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Menger-Decomposition of a Graph And Its Application to

the Structural Analysis of a Large-Scale System of Equations

Kazuo MUROTA#*

Abstract

Graph representation of a large-scaie system of non-linear equations
provides an efficient way of testing the structufél solvability, detectiﬁg
the inconsistencies in modelling and'decompdsing the whole system'into‘
partially ordered subsystems}

In this paper, the M-decomposition is defined for a graph with
specified "entrance" and "exit" vertices, in terms of the Menger-type
‘linkings from the entrance to the exit.. Some prépertiés §f the M-
decomposition afe shown; specifically it is noted that the M—decomposition
.agrees with the Dulmage—Méndelsohn decomposition .of the associated
bipartite graph.

The M—decomposition is‘useful for the structural analysis of a larée«

scale system of equations; the M-decomposition leads to the finest block-

triangularization and the resulting subproblems are structurally solvable.‘

Also pbinted out is the fact that among the cycles on the representation
graph, only those which are contained in an M-indecomposable component

correspond to essential equations.
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1. Introduction

Graph-theoretic approach has turned out to be useful for the
structural analysis of a large-scale physical/engineering system or a
system of non-linear equations describing it; In particular graph-
theoretic analysis of the representation graph leads to an efficient way of
/testing the structural consistency, detecting the inconsistent parts and
decomposing the whole system'into partially ordered subsystems [13], [14],
(191, [20].

Following [13], we consider a system of non—linear equations in the
standard form:

fi(x, u) (i=1,...,M

Y.
. (1.1)

u

K = g lx, w (k=1,...,K), |
where xj (j=1,...,N) and u, (k=1,...,K) are unknowns and"y; (iz1,...,M) are
parameters.

The representation graph G(V,E) of (1.1) is a graph that represents

the functional dependence among variables (i.e., unknowns and parameters).
To be specifie, G(V,E) has the vertex set V = XuUuUY, wheré Xz{x1,...,xN},
U={u1,...,uK} and Y:{yT....,yM}. The functional dependence )

v = fi(x,u)
is expressed by a set of ares coming into Yi from xj and Uy which
effectively appear on the right-hand side; similarly for

vy = gk(x,u).

The system (1.1) of equations is said to be strueturally solvable if

it has a structure which admits a unique solution for arbitrarilyvspecified
values of parameters i (i=1,...,M). It has been shown in [13] that (1.1)

is structurally solvable iff there exists a Menger-type (vertex-disjoint)
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complete linking from.x to Y on the representation‘graph G. (See~secti§n
4.1 for detail.)

In this paper, we investigate the structﬁre of the Menger-type
1inkings onbthe representation graph, with a view to obtaining the finest
decomposition of the who;e s&stem into structurally solvable subsystems.
In section 2, we first introduce a decomposition of a capacitated network,
by exploiting the structure of minimum cuts. Then the M-decomposition is
defined for a graph with "entrance" and "exit" vertices in terms of the
Menger-type linkings between them. In section 3, it is noted that the M-
decomposition of a graph agrees with the Dulmage-Mendelsohh‘decomposition
of the associated bipartite graph and that it iska refinement of the L~
decomposition intéoduced in [13].

In section 4, the M-decomposition is applied to the structural
analysis of a large-scale system of non-linear equations. The finest
block~-triangularization is obtained through the M—decoMbositidn of ﬁﬁé
representation graph. 1In particulér, it is pointéd out that, among the
éycles on the repreSentétion graph, those which are completeiy contained in
an M-indecomposable component correspond to essential eéuations. .An' |
extension of-the M-decomposition is considered to deal with inconsistent
‘parts. The M- and‘the L-decomposition are compared with each other with
respect to the total amount of computation involved in solving the whole

‘'system of equations.
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2. M-Decomposition of a Graph

2.1. Decomposition of é network by the minimum cuts

Before defining the M-decomposition for a graph, we prepare a
decomposition of a network on the basis of the minimum cuts.

