite number of thin subsets from Yﬁ(i)
without affecting the function fields of its irreducible

components. Next we assume that h: W -» Vﬁ@i) is as in

the definition above and that W 1is absolutely thin with
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prespect to h. The morphism h induces the natural map of
W into the moduli space Ji&(A) or )ﬂi(D) according to
whether 1<1<5 or i=6. But the absolute thinness of

w implies that the image of W wunder this map is a union
of a finite number of thin subsets of ﬁhé moduli space.

We now turn to the sections by {c;=0}:

Proposition 5.2. For any k, V;(l)r\{clﬁ=0} is 18-k

dimensional, so that it is thin and absolutely thin in the

sense g£ Definition 5.1.

In order not to break the continuity of the discussion,
we do not give a proof of this here, but leave it to the next
section; in fact, it is rather longer than it ought to be.

Now we consider only the complements Vﬁz)(l):=V§(l)\{gl=O}
for k>12, on which we can introduce new vériables 21,22,23
instead of C1sC3sC3. by (5.1). They are closed subvarieties
of the open éet Ui§={giq£0} of the affine space (a,b,u,v;
%1,22,23). Recall that, by taking the complement of {clf=0},
the component {c1&=02==935=0} of V&gl) is thrown away,
but there still remains the 3 dimensional irreducible component
of it. We set §i2)(1):=Vé(l)\{ql==0}. It is now plausible
Fhat any system 6f variableé in /Ul’ which suits to define
?12)(1), will also help to simplify the expressions of the
polynomials rk(l) for k>13. Believing this, we change

the variables a,b,u,v to p,q,s,t by the substitution:
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: 2 NS
p=257-(25+1)%/4

a =
b = q-25(25+1)
(5.2) 1 ’
us sl
= 2
v = t-%l/;-z2(-(23+1)/2.

Then ié?azl) is given by p=ag=s=t=0. We regard ;\(l)
as pol&n&mials in p, 4, s, t, 25, %5, %3. The variety Vtz)(l)
is now defined by Fl§£}) = .- =§k{l) =0 for k>13 in the

open set )913 {%iQ£O}. By inspécting the expressions of

Ik{l), we notice that they contain many terms which are divisible

by s. This suggests that the variable s has some special

significance. In fact we have the following:

\\
<2)<1>

Proposition 5.3. For 13;}{216 the section

n {s=0} 1is 18-k dimensional, so that it is thin and

absolutely thin in the sense of Definition 5.1. On the other

hand V§$>(l) N{s =0} 1is two dimensional.

As we will see later, the complement ;ﬁgg\{s==0} is
also two dimensional, so that G(?)(l) ﬂ{s-O} is an irreducible
\‘2)<1>

component of It will turn out that this intersection

is not absolutely thin either.

9(2)<1)

defined by q=iyr in V{3 (1 {s=0) @ﬁ\u>-v 2 (\leg701);3

Computational Evidence for Proposition 5.3. is
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1ikewise‘ (2)(1)n{s—0} is defined by p-t(IL +223-—2t+2)/2
in v%)(l)n{s—o}, ig)(l)n{s-O} by 2520 in (2)(1)
n {s=0}, and Xz)(l)n{s—o} by 4: \—(81: =23 W) /4 in
\(2)(1)ﬂ{s—0}, furthermore, V ( )(l)n{s-O}- \62)(1)/\{s-0}
and finally V(2)(1)(\{S—O} is defined by t=0 in
::({27)(1)(\{3=0} This implies that \(2)(1)(\{5‘"0} lies
in {s=t=p-= q-O}-Xg)(l)cV . Since %\y(l)c 8(1)
l)\V (1) \<2y(1)n{s—0} must be empty.
vE3Y(1y .-

Thus we need only consider the complements /K\

%ég)(l)\\{s= 0} for k>12; they are closed subvarieties

SR
in the open set ‘%3)(1) of 91\ and they are already disjoint
from V(z)(l) Now we are operating in :;g)(l), which is

given by s #0, Qljfo in the affine space: (p,q,s,t;%f,léezgg
so that we can introduce new variable pi’ql’ti\ instead of
p,d,t by the following substitution:

P = spy

(5.3) {a = sa;.

ct
1

-

stz .
/1‘

Proposition 5.4. With the variables prpgi,s ti %T’Qéfga]

li

above, the polynomial Fl}él) has the form 2s% %T(pl\ P)

where @ is a polynomial wifth no dependence on Biw Thus
\

V\(\B/)(l)

is a smooth rational variety whose function field

is generated by the holomorphic parameters ?ik?’Bix%ie%z’%ﬂ'
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Remark. Explicitly, the ¢ above is the following:

2
2?15%&t1+2%351 -4y 2+29, ti +u12q1 612 3 121 l\

~3 2
+16%2\+2131—4%;£ +3s- 3st —3sql+us%3

22

+21 §0sg 2+ + 2 3/
2 S%z\tl— 05%2 3821—108 t 305 2,2 7S

By this proposition we identify \?%\)(1) with the ‘open
subset {215540} of the affine space: (ql,s tl’ Ljs 2, 3),
so that all &‘3)(1) are closed subvarieties of this open

set. The hypersurface is now defined by lujl) =0;
e AN

but the present form of C*h(l) is too complicated to see

the structure of V(B)(l) We should introduce new variables

(9ék52?5§Q‘ instead of (9Tﬁ&é<%§{\ by setting:

5.7 (35+tytics) /A

(5.1) . (2k k\2 ~3skyt2st; 2\‘@")/2
3- 143 37Ky thika-3s - N N

N

v
(uq2+u+8k3 3k\2+2E¢k2+t~2+42»—6SKQ+25t —3s )/u.

AN

471

\

We obtain the simple expression:

PA) = 2100700

3/(1)

that is, V \(3}(1) is defined in by

(5.5) sl,i\(kf l)+k \g
/ w
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In the affine space (%2{5’?T?%i?5§3%§?’ this is no longer a
smooth variety (the singular points are 8q.= 3 qzc-o ky =
put it remains rational and irreducible. In fact, outside of
I
the 2 dimensional subsets ?2<k3;=0, §é§=tl, we can define }
anewquantity r by r=2 \(2(q2+kgg or by r==(?2fk3)/2(52
. k= 2 = )
and, if one of qf k3 2r(k -1) and QI 2r(92+%3) holds,
then the other holds also by (5.5). This shows that (5.5) is

generically equivalent to the following substitution scheme:

ks.

’&T\= 43@{
= g, N\
(5.6) 4;;_2.\__— qy+ (kpC-1)7 (q} (95¢k50/2)
2.
= Q/ _(k (-l)r.
g7 (.

Thus we get two new variables Q§ , 1instead of inaé 3,
proving the rationality of i}3)(l) But recall that we
should have checked the thinness of the sections of ‘iX37(1)
(k>14) by the subvariety {q2+k3 /é@ ~-1=0}. This is
almost trivial; if we assume 2t5§ \3—1-0 then /15(1)

\2 N3y
is LI§ %é\ up to a constant factor so that V ()N

B -
{92 3.5 53-1-0} is thin in 3¥(1) if we further assume
M 75 NG
=0, then T (1) cannot be zero in 1 since it
/®\ ’ /ﬂé\ ,ﬂB\( )
has only powers of 2/ as its factors. Now we denote the

/\ >
(1)\{q2¢k3—k2\ -1=0} by

/
k>14 and identify V )(1) with the open set {sqar #0}
PN FEN

\(\af

complement or

s

£1),

2_1) s

in the affine space: (qng,r,zA ké{ by (5.6). The polynomials
VAN

[
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(k >15)

’

TrelL)

space.

The following variable change tq > t,

simplify T,-(1):

15
(5.7) ti = §2+3k2+55+u%2?,
From this we obtain:

(5.8)

We now consider the sections of

{tz=0}:
’,./ \\

Proposition 5.5.

18-k dimensional,

the sense 9£ Definition 5.1.