.Consider a network N(V,E,c), where V is the vertex set containing a
source s and a sink t, E is the are set, and c: E——>§f is the function
defining the capacities of ares. Let

Z = {ScVisesS, t ¢ S}.
For anva in Z, we refer to

C(S) = {(u,v)eEjueS, v ¢ S}

as the cut eorresbonding to S and define its capacity by

P(S) = I ec(e).
eeC(3)

As is easily verified, the funetion p:Z-->R is submodular:
p(SUT) + p(SNT) < P(S) + P(T) (S,TeZ). ' | (2.1
We will utilize the technique for decomposing submodular systems [10],
(111, [121, [iGj, as sketched below. The family L of the minimizers of P,
i.e., ‘

L = {SeZ| p(S) = min pP(T)}

TeZ
constitutes a distributive lattice with respect to set inclusion. (In
fact, for S'and T in L, the condition (2.1) implies that P(SUT) = P(SNT)
= p(8S) = p(T).) Let Vo(s eVb) and V-Vo(t € Vi) be the minimum and the
maximum element of L. Then, the Jordan-Holder theorem for modular lattices
(2] may be interpreted as stating to the effeet that L determines a unique
s r \
partition P = {Vi}i=1 of V—(VOIJVm).
r .
Vv - (Votlvm) = .9 v, (Virvvj=®, i#£3), (2.2)

iz1
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as well as the partial order (2) on P [16]. <(See the algorithm beloﬁ.)
The partial order on P may be arbitrarily extended on PlJ{VO,Vm}, but
in connection with the M-decomposition, we extend it as follows:
Vo2V <=> '3u(15)ev0,3vevj: (u,v) €E or (v,u) eE (1<j<®) .
ngvq,<==> 3w(:ft)€ Vm,gve Vj: (w,v) €E or (v,w) €E (0<j<r) |
(See Step 6 of the algorithm for finding the min-cut decomposition.)
In accordance with the partition (2.2) of the vertex set V, the are

set E is partitioned as

00 .
E=(UE-) v (UE-)’
i=0 * ig5
Ei =.E n(vixvi) (i=0,1,...,r, ®)
Eij = E ﬂ(Viij) (i#j;i,3=0,1,...,r, ®)

For each V; (1<i<r), we define a network N,(V{,E{,cl) with source s;

and sink ti as follows:

V{ VilJ{si.ti},
Ei = Eg U{(si,v)l Ay, 3Vj:(u,v0 eEji' ngvi}
ulCv,e )1 3, 3vj’:(v,w) €E;5 Vipvshs
ci(e) = { cle), ecE,,
Lel(u,n),  e=(s;,v)

u
(summation taken over all u such that (u,v) eEji’

ngvi for some Vj).
T el(v,w)), e:(v,ti)

W .
(summation taken over all w such that (v,w) eEij,

\_ vigvj for some Vj).
For VO (V_, resp.), we define N0 (N_, resp.) in a similar manner by adding
only the sink to (the source S resp.).

The partition (2.2) of the vertex set V, or the decomposition of the

o=l
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network induced by it, will be referred to as the min-cut decomposition ¥,

The resulting networks Ni' defined above, are called the component
networks,

An algorithm for finding the min-cut decomposition (2.2), as well as
the partial order, is given below [11], [17]. . Throughout this paper,

"y-E_>Ww" means that there exists a directed path from v to w.

Algorithm for min-cut decomposition of N(V,E,e)

1. Find a maximum flow f from s fo t on N(V,E,e) and fix it.
2. Define the "auxiliary graph"‘Gf(V,E) as‘follows: for u, v in Vv,
(u,v) €E <=> [(u,v) €E and £((u,v)) < e((u,v))]
or [(v,u) €E and f((v,u)) > Oj.

3. Let V. be the set of vertices v such that s-%#->v on Gf.

0
4. Let V, be the set of vertices v such that v-%->t on Gf.

5. Let P:{vi}’i' be the collection of the strongly connected

=1

components of the graph obtained from Gf by deleting the vertices in

Vo U Vo

¥ The min-cut decomposition defined here agrees with the decomposition
treated in [17]. In [17], hbwever, the decomposition is derived from a
dual point of view, that is, it is defined in_a constructive manner with
reference to a maximum floﬁ, which complicates the characterization, such
as uniqueness, of the decomposition. The partial order defined here is
somewhat different from that in [17], though they agree with each other on
P.. The removal of the condition "u#s, w#t" in (2.3) makes our pértial

order identical with that in [171.
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6. Define the partial order(2) on PLJ{VO,Vw} as follows: for
0<i,j< =,
vizvj {==> there exists on Gf a directed path

from a vertex in Vj to a vertex in V

which passes through neither s nor t.