The computational evidence

Ru)(l){w{t-=0} is defined by

“"(1>n{t = 0)

M)
(l)r\{t/2

is defined by

ﬂ {t -O}, 0} by

and VYM>(1)(\{t2"O} by r=-2

- j
V18’
does not Vanlsh; that implies
Now we can operate in the

consider only the complements

For any k2>15, yﬁy)(l){]{t?-O} is

so that it is

depend now on the coordinates of this affine

is needed to

Vkﬁ)(l) by the hyperplane

thin and absolutely thin

for this is the following:
o £
k2?f=l 0}; further

in {tve

+1)/4
352\ (S’ )/

s
Q3 = —Llr‘ o

V\%)(l) f\{‘c = 0}

11’1
in \;“”mn{t -0},

in Thus

(1)(\{t =0} consists of one p01nt, at whlch /19(1)

“)u)n{ﬂ—o} is empty.

complement of {tév'O}
XB)(1) = \(u)\{t

\

-o} (k >14).
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\(5)(1)

since 92340 in the equation (5.8) = 0 1is equivalent

to theysubstitution:

az = —W(F2+Ms)(k£?-l)
(5.9) ' )

r = téw (w: new variable).
/=

Thus we can 1dent1fy V(S)(l) with the open subset

{st w(t: +Us)(k —1) #O} of the affine space: (s=§égwagé?
(5)<1) S nts or

and we regard V as closed subvarieties of this open

K
"subset. We introduce new variable Ejesix by
/TN T

tr = us?gﬂ

(5.9)!
s = 4(k —l)w/s

XS)(I) is now identified with the open subset {sltg(t3+l)w(ké2¥l)
it L P
# 0} of the affine space: (qTﬁtgjw,GQ) and the polynomial

Eigg}) has the following form:

N5 2l Yo o, 2,
(5.10) iiégl) = 256 s 93\;(32__1>w[u§I§§3{(33i1+2523>'-uw 3]

2N

where we have kept the old wvariables s,q§9r which appear as

factors in the expression since they do not vanish in the

domain 5%5)(1) We therefore eliminate S\ by
/
AR
(5.11) ?i\f -E;f(53¢1+25?¥)~-4w /4

/
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and identify V(S)(l) with the open subset {t (t +1)w(k22—1)x
X{(t3+1+2kéw) —Uwf}#()} of the affine space (tg,w,kg).
Now we regard k2+(t3+l)/2w as a new variable, replacing

k .

5 1.e. we eliminate k, Dy setting:

(5.12) k.

< = E—(ngl)/2w.

Then V(5)(1) is the open subset {tg(tgfl)w(kég;l)(fzfl)#(J}

of the affine space: (t.,w,k) and T.-(1) has the form:
3 17

1
\

(1) = 204854 (b+1)85q w3 (1,2 412
(5.13) §1751) = 2048§3<t3T1)s a3 rw (KZL-l){l-(ugjtl)k }.

As before we have kept the factors ,q3,r SW k2?—l which do

not vanish in the domain (5)(1) We see from.(S 13) that
(5>(l) is already a closed subvarlety in the open subset
(5)(1)‘\{(Mt FDE # 0} = (b <t3+1)<ut +1)wk(k -—l)(k ~1) # 0}

of the afflne space. (téfw’k>' Again by (5.13) QYB)(l)

can be identified with/tﬁe open subset {t (t +1)w(k —l)(§2—l)ﬁ

# 0} of the affine space: (w,k) by elimlnatlng téa by
/2
(5.14)  to= (1-FF)/4K°.

’ /" 3

Without writing explicitly the non-zero factors of Figdl)

in terms of w,k we have:

\ V3 13-4 9. 3
(5.15) T g(1) = gsytgg(tj+lf3sl3kuw9{3k2+1—uk3(1—k2)w},
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A\
\

Since E(I-EQ) #0 in V(S)(l) we can eliminate w in

(5) ing:
V18 (1) by setting:

APS Noo 4
(5.16)  w = (3k%+1)/4K3(1-K?)

nd V(B)(l) is then 1dentified with the open subset

'{k( l)(3k +l)(k +k+2)(k k+2) #0} of the 1 dimensional
affine space k. We have simply written down the condition
for 3, t3+1, W, k2~—l k2 1 not to vanish as rational
functions of k.

We have:

Noo

, - 13 1u

t4ke +1)9(2t +1) (£4+1)

3"

where all the factors except for 2t3+1 ‘do not vanish in

=9

(5)(1) Thus 15)(1) is defined by 2t.+1=5"1-0; that
3 o2

is,

(5.18) ('”(1) K=2/71T.

,19

We have thus completely described the varieties vﬁil), although
Ve
80 far the description might be called set-theoretic. We

can sum up the results in the following form:

Theorem 5.6. The variety yﬁil) introduced in Section 4

is an irreducible rational variety of dimension 19-k for k<16

and k=18, l%(l) is purely two dimensional variety with
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exactly two irreducible components, both of which are rational.

N\
V§§(l) consists of two points, which give projectively

equivalent surfaces.

We are now interested in the image of @ﬁ(i) in the
moduli space é&;(A) under the natural morphism. We have
already noticea in Section 3 that the family (I) admits an
involution automorphism. On the modified family (f!) of this
section, thils automorphism acts by changing the sign for each
of y,z,b,u,coﬁgéfd2,qﬂi.and leaving all x,w,a,v,?iqugéi?§3e%5l
invariant. We denote by {t1} the group generated by this

involution. We can now easily prove the following:

Proposition 5.7. If, for two points v,&' of the parameter

space V(1) of the family (f'), the surfaces SV’ ng are

/ s

fransformed into one another by a projective transformation

fixing p=(0,0,0,1), then v and v' are transposed by

{+1} and the transformation is the one induced by {#1}.

As a converse of this, we have:

Proposition 5.8. For k>10 and for v,v'eVE(1),

K

7
every projective transformation, which maps SV to SV;V
== Sy

necessarily fixes p=(0,0,0,1). If V,QL are sufficiently

general members of vﬁ(l), then the same statement holds

even for k<9,
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If k>10, V'69§ﬁ1), then p 4is the unique isolated
singular point of 4SV; for which the number of negative
eigenvalues of the intersection form on the Milnor fiber is
maximal. The first statement follows immediately from this.
The second statement follows from the fact that, for a general
point v of Vﬁfl) with k<18, p 1is the unique isolated
singﬁlar point/of Sv' Since ?ﬁﬁl) is irreducible for
k<18 and since @%éﬂl)g}?ifl); it suffices to show that
for V eYig(l) p is the unique singular point of §Vi
s0 suppose v'eV{éSl). Then (§§gp) is Ay so p 1is the
unique isolated singular point of %Vf §G\ is irreducible
since any surface 1in m§3~ of degree <3 cannot have ekk
with k<7. But an irreducible quartic surface with l—dimenéional
singular locus cannot have any isolated singular points, as
follows from the classification of such surfaces. (This last
fact follows from the study of surfaces SV{ Veeyggé) (1<i<6)
and a few other types of surfaces.)

According to Propositions 5.7 - 5.8, the natural mapping
of ?ﬁ/{tl} into;j@kgA) is injective for k >10 and generically
injeétive for k<9. ‘This implies that, for any irreducible
component of ?ﬁ(})/{il}, the closure of its image in Q@%SA)
is an irreducible component offé%EgA) and the natural mab

induces a birational mapping between these components. (Note

/\\
that v‘fg(l) and (#{,:(A) are both 19-k dimensional.)

Proposition 5.9. The irreducible components of ?%Sl)/{tl}

are rational. yﬁﬁl)/{il} is irreducible except when k=17.
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V*7(1)/{tl} consists of two irreducible components. All

irreducible components gg.Qﬂk(A) coming from Vﬁ(l) are

rational.

For any k and for any irreducible component of %*fl)
we have given above a system of generators of its function
field. One can check directly that any element of the system
either changes its sign or remains invariant under {:1}.
This proves the rationality of the quotient of the component
by {+1}, provided it is mapped into itself by {+1}, which

is in fact the case if k§=l8. One can also check that the

two points of V 9(l) are interchanged by {t1}.

Remark. We have thus seen that the quartic surface with

A

P

A is unique. In fact, by replacing y by V-1ly or -/-ly,

19
we can bring the two surfaces given by ﬁib(l) to the following

form:

o " .
16 (x2+y2 )wl+8{Uxz2+5 (x+y)y2}w

.

- g N o Vo
+16za;32yz3+8(2x2;2xy+5§2)Zv

+8(2x 5x y 6xy 7y3)

\\ \ LR \ e \/
+20x4+H4x3y+65x2y2+M0xy3+41yg==0.

Perhaps the reader will feel that the discussion of this
section might be too detailed and too explicit. But this is
because we wanted to discuss the case of the family'(i) as a
model which would show also how to argue in the other cases

(II) - (VI) for which we will not give detailed explanations.
- 40 -
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6. Supplementary discussion for the family (I)'. Just

after we had anihilated Rk(l) k £ 12 by Proposition 5.1
we had to check the case cq = 0 before introducing the

substitution (5.1); namely we had to prove:Proposition 5.2,
which was postponed until this section. At present, everything
sits in the affine space: (a,b,u,v,cé,CB). We begin with

the following:

Proposition 6.1. The section VE(1) alcq=c,=0} is

rational and 17-k dimensional for k £ 16. Vi7(l)(‘{ql:02:0}

= Vf6(l) ﬂ{clfq2=0}. V{S(l)(\{c1=cgf0} is empty. In particular

Vﬂ(l)r\{cléq2=0} are all thin and absolutely thin subsets of

?ﬁ(l) in the sense of Definition 5.1.

Proof. 1In addition to c¢,30 we assume cs

Fk(l) are polynomials in a,b,u,v,cS, We can of course

=0, so that

assume 93¢0 since g1f92693<0 leads to a non-isolated
singularity. By an explicit computation one can check the

following steps:

(6.1.1) F/IB(l):O @b:—2u(1}2+V)_

N\

(6.1.2) Ty(1)=0 <> a:cB/M-ﬁ‘“-zd%-d’z-JZ under T (1)=0 (ksl3)

A

(6.1.3) ,F,1~\5<\1)=0<=>u=0 under rkgl)zo (k 14)

IA

(6.1.4) T g(1)=0 <= v=0 under 1:!{»\(“1)=O (k £ 15)

(6.1.5) re(1)=0  (k s 16) = r/1»7_(1)=o

- 43 -



104

(6.1.6) ;ﬁ(l)=0 (k £ 18) = T, (l) 0 for all k.

According to this proposition, we may’ restrict attention
to the open set qéfo, so that we can make the following’

variable change (,Qe°9) > (z 3):
N

Ch = 24
(6.1) 2 2
03\= %2f3f
Now Rk(l) are polynomials in a,b,u,v, 22, . We can of

course throw away %2\ from these polynomlals every time
7EN

it appears as a multiplicative factor. First, we have:

3 b 27 /3

23 v - Suu - 6u2v - dQ - &2

(6.2) T 5(1)%0 —a = g,03/2 - b2 /2 - 2bu + 20 - 2.ud

y
/

» -

e

Fa
by which a 1is eliminated. Next, for simplifying Flh(l)’

we make the change of variables (v,230 > (Vi’kj):

2, = 4(k,-u)
(6.3) S o
Vs VAt 2K3\- 2k3? -u - 1/2.

-2v.u-nu-b}]

(6.4) 1)’(1) = L [22n+Mv {z +4k3\ ik

\
where n is the abreviation for 4%%}1. (6.4) suggests to
us to introduce n/ﬂyi\ as a new variable r: but if we do,
we must next eliminate v, by Vi T n/4r. This makes it

necessary to check the cases vI=O and n=0 separately
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go that we can introduce r and assume r # 0. We begin with

the case Vv,.=0. There we have the following steps:

N

- v
(6.5.1.1) Tlnfl)=0 < n=0 1i.e. 433:1 = 0

\2

(6.5.1.2) F15§1)=0 < b = QQTMKBM under Ei&{1> =0

A

(6.5.1.3) /I‘_‘k\‘(\l)=0 (k<15) = I‘/16<1)=0

AN

(6.5.1.4) Tp(1)=0 (ks17) = T(1)=0 for all k.
7 p N

We are thus finished with the case VTCO‘ Next, we assume
that n = BKS-1 = 0 and VI<0. Then we obtain:

(1)= - 2
(6.5.2.1) E,iug\l)-O@b = L¢ikauT-2viu

(6.5.2.2) FK(1)=O (k£15) <= 2?;0 =%>Fk(l)=0 for all k.
s B ¢ N AL

A

s
2

We are done in this case also. (Check that we have obtained
only thin and absolutely thin sections of Y%{l) by assuming
Yfio or n=0.)

Now, without the loss of generality, we make the
following change of variables vi\+ r, assuming r#0:

/

(6.5) n/lp = (uiég;fl)/ur.

V =
/A
In view of (6.4) we then eliminate b by the following.
(6.6) b = (r+1)hy + Mk, 02 - (2r+1)nu/2
. = (r+ + U - r+l)nu/2r.
AN
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The expression for the next term is:

\

N D S
(6.7) ngFl) = 2%2‘(22F 2k3?r %33 nru)/r.

In view of this, we eliminate an by

- — 3
(6.8) 223 n(253$+%saru)/r .
We will however keep 22\ every time it appears as a factor
in the expression for §k§l) (kz16).

To simplify Qié£l) we introduce the change of variables

u > u by

(6.9) u = (8r33f653{ﬁ)/4r.

Then we have:

I \-r
(6.10) Eié{l) = %Q\n(u -1+2rn)/Ur”.
We want to anihilate this. We first note that u+l 1is not
allowed to vanish: in fact, éé-1+2rn = u+l = 0 1leads to
r=0 or n=0 which contradicts the assumption above. This

allows us to introduce new variable w = (u+l)/2n and to

assume Ww#Z0. We now anihilate €1%{1) by setting:

6 { a = 2nw-1 N
.11) -

(n := 41;3\._\ 1).
2w(l-nw)

r

Finally, we make the variable change (w,5§< + (w,k), to

T
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simplify F17(l), r,g(1), by the following:

w = (w+2)/3
(6.12) { -
\ kjkz k+(2w+l)/6.
We have:
\ \, oL P
(6.13) PI7K1) = -5?,;;'\21&1(x/-q‘2+w+l)/31’\3
(6.14)  Tyg(1) = -z/gt\zl’m<9i+2x7v+1)/9r\*“.

We see now that k = 0 1leads to a non-isolated singularity
\

near p. Thus we have to set ﬁe;ﬁ+l = 0 to annihilate

F17ﬂ1) and 9k+2w+l = 0 to annihilate Qigjl). We do
not have any more parameters at this stage, where Flgjl) # 0.
’ \

Thus we have proved Proposition 5.2 completely.
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7. Structure of the parameter spaces for type (II).

As in the case of the family (I) in Section 5, we should modify

the family (II) given in Section 3 to the following form:
N N \ .\ \\_ . E A )
(II)! Bé(x,y,z,W) = (x®-y2)w-21{xz%+ (ax+by)y lw

™, \\ \\
—zg—{2uxy+2(v—a)y2}z2

\y : \

—(Q1£34c2i2y+95xy2+04y5)z
\: g L} \
-(@1+u2)x'—(§2¢2uv)x3y

‘\. \\ \ \
-(d3.f2bu—u’2+v2)x2y2

!
—(d/uf2au+2bv—2uv)xy3

—(q5-€2+2av—52+b2)y“ = 0.

Everything works much simpler in this case; in fact we can

gradually kill ;ﬁg2) k 2 7 in the following steps.

(7.1) Tp(2)

"
o
~ 0
2
O

!

(7.2) ;g{?) §T<O (under ;762):0)

(7.3) rqg(2) = 0 = (c,=0 or u=0) (under T,(2)=0 (ks8)).
2\ /k\\

A 9\ v

We now discuss separately the case (7.3.1): ¢y dp7c 530,
. 7N AN

=u=0. For (7.5.1) we

u#z0 and the case (7.3.2): "fdl

€y

_ 4§ -



109

obtain the following substeps:

(7.3.1.1) 216{2) = () = 92ip
(7.3.1.2) 51}£2) = 0 <= QB{P (under g,<0)

(7.3.1.3) {12ﬁ2) = 0 e ?3?0

om now on, we shall omit the similar assumption "under---".)
(Fr

=0 == gy=0

—
-3
N

}t
=
~
s
W
—
no
~
[}

(7.3.1.5) T 5(2) = 0 <> ;=0

(7.3.1.6) F15(2) 0 automatically

i
O
!
Q

n

(@]

(1.3.1.7)  Ty5(2)

Obviously QI:---:gusL:..-zfé:O implies that the surface

ﬁ%\= 0 decomposes into two quadrics passing through

p = (0,0,0,1); so at the final stage of an isolated
singularity in this case, we obtain a family of A15 with
five parameters a, b, u, v, da. Now recall that the above

\

family admits the following one-parameter action:

(X,y,Z,W; a,b,u,v; (;l’\,"';c)_(;; ,dl"-\y"'>c415.\)

\
. N \
5 h ’...,tbu

3 4.
c cy3t dgs dg) -

) K - A- i=
> <t2x,t2y,tz,w; t"’2a,-'-,t“/‘2v;t" 1ottt

Reducing the number of parameters of the family by this action,
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we obtain a family of A15\ with just 4 parameters. We can
| in fact rigidify this family by setting q531. The family
then admits only the finite automorphism gréup denoted by
G(2) which is genefated by the restrictiéh to {t; ;‘;i}
of the above C* action and the involﬁtion induced by

y <> -y. As in Section 5 we can also brove that any two
members of the family are projectively equivalent if and
only if they are transformed into one another by G(2). We
have thus obtained a natural map of {(a,b,u,v); u#0}/G(2)
intoa;@1§{é) which is injective. Namely, we obtain:

\

Proposition 7.1l. - In addition to the irreducible

component coming from V15(l) there is an irreducible

-~
component of - M45(A) which arises from V* (2)

The other families of isolated singularities obtained
ébove are absolutely thin, so that we need not worry about
them; |

Now we discuss the case (7.3.2); gifdlfuzO, for which

we have a much simpler way of annihilating ij2)’s (k210)

(7.3.2.1)  Typ(2)

0 <= c¢5=0

0 automatically>

(7.3.2.2)  Ty4(2)

i

=0.