As is easily seen from the definition of the min-cut decomposition and the

max-flow min-cut theorem [7], [9}, the following theorem holds [17].

Theorem 2.1. (i) The minimum cuts of N (w.r.t. (s,t)) are in one-to-one
correspondence with the monotone bisections* (P*,P”) of the partially
ordered set P:{Viii:1([12], p.169, Theorem A.2; [16]). That is, minimum
cuts correépond to those subsets S of V which are expressed as

Ve |
(ii) Each Ni(V{,Ei.ci),with 1<i<r has exactly two minimum cuts
w.r.t. (si,ti), namely one corresponding to {si} and the other to
Vi'{ti}={si} UVi. In particular, we have, fof each i, -

Ze((u,v)) = T c((v,w)),
u,v . V,W

where, on the left-hand side, the summation is taken over all u, v such

‘that u«svj, v evi, (u,v) €Eji' ngvi for some Vj; on the right-hand side,

over all v, w such that v eVi, w&EVj,.(v,w) €Eij, Vi’>£Vj for some Vj.

< Lo . '
(iii) N, has a unique%mlnlmum cut w.r.t. (s,to), i.e., the one

* A bisection (P*,P”) of P is called a monotone bisection if, for any Vi in

P* and Vj in P~, the relation ijvi never holds.
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corresponding to V N, has a unique minimum cut w.r.t. (s,,t), i.e.,

0°
the one corresponding to {s }. The capa;ities of those cuts are equal to
the capacity ¢of the minimum cuts of N, |

(iv) A maximum flowﬂf on N'canbbe expressed as the union of maximum flows
on Ni’ That 1is, fbr a colleéiion of maximum flows fi on Ni’ a maximum flow

f on N can be obtained by

f;(e) ‘ S
f(e) = c(e) veeEij, viz,vj,
0 otherwise.

Conversely a maximum flow f on N determines maximum flows‘f‘i on Ni as
above; the arcs incident to si,(1$iﬁ‘°) or tj (0<j<r) are to be

saturated. [

2.2. Definition of the M-decomposition

Consider a graph G(V,E), with its vertex set’V composed of threeA
disjoint parts, i.e., V=XUUUVY, X={x1,...,xN}, U:{u1,...,ﬁK} and
Y:{y1....,yM}. Here it is assumed that there is no arc that comes into xj
in X or goes out of Yi in Y. We call X the entrance and Y the exit

(including the case where X = @ or Y = @).

By a Menger-typéllinking from X to Y is meant a set of vertex-disjoint

directed paths from a vertex in X to a vertex in Y. The size of a linking
is defined to be the number of directed paths from X to Y contained in the

linking. A linking of the maximum size is called a maximum linking and, in

case X! = {Y!, a linking whose size is equal to {X| is called a complete
linking. By a separator of (X,Y) is meant such a subset of the vertex set
of G that has a common vertex with any directed path from a vertex in X to

a vertex in Y. A separator of minimum cardinality is called a minimum

7=
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separator,

We call here a vertex v of G an effective vertex if there exists on G
a maximum linking that contains v. Those vertices which are not effective
will be called ineffective vertices.

For a graph G(V,E) (V=Xu U uY) with the distinguished entrance X and
exit Y, we define a network NG(G,E,C) with source s and sink t as follows,

which will be called the network associated with G:

V= {s,b}UX, UU, UU*UY*
X,:{xl....,xg}. U*z{ul,...,uf}.
Ut={uf, ..., ukl, Ye=(y%,..., v},

Fei i,
Ef{ﬁ*mﬂ|Wn0€E:vmeVL

Eaz{(s.x*)lxe XY u{(u*,u)lue Ul u {(y*,t)lye Y},
(1, ec E .
c(e) = ~a
+o (sufficiently large), ec€ Eo.
As is well known [71, [9], there exists a one-to-one correspondence between
Menger-type maximum linkings on G from X to Y and integral maximum flows on

N, from s to t which have no circulation (i.e., flow around a éycle). On

G
the other hand, minimum separators of (X,Y) on G correspond to minimum cuts
w.r.t. (s,t) on-NG.