N

O@d

(7.3.2.3)  Ty5(2)

But now crfdﬁ=cz=d2fu=0 implies that the surface has a
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non-isolated singularity along its intersection with the
plane 'y=0. We obtain, at the final stage of an isolated
singularity in this case, family of %IT\ with nine
parameters a, b, v, 93? Chps d2? d3j d&’ d?f among which we
can reduce one, for example d?’ by setting d2=l to kill

the d*faction. Thus, by the same reasoning as above, we

obtain:

Proposition 7.2. In addition to the irreducible

component coming from V%l(l), there is an irreducible

component of Qﬂil(A) which arises from V§1(2). A1l V§(2)

k#11, 15 are absolutely thin.

- g -
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8. Structure of the parameter spaces for type (III).

In contrast to the cases (I) and (II) we need not change
the homogeneous coordinates of EP5¥ (x,y,2,w) in this
case.

So the parametrized surface is giVen by:

Fsﬁx,y,z,w) = {xw-(bx-y)z-x(ux+vy)}

Iy

\ I}
x{yw+22+byz+ax2+y(ux+vy)} + 0(x,y)z + P(x,y) 0

H

(where the letter b 1s used where formerly — in equation (II)—
we used s, for the sake of later convenience)

where we set:

\ 5 \2 \\_. 2 ~\\‘3
0(x,5) = cqx” + cyxTy + CxXyT * Cyy

b > 222 13 Y-
V(x,y) = dyx + d2§3y *dzxTyT o+ @¢§y3 * qgg

so that the parameter space V(3) 1is the affine space:
(a,b,u,v; %Tf%?ﬁ%?ﬁqﬂé dlﬂd d;,du,d J. We will first

remark that the family admits the following % action:

(X’Y2 Z JW; a;b 91%1<V;5¢l\3 612\\3 CB\SCL‘\;\ d]:\gd?\,d}\:dq\;\d5\2

*zoo RTINS \ =
+(t3x,t2y,tz,w; t‘ya tblb,t‘ju,tvzv;
5 <4 B £5% s

QIVt ca,t 3\t- 94?

\ \ A
- =6 5 =4 =3
d55 B’t du\,u d5)

t € T*.
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As before, we will annihilate step by step, the polynomials
R T .-+ to describe the subvarieties V or

rp(3)s Tg(3) "r(?)

QEFB) in V(3). We begin with the following change of

VA :

variables (2,1,01,C5,05) > (P>5,87,85,05):

1 = 9.
Ca T A

C5 = Lpmeblsz

u = s+2,-2bv
BN

\
p—Mbs—Mva/

\M]
"

The following steps annihilate EE(B) up to k=12:

(8.2) 1:,;7\(3) = 0 = c/,@._\fO
(8.3) B@@B) = 0 = ésc-/g\
(8.4) Tg(3) = 0 e d)p=-4 +4b&3\
\ voe
()= - N
(8.5) Fm{” 0 @@g§\gkﬁbz§@mgﬁvz\
(8.6) T(3)= 0 <= NI \CLLENCIENE TN +2z 58
(8.7) F/é(3)= 0 = di pL—lbse 8982 +2V2 +22
J-\ \ 3\ 3 3\\ 2\

In the equivalence ;k$3) = 0 &< ... we have assumed,
exactly as in the previous section, ;ﬁ§}£3)=-—-=;?{3)=0.
We will often do the same thing in the discussion below.

The following change of variables 24 - k< 1is for
& & NIV
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simplification of F&343):

2,4 = ka

5 2\ + p/2

(8.8)

_ .2 2
Ly5(3) = 2238 - kyO + p"/4h.

Before annihilating Flg(j), we will examine the case s=0;

so, in the following steps (8.9.*). We assume s=0.
(8.9) Iy3(3) = 0 <= (p+232Q(p-252Q = 0.

In the steps (8.9.1.*) we furthermore, assume that 205\ =
N

p+2k, = 0 while, in the steps (8.9.2.%*), p—2k2\= 0 is

assumed.
(8.9.1.1) T13(3) = 0 == kyty = 0
(8.9.1.2) Tyx(3) = 0 «= 2; =0

(8.9.1.3) I x(3)

1
(@]
Nl

But both S:%TigéfQSSO’ s:%if&é:p=0 lead to a non-isolated

\\

singularity at (0,0,0,1).

(8.9.2.1) Qih$3) = 0 < §?<&T:4b55{ =0

(8.9.2.2) T,3(3) = 0 <= 2, =0

[N
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(8.9.2.3) [Ix(3) = 0 for all k if &y = ky= 0

Thus we are done in this case, too. Anyway, by setting
s=0 we have obtained not greater than 19-k dimensional
sections of Yﬁ{B), whose dimensions will only decrease
further after dividing by the T+ action.

We now assume s#0 and introduce a new variable
r = (2%27p)/4s to annihilate ;I3£?): namely we eliminate

P, Qi by the following:

p = 2(k2-2sr)
(8.10) TN

by, = 2F(kgmsr).

Since s#0, we can also make the following change of

variables (¥2iv) > (%égYﬂ)i

(8.11) { ks, @ s (kysr)

_ N\ = 7.
v = YTf(r +52?+2br+2bkze/4-

We have:

‘ \o/ -
(8.12) Ty (3) = -Hs®(Larlkyvi).

To annihilate this, we eliminate %f‘ by:
N

(8.13) Lz =
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Now we remark that Eé\= 0 implies & 1787 23-0, which,
together with (8.1)-(8.7), implies CpFerEeyS \=---=d550;
hence, the guartic surface F330 has a non-isolated
singularity at (0,0,0,1). Thus we should assume %2#0.
To Simplify_‘215(3) we make the change of variables

(EzéVl? > (Kp,v, )

(8.14) { ko = kym2(ber)

VN T Yzf(2bﬁéfrg f46246br—2£2)/4.
Then we have:
(8.15) ?1%53) - 852 k (S+k2 )

so we eliminate s by setting:
(8.16) s = -E«L

Since we assumed that s#0, we have" Qézo, Y2¢O' The following
change of variables (Yéeb’5éer) - (Y3€QIYK2Y?1€ will simplify

L1e(3):

( Vo ® 335é\
1 b = by-ry, +Mv
(8.17) RN
r = 2r 3\
L ka\\\: 2‘\+2r
2=~ ~
(8.18) 915&3) 4s 52%2632\ +16v3)



We see that 16(3)

we can assume bijo

We can thus eliminate Vi, and k
V3 T Dy

(8.19) ¥2
Ko\ = ~16pyu™.

This annihilates fié(B). Since

We obtain:

(8.20) F.o(3) = 1285% . \2
: 17 l 9

O -—'>V3—0 = v /2—

» so that we can introduce w=

117
» Singe gng,
“V3/0g

N by setting:

gsfo, we have 9&{0’ W¢Of

B e
l\32bl\ MO?EY +89iy).

To annihilate this, we eliminate ri\ by setting
7

(8.21) r. = -8b. w(uﬁb—5w+l)

1"11\\,‘ l\
We obtain:
(8.22) rg(l) = 8192s2§£%52
(8.23) I (1) = 65536\2 \5

We see immediately that

leads to a non-isolated singularity at

o/

the equations 8w -2w+l = 0
any common root.

To sum up, we have proved:

- 55 =

and l6wa-6w+l =

;h(2w l)\2(8w\8 2w+1)
w5 (2u- 1)b( 16w 46u-1).

.2w=1
(0,0,0,1) and that

0 do not have
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Proposition 8.1. The parameter spaces ﬁi(}) are

themselves absolutely thin in the sense of Definition 5.1.
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9. Results for types (V) and (V). First, we discuss

the family (IV); namely:

{xw-+b§2-x(rz+1n<+vyﬂ X{yW‘fia + ax®

(I-V) Fa\\(xayaz:W)

+ y(rz+ux +vy)}l + ¢(x,y)z + v(x,y)

=0
where we set:
\z \ \ ’
00,10 = e ey v ogy® e oy

1]

. NS S B B, g

v(x,y) ?ﬁ +%xy+?¥y *dyxy +q§

so that the parameter'spaceév(u) is the affine space with

coordinates a, b, I, U, V, Cps Cps C3s Cys Ay dps dys dy, dg.

The subvarieties V§£u), as defined by the polynomials 'tﬁ(u)
- N

in Section 4, have particularly simple structures:

(9.1) 9?{4)

0 = C'Li\_: 0

0 = . = 0
ds\,

(9.2)  Lg(H)

(9.3) 29(“) 0 = Ca\ = 0 or b =20

Here b =0 1implies that the plane x=0 1is an irreducible
component of the surface S: wa 0; so we should assume

b#0 in what follows:

(9.4) {"}10\(14) =0 == dp =0
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(9.5) F11SQ) = 0 = c, = 0

(9.6) Fon(l) = 0 «= d, =0

12
(9.7) T13(4) 20 e cp =0
(9.8)" th§u) =0 e dy =0

15:(%)

11l
o
[N
'}
!

(9.9)

A |

(9.10) Blégé) = 0 = ?13: 0

where, as before, to prove the equivalence I;K-S“><=>*, we

need to assume {kl\lx(u) ze..= }77\\&4) = 0. Since cy . =r--= ¢y

= dl\:”': d5<-.‘ = 0 implies that S decomposes into two
quadrics, this case is finished. Recall that the family

(V) admits the following action of &% xT*: (s,t):

(X,¥52,W3 8,D,U,V3 T3 €,C5,C4,C,5 d7,d5,d5,dy,d5)

o o g i -1
> (sx,tzy,tz,w; s“’ztaa, st /Mb, s7u,t /2v t* r;s

Y Ty A\ — o M-
Stztgbf‘ s%;c; t“zeip st¢99_'

o1 722 i ?
A\ v
302 o a0 W20 e ey 5605
sVt 4/1/1 d @'?\’t d/‘l;"-\St d’S"‘) .
. e o . ) N .
Dividing by this I¥xIT* action, we get:
Proposition 9.1. The subvarieties \Z}’%‘(M) k £ 14

themselves absolutely thin in the sense of Definition 5.1.

There is an irreducible component of MIS(A) coming from

\/ (14) For k z 16, \}E\M) is empty.

- 58 -
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Next, we discuss the family (V):

\

\
() Folxyaza = xyd + (ayx0

.
z + a2x T+ ajyﬁ}w

AN

3 \2 2, R
+ Xz~ + (blx + p2xy + lgjy Yz ©

\
\3 2 \p
+ (c X +02x y+03xy +CL;Y )z

Al 3 2. 2 '3 W
* oy +dpn’y +axTyT T e dgy = 0.
First we remark that we can eliminate parameters bl"‘ and
by by setting b1\= 1_;2-\_:= 0: in fact, to do this, it suffices

to replace 2z by =z +oax+ By for suitable a, B. We remark
also that the family admits the following action of T* x T*:

(x,t):

(X,3,2,05 815855853 P33 12002035005 d1505085,d4,05)

\

~
+~  (sx, tBy,tZ W3 S\*l‘l:2a1 2t\saz,st \'6a3
St¥5b ; S\-/2’22é s‘“lé =1, t\_qc st\_‘] s
] 32 b /23 ( 3, ch,
N5\
? 3/1’5 2012’5\—1\-3 %5, da: ~ d )

We now have the following equivalences and the same remark

as for (9.1) - (9.10) applies below:

(9.11) rg(5)

1]
o
o

A

1]
o

{(9.12) P9\(5) =0 <> a3 =0

(5.13) I 14(5)

!
(@]
el
P
1
o
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(9.14) ry3(5) vanishes automatically if T, (5) =0 k<10

(9.15) 1"“1}\(5) = 0 < dg, = 0.

But now by =a;=cp=d =0 implies that the plane x =0 1is
s3T5 THY Thy

an irreducible component of the surface S: FS\— . Thus, at
the final stage of on isolated singularity at (0,0,0,1),

we obtain the ten-parameter family YTi(S) of Apy with
the coordinates ?I” 853 Cys Cpo C3 QIf §2¢ Qj: qu qi (qji 0).
We can of course set d5\=l, killing one parameter because

\ ’ \
of the above ﬁ*»<m* action. We thus obtain a T* action

on this family by setting s -t‘9

~7. N15_ . \10 Yh
> (t ~ al\,t 8.2, - - 2’t - c}’
ACETISE: N12. M6
it T dyst T ds, A

We can also show that two members of this last family are
projectively equivalent if and only if they are transformed

into one another by this T*% action. Thus we obatin:

Proposition 9.2. The subvarieties V*(S) k £10 are

thin in the sense of Definition 5.1. 9*1(5) gives another

o . .
component of éggiTﬂA). This component is rational.
- “\_

Remark. By (9.14), V*’(B) and 9*1(5) coincide

with each other; but we should distinguish between the
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absolute thinness of Vih(S) and that of VilﬂS); the former
\‘. — 4 N

means that its image in gﬁQio(A) is thin while the latter

means that its image in ;@DIT(A), which is of codimension 1
AN

=,

in uﬁib(A), is thin. Hence, the above coincidence does not

P

contradict the statement of Proposition 9.2.

We have thus discussed all the types of A, singular
. . Py o
points on quartic surfaces. Recall tha gfgkgA) denotes the
moduli space of projective equivalence classes of quartic
surfaces having at least one A&\‘singular point with 2 zk,
and it is purely 19-k dimensional. We have the natural
inclusion MI(A) >M,(A)D--- D k_/i(lcg(A) :

-

—
Corollary 9.3. ﬁéﬁkﬂA) is irreducible except for
KN .

k=11, 15, 17. For k=17 resp. 15, 11 it has two

resp. three'irreducible components. All the components of

T )
Q@%(A) are rational.
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0. The Structure of the parameter spaces for type (VI).

In this section we will discuss the last family (VI) of
Section 3; namely the case of rational douple points of D
type. But we study only the generic casg/ s#0. (We might
leave the case s=0 to the reader as a pleasant and amusing
exercise.) Without the loss of generality we can assume that

s=1, so that the family is given by

. “ 4 ‘\\ \ |
(V1) Fegx,y,z,w) = x2w2+{(x+y)?z+2xze}w+zy
+(x+2y)zj+(ble+p2xy+p3j2)52
\ \ \
V) 2 2 3
HlogxTrepXiyregxy Heyy )z
g3 2 2 1 JUN N
+(q1¥ +d X y+d33 y +qu§y +d5y ) = 0

where we have replaced y by Xx+y 1in the equation in

Section 3. Then the condition (3.2.1) can be expressed by:

(10.1) by = 1/4.

We introduce a change of parameters:

( bsg = 1 =2s

5
bB = (6"‘8.)/)4
_ o, 2
Cl = 21\\\" S
(10.2) ) ¢y = Ly - as/2

Q
=
i
=
=
|
0
~
no

- 62 -
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@}flhx-ay/u
da\ = My 58
dj\: M = Qe/u
dyp = My

L dg T Mg

so that (?2: b 3; C]i\\: ..

zr?..},gu§ @1?...,m~). Then we have to set:

-5Cy3 dl""’dé) is replaced by (s,a;

5%
(10.3) Ly, = 0

to annihilate R7ﬁ6); in order to annihilate r8(6), we also

set:
(10.15) mi T SEse
We have:
) _ » 2. o
10.5) 15(6) = smy - STy - g3Vh,

Before introducing a new variable r=%é(4s, we should check
.what happens in the case s=0. If we assume s=0, %é\ should
be zero for ;§£6)=O vanish; ;ib£6) vanishes automatically

if 94=s=0 and Ei}§6)=o if and only if TgiO; now S=%@\

LN

:/2i0 leads to a non-isolated singularity at (0,0,0,1).
As we will see later, Vﬁé(6)r\{s¢0} is 7-dimensional, so

we obtain:

- 63 -
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Proposition 10.1. The sections QEK6)/\{S:O}, k<11

are thin and absolutely thin subsets of V§X6), k11 in the

sense of Definition 5.1. V?Q(G)[\{S:O} is an irreducible
- AN - —

component of YEESG). V§56)f\{330} is empty for kz13.
Next, study the complements Y§$6)/\{s¢0}. Assume:
(10.6) s £ 0

and annihilate E§(6), introducing the variable r mentioned

above and killing %5 and ms\ by
4 4 \

%5 = Ysr
(10.7) ’

m \
2\

S(&ﬁju;%j

We have:

so we annihilate this by eliminating 3@. as follows:
\
\z, o

(10.9) my = s + 2%3r - 8r? + ar<.