Let

~

te V) (2.4)

~ ~ r . -~
V=V.,u u { ! Vi) (se Vo" oo

be the partition of V determined by the min-cut decomposition of the

associated network NG.
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Proposition 2.1. For u GU;'let u* €V, and uy €vy (0<i,j< ). We have
vigvj or Vj_Vi according as u is effective or ineffective. [

Proof: If u‘is effective, then, by definition, there is a(Menger—type
maximum linking that contains u. For the maximum flow f on NG
corresponding to the linking, we have f((u¥*,uy))=1 and therefore an arc

(u, ,u*) exists on Gf, which implies that Qi;Gj. Conversely, if u is
ineffective, an arc (u¥*,uy) exists on Gp since f((u¥*,u,))=0 for any maximum

~ -~

flow f on NG. Hence follows ngvi. Q.E.D.
For v; (i=0,1,...,r, =), set
m(Vy) = {Y EVivy evi} u{veVivkeV.}.
The sets m(Vi) (i=1,...,r) are not disjoint in general but are distinet

with the following trivial exceptions.

Proposition 2.2. If m(Vi) = m(Vj) for 1<i<j<r, then it is a singleton

m(Vi) = m(Vj) = {u} (ue€eU). And u is an ineffective vertex, [

Propf: Suppose that m(Vi) = m(Vj) and vigvj, and put

Vi={u§,...,u;,vl,...,v2} and ij{ul....,uﬁ,v?,...,va}. By Proposition 2.1,
u (1<k<p) are effective and vy (1<k<q) ineffective. Inspection into the
arcs on the auxiliary graph reveals that only the case with p=0 and g=1 is

possible. Q.E.D.

Let {V.}B

it j=1 (R<r) be the family of the distinct sets in {m(Vi)}§=1.

Also set Vozm(VO) and Vo=m(V,). (We may have Vy=0 or V.=0, whereas Vj£Q
for 1<j<R.) Obviously, we have
, R

V=VouV, u (jl:JTVj). , (2.5)
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The partial order (g) in the min-cut decompositioni(E;u) of NG induces a

fed
tial d N
partial order () on {VJ}J=O by
ngV:j. (0_<_j.j'_<_ m) {=> Vj=m(Vi),Vj,=M(Vi.) and Vi_Z_Vi..

The decomposition* (2.5) of V, along with the partial order on it, will be

referred to as the M~-decomposition of G w.r.t. (X,Y). We call each Vj an

R

j=1 the consistent part, V., the maximal

0

(M-)indecomposable component, {Vj}

inconsistent part, V., the minimal inconsistent part ¥¥, Those vertices

which belong to two indecomposable components are called connectors.
For the associated network NG’ we define the M-decomposition
= = = R

with the partial order (2) in a similar manner by setting VO:VO—{SI,

(2.6)

Vm=§w-{t} and merging the trivial components of the mip-cut decompositiqn
(2.4) such that m(gi)zm(gi,) (1§;<i'5r)v(mentioned in Proposition 2.2) into
single components. There is a natural one-to-one correspondénce betwéen
the indecomposable components of the M-decomposition (2.6) of N and those

of the M-decomposition (2.5) of G.

*# Tt should be clear that Vj’s in (2.5)‘are not necessarily disjoint.

¥%¥ The inconsisteht parts could be decomposed further in an obvious manner
if they are decomposed into several connected components after the
consistent part is deleted from G. Then the partial order should be.
modified appropriately to represent the hierarchical structure more

faithfully.

=10-
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2.3. Properties of the M-decomposition
A component Vj (1<3<R) in the consistent part of the M-decomposition

will be called an effective component if it contains an effective vertex,.

and an ineffective component if it’is'composed of ineffective vertices
only.

For each component Vj (Qﬁjﬁ«0 of the M-deéomposition (2.5) of G, we
define its entrance Xj (< Vj)'and exit Yj‘(CZVj) by

i j

= Jy. .
Yj-(Yﬂ Vj) U{uEVjI Vi‘ uc€ ViﬂVj, ngvi}.