To simplify the form of FIT(6) we need the change of variables
/ N

(23,mg) > Ggong):

S 121'\2 - ar
(10.10) 723 : y

my = N+ 28, + Ur
We obtain:
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\D. \2/
(10.11) ;11(6) = S'(usankje/”'

gince we have assumed s#0, we can annihilate rli(6) by the

following substitution.

kz\z bsw
(10.12) ' v
ny. = Hsw
We get:
(10.13)  T35(6) = \4(m -r2+214rw\2 Bru-an?-22 )

and we eliminate Mgy by setting

\o 3
(10.14) m. = QQ—ZMrw2+8rw+an+2guw

The following substitution simplifies the form of F13(6):

2

r = ory o+ Yy - 2w
(10.15)
%ﬂ\z §Q\+ 24rw - Ur - aw

and we have
(10.16) I»3(6) = ;Q?ki/+ 8€1§w)/4

Before introducing the substitution scheme to annihilate
this, we should check the case w=0; if we assume w=0, then
obviously 213£6)=0 is equilvalent to 5@<O and if Bﬂio

. . I‘«' - .
then rih56) vanishes automatically and /1§£§) 0 if and

only if gfio; but now w=§@<31<0 leads to a non-isolated
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. AN
singularity at (0,0,0,1)¢€ TPY. As we will see later, the

complement VT5g6)\\{w=0} is 3 dimensional, we thus obtain:

Proposition 10.2. The sections VE(6)n {w=0}, ksl5 are

thin and absolutely thin subsets of V§K6), k<15. 9%6(6)

N {w=0} 1is an irreducible component of 0%656)' i§$6)/\{w:0}

is empty for kz17.

We may thus restrict attention to the complements

Q§(6)\\{W=O} = i§f6)\\({s=0}kj{w=0}), k215; that is, we assume:
(10.17) w # 0

Now; as a substitution scheme for annihilating F13(6), we

introduce the following:

15)4\‘ = 8SWU.
(10.18)

Ty = '8SWJ2’V.
We have:

(10.19) Ty (6) = gﬁdgf-768swgg+32sJGFMaJQ¥38MJQWQ/

—192é2w+32uw—8u—1).

If wu=0, then this never vanishes by (10.6) and (10.17);
so we ©ohtain the three parameter family of 915< which is,
as a subset of VT%£6), thin and absolutely thin. Thus we

can assume:

(10.20) u# 0

- 66 -
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we now annihilate (10.19) by setting:

\ \ 2 | \ A
(10.21) a = (—768swuﬂ+32su3+384u2w2—l92d@w+32uw-8u—l)/’Néé.
l/:
We need the following change of variableé (s,w,u) -~ (ST’WI?uiQ:
/ \\ ‘ v \
_ 3
s = §1\/ 16u

(10.22) w = wp / 8u

We obtain:

\6. o \2 o
s W (31313%1? / hu= .

(10.23) r15(6)

Since we assumed sw # 0, we also have sywy # 0. This
7/

allows us to set:

Up = SaV
(10.24) AN o
AT Y
to annihilate (10.23). We also obtain that v # 0.
We have:
R -
(10.25) 21656) = sV (2§i\1) / 64

We have to set:

(10.26) 5T\: 1/2

to annihilate (10.25), and we finally obtain

\z,
(10.27) EZ?{?) = -v*/4096
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and this is not allowed to be zero, as we have remarked above.

Theorem 10.3. Let V§$6) k= 7,8,... Dbe the descending

chain of varieties introduced in the same way as in Section 4,

for the family (VI of this section. Then, for ksll, 13<k<15

and 17<k<18, the variety ?*(6) is irreducible and rational

and 19-k dimensional. For k=12,16, V*(6) has two irreduci-

ble components both of which are rational and 19-k dimensional.

Vig(6) is empty. The moduli space JWE(D) is birationally
. iy 5

equivalent to V§ﬂ6) for ks<19.

The last statement follows from the others, since we

can prove, as in Section 5, that the natural map ?§§6) >

'zik(D) is generically injective, and since we obtain only
ébsolutely thin parameter spaces for the special case of type

(VI).

Remark. So far we have considered the complements
VE(6) = YRSG)\\y;£6) and gounted the number of their
irreducible components. The variety Va(6), which is the

LN
intersection of all Yﬁ<6)’ has two irreducible components,

one of which is Vg(6): = {s=124 £5=m43 250} and the other

T\ 2>
is ?;§6):z{ﬁ\:22=23=%ufmlfmz;mﬁfmufTSCo}' Since Yg(G) is
6 dimensional, none of: Vk(6) kélS. ére irreducible. For
v€\ﬂ%6) the singular locus of the associated surface /G\
is a cubic curve in EP3’ it is in general a Veronese cubic.

On the other hand, for 'Vé‘f§(6)\\jg{6), the singular locus

of SG‘ is of degree 2 and lies in the plane y=0.
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Remark. In the above one-parameter family of surfaces
with Bi%* there is only one special member which has in

additionto (0,0,0,1) one more singular point:

\y

-512x +384x3y 256x3z 72\2;2+x22@/u

A

e R 2.

+X7ZW+X W +12xy

% \2

+2XyZW+X2

%

+Ty 2°/2 +y zw+2yz

\2

\o-
6+ley z-31xyz

+2xz~w+5§A-U§5z

3% 0

The other singular point is (1,-8, 4,82), which is 5\,

\

AN

- 69 -
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Appendix

On rational double points on quartic surfaces
by

Yuniko Umezu and Tohsuke Urabe

Tokyo Metropolitan University
Department of Mathematics

Fukazawa, Setagaya, Tokyo, 158 Japan

In this appendix, we want to give a theoretical explana-
tion to some results of the joint work of Kato and Naruki;
namely we give a proof of the existence of rational deouble
points Ap (1<k<19), Dy, (4 <k<18) and the non-existence

of D on quartic surfaces, using the surjectivity of the

19
period mapping for polarized K3 surfaces and the lattice
theory due to Nikulin.

We would like to express here our hearty thanks to
Professor Looijenga and Professor Namikawa. Actually this
article grew out of the discussions with them.

\,

1° Proposition 1. (1) There is no guartic surface ig_]ﬁ%'

with a rational double point of type Ag or Dy with k,2>20.
e 4 L — -

(2) 1If there is a quartic surface in ZPB/ with Al§ or 919,

then the surface has no other singularities and the minimal

resolution of the unique singular point is a K3 surface.

Proof. Let X be a guartic surface with singular points ?i’

...,Pm. There exists a smooth guartic surface Y which is a small
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‘deformation of X. We can choose mutually disjoint open sets ~9%,
ey 9m(:Y, each of which can be regarded as tﬁe Milnor fibre of

the singular point 9}ex. (CEf. Milnorf8].) Note that Y is a K3
\

oty

surface and thus gthe intersection form on Q%(Y, Z ) has
;‘ R W)—

signature (3,19). Let n; be the number of negative eigenvalues of
the intersection form of the Milnor fibre of gigx. Since there is a

, C m - , RS :
natural map ?izﬁgﬁngf EE) — 5@4Y}E§), we can conclude that /5212&219.

N\

Our proposition follows from this inequality,Fince 9i;1’ and the fact

that rational double points do not affect the condition of adjunction.

(Cf£. Durfeel6],) 0.E.D.

By Proposition 1, we can assume that X is a quartic surface in
ﬁi with only rational double points in the seguel.

Let % ‘be the minimal resolution of singularities of X. % is

‘o : ‘ s .
a K3 surface. Let ¥'= Eik%k+z§192+z?m§ﬁ denote the configuration

of singularities on X. We have inclusion relations ' Yt
) TN ), :(‘){‘M}F
s =zmeo 9@ & pic(¥) T B¥ (X =)
: N ~ . laad
where g 1is the class of the polarization of ¥ (thus ég = 4),
and Q%a) is the lattice generated by exceptional curves on X.-

N . //_\ :
Here Qﬁﬁ) is isomorphic to the root lattice of typéﬁa'. {(CEf.

-

Bourbaki[4].)
Thus we need in the first step of our proof the lattice embedding
theory due to Nikulinhzj, which gives an explicit criterion whether

for a giﬁeni@i, S can be realized as a sublattice of the even

unimodular lattice L of signature (3, 19) which is isomorphic to
’ N

%%, z).
IM)\
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2° Let A be a finite abelian group. A mapping g: A —- (D/2£Z{

is called a finite quadratic form if the following conditions are

satisfied.

(1) q(na) = niq(a) for all neZ and acA.

(2) q(a+a')-q(a)-q(a') = 2b(a,a’) (mod 2Z) for all a,a'eA,
where b: AXA — ,‘(P/g is a non-degenerated symmetric bilinear form
on A.

For a given even lattice S, (i.e. free g—module of finite rank
with a non-degenerated integer valued bilinear form ( , ) satistYing
(x,x)EZAZJZ\ for all xe¢S.) we can define a quadratic form %é\ on
Z}.g\= S*/S where S* = Hom(S.NZg\) by putting

gé\(t»fs) = t\?ﬁ-zg for teS*.

We call ?@\ the discriminant quadratic form of the lattice S.

It is easy to see that any finite quadratic form gq: A — AED/ZQ
is decomposed into an orthogonal sum
®, ga: ©,A, 27
/pq/ﬁ i3 - N "'g/ o~
with respect to the associated finite bilinear form b. Here p denotes
a prime mumber, As is a maximal p-subgroup of A and gx = q|3y.
D F3 S 5N
For every prime number p we can replace Z by the ring of
p-adic integers N?\Z/p, & by A(gx\ Analogously we can define the
discriminant quadratic form i : AR\ —_— (\12/@/22‘/p for any even lattice
K over ZF). Note that we can regard (D\p/ZZZ@\ as a subgroup of
~ P ~ P r\.\/ Y
Q/Zg\v and any finite quadratic form qp\: Ap—-> @/2Z over an abelian
p-group is factored to Ap—-> »Q@/ZAZ\Q\L-—» @/2%Z . Thus we identify qé\

P2 AN

with the induced map A,— /22 in the sequel.
p -/ ?% p

¥,
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s
i

Proposition 2 and 3 are known. (Nikulin[i2). )

.Efgggiisigg_i. Any finite quadratic EEEE‘.?ﬁé ép——+ﬁ9/2§a over
an abelian p-group Ab is a direct sum of éﬁé following generators,
S%P)(p ), uA(i)(z ) and v, %2)(2 %y .
é‘g)(p }: the 1-dimensional p-adic lattice determined by the matrix
(ep:)/ where k21 and 6eZ p* (taken mod (g/_g\g)

(2)

~ N
v'% (2%) anda v'2)(2%): the 2-dimensional 2-adic lattices determined

by the matrices

0 2 S
* o & g

respectivelylwherg kz1.

%% %), w3 (2% ana v & 25): the discriminant quadratic

form of Kgig)(ﬁb), 013)(§§) and Vtg)(Zk), respectively.

We denote by 2(A) the minimum number of generators of the

finite abelian group A and by |A| the order of A.

Proposition 3. Let qb: Ab——+ @/2Z be a finite quadratic form
e —_— Y / ~

over an abelian p-group Aé‘ There exists a unigue p-adic lattice
— ¢ n -

K(qé) of rank l(Aﬁ) whose discriminant form is isomorphic to
, /

o, (2)

9§’ except in the case when p = 2 and gz is JG (2)@q for
some 9.

By Proposition 3, the discriminant discr K(qﬁ) of K(gg) is
. / -

. \m
defined by ’qp uniquely modulo (Zﬁf)@’ unless p = 2 and

\
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q2 # q L )(2)eq2 An embedding sC—1, of lattices is called primitive

1f L/S is free.

Theorem_é.(NikulianJ.) The following properties are equivalent:

(A) _There exists a primitive embedding of an even lattice S with

signature (ti' t1), into some even unimodular lattice of signature
—_——— ‘_ v - — —_—_—

(%; l\)

(B) All of the following conditions are simultaneously satisfied:

1) 2;—2« = 0 (mod 8)

2) & t~_0 2\—t\>0 La¥la-ta-ti22 % (Ag)

3) \L—~—4|A§J = discr K((cé)«) (mod (Z *f%)

ifor all the odd primes Psuch that 2 +l ,% ta = 1((As)§\

4) |ag| =Zdiscr K((gyly) (mod (z ﬁ*\g)
Lf gyeni-t,oty = 2((Rg)y) and (3g), # 33\ (2)eqy.

Example 5.(1) We consider S = Z EQQ(ATj), where £%/= 4 and
Q(A ) denotes the root lattice of type A19 Let L be an even
unimodular lattice with signature (3, 19), which is unique up to on
isomorphism . (Cf. Serre(l5]l.) Then, S has no primitive embedding

into L. Indeed, let oa3,..., a{\ be the basis of Q(A" associated
,/1_ / 9"\ 19

with the Dynkin diagram (Cf. Bourbaki [4].)

% %3 % o

~ AN =~ P * 7 A -
Let W ee ey mngFQ(%qég be the dual basis of Adreeey aﬂg. We have

(114

A§\= S*/s = <f>@<g> z /40Z /20

1 = S )
—£ (mod S), g = wn 20(19QT618aé¢...+a4§) (mod S)

f a y

Hi



137

N\
Let meHQ(ﬁ, KQQ be a non-zero holomorphic 2-form on X.

we can regard o as a cohomology class via the Hodge decomposition
, Syt
87X, € = HVQ? )@HV(QQ@)@H9(§%{ Since w is unlque up to a non-

zero constant multiple, the image of w by y8C: ﬁ%(ﬁ, T) — LC

defines a unique element (w] in E(L@Q) depending on the triplet,

SN —~
which is called the period of (&,J{, Y). Since weX'= 0, Q%’= 0,

- %J'"Q\ -
and w-w>0, the period (w] belongs to the period domain

= { [x)eR(mea) | x-¥ =0, x? =0 and x-x>0 }.

Theorem 8. (Kulikov, Todorov) (Cf. Namikawa(9].

For every point {xleD, there exists a polarized marked K3

surface of degree 4 (%,}{, ¥) whose period coincides with (x].

The next lemma is well-known and easy to prove.

Lemma 9. The Chern class map gives an isomorphism

pic(¥) = { acHY(X, Z) | arw = 0 }.

Thus in what follows we regard Pic(%) as a subgroup of

Y]
ﬁg(x, %Z ) via the Chern class map.
-

Example 5.(3). Recall that S = g E@Q(A1§\ has an embedding

§ &> L and that it can be factored to the composition of an embedding

S & s' into an overlattice S' and a primitive embedding S'&— 1.
The element % with 2% = 4 1is unique up to automorphisms of

L. Thus we can assume % = £ by composing an automorphism with the

..75_
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19
g (£) = %, q(g) = —35 (mod 2Z2)
We have only to check the condition 4) in Theorem 4, (B).
N2) 52 (2) 52 . o
In fact, (?5{2 = ?1(q (Zv)@gm$w (2v) and thgsr/dlscr K((?éij) = 2V,
On the other hand |A§| = 5x§§ Z tié (mod (@/Q*fg) (since 5 £ +1

(mod 8)) This implies that the condition 4) does not hold.

3° Of course, we need to discuss the non-primitive embeddings, too.

We say that an even lattice S' containing a given even lattice S, is

'an overlattice of S if S'/S is finite. Let gg\\= S'/S. We have

a chain of embeddings S~ §'— §'*C— S*_, Hence ?é}g S'*/SC S*/S

= . ' % A = /\~
A and  (S'*/S)/Hg, = B

A subgroup HCA3 is called isotropic if qélH = 0.

Proposition 6. (A) The correspondence S' + determines a

.
/S'

bijection between even overlattices of S and isotropic subgroups of

A
e

. aly £ = A = N\
(B) Denoting (HZW) { xeés\] by (x,y) 0 for all y€§é,?} ,

N 4 = [ A AN = /N A //\ / N o= I /\"L ;
Example 5. (2) Let us count up all the even overlattices of é =

:@ g@Q(g{g). It is easy to see that for integers m,neZ with

0<m<3, and 0<n<19, ?é(mf+ng) = 0 implies ({m, n) = (0, 0) or

(2, 10). Therefore H = <2f+10g> 1is the unique non-trivial isotropy
subgroup of 9“. and S' = S+§§(%{+10g@) is the unique non-trivial

even overlattice of S. We can show that S' has a primitive

embedding into L. Let f and g be the images of f, geAd in
/ \\
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A./H. We have
755

Ay = H"/H = <F+53>08<F+153>0<4g> = Z /207 /20Z /5,

N2 2 :
a3 = @& @eg G @) ana

\,
N

signature of S' = signature of S = (ﬁ, 19).

By Theorem 4, we know that there exists a primitive embedding S' — L

Remark. It is easy to see that

(1) There are no elemets eecS' with e-f = 2 and &7 = 0.

(2) { ses' | s.g =0, 87 =-21}={ reQ(ady) | £7 = -2 }.

4° In order to show the existence of a quartic surface with %43\

we also need the theory of period mappings, which was developed only a

Ifew years ago. A

We fix an even unimodular lattice L with signature (3, 19) and
an element geL with 2%'= 4. It is known that the pair (L, %) is
unique up to isomorphisms.

Cefinition 7. We call the following triplet (X,8, v) a

7

polarized marked K3 surface of degree 4. T Sowek
i

(1) % is a smooth K3 surface.

—

(2) ® 1is a line bundle on X which is numerically effective.
(i.e. /for every curve C on &, the intersection C;gi\is non-
negative. )

(3) ¢ : HZ(X, %ﬁ) —— L is an isomorphism of lattices such that

¢{C(¥5) = E,Where c(X) 1is the first Chern class of the line bundle

K.
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embedding if necessary. We identify S with the image of the embedding.
Let S* denote the orthogonal complement of S in L, i.e.
s* = { xeL | x*s = 0 for all seS }. ¥§\=,P(Sl®@) can be regarded
as a subspace of Q(L@g). Then we have Mém C # ¢ since the
intersection form'on \SL has signature (2, 0). Pick a polarized marked
e S\

K3 surface {%b,}{c, @b) whose period belongs to Méf\D. We
: e (Y /

would like to show that for this triplet the image Xd\ of the map

. N

¢§€hassociated with the linear system Q{é] is a quartic surface with

KAYN e

A‘]9'

. Y
Claim 10. b(Pic(Xy)) = s'.
' 8 LY

Proof. By the choice of (Xj;, 2{0, vy)» we have SCU(Pic(Xj)).
On the other hand Pic(%b) is primitive in HQR%G, Z) by
Lemma 9. Thus we get Claim 10. Q.E.D.

5° Now we quote geometric results from Saint-Donat(14] .

Let ¥ be a K3 surface and let g@; be a numerically effective

line bundle with K % = c(X)¥ = 4.

Proposition 11. If the linear system F}(W has base points,

we have ]j{l = |3E+T|, where E 1is a non-singular elliptic curve,
I is a non-singular rational curve, E-I = 1 and T is the fixed
part of [X|.

Proposition 12. If the linear system f%il has no base points,

one of the following cases takes place.
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(1)  The map %@\.é_s.fq'j’_?_%éﬁed with the linear system [30| is a

pirational morphism and its image is a quartic surface in P with

only rational double points as singularities.

(2) ¢§} is of degree 2 and its image is a non-singular quarcratic

surface.

(3) b LS of degree 2 and its image is a quadratic surface with

a unigque singular point .

In this case (3) the inverse image of A

by ¢&%‘;§‘eithe;

two disjoint smooth rational curves, Or

(A)

s whose dual graph is

(B) a configuration of smooth rational curve

of type Ay or ?Q_With 224.

From Proposition 11, 12 and - the Riemann-Roch theorem we can

easily deduce the next lemma.

Lemma 13. The following two conditions are equivalent.

(1) ®§T is not a birational morphism.
Vg LS not a

K . ,/‘A\ N —
(ii) There exist a line bundle & with €% = 0 ana &-% = o.

7‘\ [ \\ '\'\\ y\ <
Indeed,for example,in case (2), let G be a general member
of one of the two ruling Pl-families of the imace inﬂﬁ;.

The inverse image E = ¢§;J(G) is a smooth elliptic curve and the

line bundle associated with E satisfies the conditions in (ii).

Example 5. (4). By the remark just following Example 5, (2), Claim 1(

and Lemma 13, we know that ¢}€;\ is a birational morphism.
A
!
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Lemma_14. For every class BePic(X) with é?z—z, either B

or -8 is effective. i.e. HO(B) # 0 or BHY(-8) # 0.

Proof. Since the canonical bundle Ki\ is tri&ial by the Riemann-
Roch theorem we have dim H9(8)+dimﬁ9(—8)zé?/2+2, which implies the
lemma. Q.E.D.

\;JJ’\'.‘:V.Y/\ ,/»%

Proposition 15. Assume that ¢§€\;§ a morphism and let A denote

the set of points where ¢é€\_§ails_§m be finite.

Hh
o

(1) _Each irreducible component C is a non-singular rational

curve with self-intersection -2 and with Cg}( = 0.

X

(2) The root system Ry _in Pic (¥) generated by the classes associated
S i ' . LY
to the components of A coincides with the set B = {BePic(X) |

g-c®) =0, g2 =-21.

Proof. (1) Obviously C-é€§= 0. Then by the Hodge index
theorem 0%<0 and we have pa(C) = Cg/2+1;0. Since the arithmetic
genus pa(C) is always a non-negative integer, we have pglC) =0
and €4 = -2. It is well-known that if pa(C) = 0, C is a non-
singular rational curve.

(2) Obviously B%C_B. Pick PBeB. By Lemma 14, B or -8 is
effective. If B8 is effective, B is the class of a curve Y

on X. Let Y = Jayyy (0<ajeZ, ¥y # ¥y if i # j) be the

N
decomposition into irreducible components. We have Za1¥%xé 0 and

Va

Y}¥&€;O since '}, is numerically effective, which implies Yiiéﬁ =0
for all i. Thus Yf, is an irreducible component of A and we have

Be%%. If -8 is effective,by the same reasoning we get ~88R§ and
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thus BeRy. Q.E.D.
gxample 5. (5). Let A. be the union of the exceptional curves of
T /O .

the morphism ¢'§}, By the remark following 'Example 5, (2), Claim 10
N0 -
and Proposition 15 ,(2), we know that the root system in Pic(ka)
generated by the classes of irreducible components of AO is of
A . f- . .
type Ajg- BY Saint-Donatil3}, @ae |- x0 AA is an embedding.
Therefore ¢}€;(Ad) is the single singular point of type Ayg:
Zx0

which is just what we want.

6°  Example 16. Consider the case D1§. Set S =2 g@Q(Q{B).

By a calculation with ihe quadratic form, it is easy to show the

following.
(1) S has no primitive embedding into L.
(2) S has a unique overlattice S'. Let ajre--r Qg be the

base of Q(D1b) associated with the Dynkin diagram

. \ N A\
bt B %17 %18
fe} O___Qoo-.__I o)
.
%19
£+a -Q
Then, S' = S+Z b———l%——lg) .

Assume that there is a quartic surface X with DiB' The minimal

resolution X is a K3 surface and there is an embedding S <, Pic(X)
such that the image of ¢ coincides with the classi@i? of the pull-
back of the hyperplane line bundle. By (1), (2) above and by the

same reasoning as in Claim 10, we have S' = Pic(%) Let & €PlC(§)

be the class corresponding to (E+@j§"af9)/2' We have &; and
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E-?{ = 2, which contradicts ‘Lemma 13. Thus there is no quartic
surface with Q{S’
Example 17. D1é+A}. Seg S = Z,EGQ(Df8+A1)' We can show that

the following overlattice S' of S has a primitive embedding into

L. Let .oy, ..., orgy B be the basis associated with the Dynkin

/

diagram
& %3 s %7 %17 B
o o———0— *°+ —0O I————o o
a
18

Then S' = S+Zp with o = %£+%Z£§1%§I:1+%B .

Fixing an embedding S &— S' &— I, such that S§'<— L is
primitive and such that the image of § coincides with E, we can
choose a K3 surface (%i, }Qa, w?) whose period belongs to
Dr\g(slgg). We have an isomorphism s' = Pic(¥) such that ¢
corresponds to the class j&f of the polarization.

Suppose,fj{?\ has base points. By Proposition 11, |}€;L
= |3E+T| for some curves E, I on X such that E-T = 1 and E? = 0.
Particularly E;égé = 1. However, for every element segS', s-£ 1is an
even integer, which is a contradiction. Thus féi?J has no base poits.

Suppose;?ée&

AN /
smooth quadratic surface A, let G be a general member of one

is of degree 2. If the image of ¢ = %VC*\, is a
KI5

of the ruling ﬁ%—families. If the image A 1is singular, 1let G

be a general generatrix of A. Then, the strict inverse image

ﬁ—}kG) is a smooth elliptic curve and it defines a class ecS'

such that éz =0, e =2 and e°*B = 0. If  ecS, e+fed4Z , which
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is absurd.Thus we can write e = p+ np+e' with e'cZ g@Q(94é) and
neZ . Then 0 = p-8+n§%+e'-8 = —1—2n%+0 and we have 1 = -2ﬁ%, which

is also absurd. £

//\ . ’ . . .
Therefore we can conclude that ¢5§&\ is a birational morphism.
7 N\ Y

Since it is easy to show that

{ ses'| seg = 0, s4= -2} = { reQ(Dyg+ay) | rd = -2 1,
e s ¥ i ‘ . |
X1 = ?a€¥£%TQ is a quartic surface with 94@ and ﬁ%ﬁ

Example 18.  A;, 1sks18.
In this case S =,§ g@Q(Ak) has a primitive embedding into
L. Let (%,?{), ¢) be a marked polarized K3 surface of degree 4

whose period is a general point of DF\E(S*®Q). Then we have

s = Pic(X) and it is quite easy to check that TGt ;\y\r
— S - BTV A

(1) There 1s no element ,EgPic(&) with €. =2 and £2a~ 0.

(2) { gePic(X) | 5-3(\= 0, 8% = -2} 2 { reQ(a;) | £t = -2 3.

Thus we can conclude that X = ¢6€(%) is a quartic surface with an

” singular point.

A
Example 19. P%, 1sks17.
In this case also S = ZE®Q(D.) has a primitive embedding
into L. Thus there exists a quartic surface with a Dk singular point
Vi

for 1<kg18.

Theorem 20. (1) There exists a quartic surface in Hﬁ with

2

a rational double point of type Ap (resp. D}) if 1<ks19. (resp.

1£2518.)
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\
o quartic surface in P> with a rational

(2) There i

double point of type éﬁ\ (resp. 9@) is k220. (resp. 2219.)
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