=(XnvV.,)vu . E| - . NV., V. .4,
XJ (x VJ) {_ue‘VJI Vit ueVy VJ V.V.}
(2.7)

Note that ijYj=ﬂ for an ineffective component and that the connectors
belonging to Vj'are contained in leJYj. Let Gj be the graph obtained from
the vertex—induced subgraph of G on Vj by deleting all the ares coming into
X. i .

% or going out of YJ

With the above definitions; we have the following theorem,

Theorem 2.2. (i) The minimum separators of (X,Y) on G are in one-to-one
eorrespondence with the monotone bisections (P+,P_) of the partially
ordered set P={Vj}§=1. That is, a subset of Vis a minimum separator iff
it is expressed as

(VouXu( gy V.)n( utu( u v)).
0 V.ept? vgeRT J

J

(ii) An effective component Vj is by itself the only indecomposable
component in the M-decomposition of Gj w.r.t. (Xj.Yj), i.e., it is
indecomposabie in this sense. (Hence, there is norinconsistent part
there.)

(iii) For an effective component Vj’ there exists a éomplete linking on Gj
from Xj to Yj; in particular IXjI = CYjI > 0.

(iv) If V0 # 0, then lxoi > IYOI and the size of the maximum linking from

-11=
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Xy to Yy on Gy is equal to [Yyl. If Vg £ @, then IX,} < 1Y} and the size
of the maximum linking from X, to Y, on G, is equal to IX_l|.

(v) A maximum linking on G can be expressed as the union of complete
linkings on the effective components and the maximum linkings on the
inconsistent parts.

(vi) An ineffective compohent may be deleted without affecting the maximum
linkings.

(vii) The existence of a complete linking on G is equivalent to v0=vm=0.

(viii) Connectors are the effective vertices which are contained in every
maximum linking. [

Proof: Immediate from the properties of the min-cut decomposition of the

associated network NG given in Theorem 2.1. Q.E.D.

A comment would be in order as to the computational complexity of the
M-decomposition. By virtue of the special form of the capacity of the
associated network N., a maximum flow f on N, can be found in O(IELJIV])

G' © G _
time [6]. The strongly connected components of Gf are found in O(CIEl) time
[1]. Hence the total amount of computation for determining the

M-decomposition is OCIE| JIVI).

2.4, An example of the M-decomposition

Consider the graph G shown in Fig.1, where x:{x1, xz}, Y:{y1, Yoo y3}
and U={u1....,u11}. Take the maximum linking {x1——>u1—->u2-->y1,
X,~=>Uu

2 5
maximum flow f corresponding to the linking above, is shown in Fig.2. The

——>u6->u7-—>y2} on G. The associated network NG. together with the

min-cut decomposition of NG' which is found by means of the auxiliary graph

Gf in Fig.3, yields the M-decomposition of G and NG (Figs.1, 2) as well as

-12=
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the partial order depicted in Fig.4. In this example, Proposition 2.2
applies to the part m(;8)=m(§9)={u10}; V, through V5 are effective
‘components, whiie V6 through Vg-ineffective; Ujs Usy us, Ug and u7 are

“connectors,

3. Relation between the M-Decomposition and Other Graph-Theoretic

Decompositions

3.1. DM-decomposition of the associated bipartite graph
_We begin with the following Theorem 3.1 which is an observation from
the network-flow iheoretical,viewpoint.
For a graph G(V,E) (V=XUUUY) with disjoint entrance X and exit Y,
the assoéiated bipartite graph BG(V*,V*;E) is defined‘és follows [13]:
Vg = XgUU,, V¥ = Y*UU¥, |
(vy,w¥*) eE <=> (v,w) eE or v=wel.
Note that no arc exists on G that comes into X or goes out of Y. There is
a naturai one-to-one correspondence between the vertiCeé of the associated

bipartite graph B. and those of the associated network NG which are.

G
distinet from s and t.

Moreover, a maximum matching on BG can be determined in accordance
with a maximum linking on G: first, each directed path_x-->u1-—>u2——> .o
-=>u -->y (xeX, up €U, yeY) in the linking on G determines the matching
1

,d*), (ug,y*) on B;; next, each vertex u in U

1 M-
(x*,uﬁ), (u*,ug), ceey (ug ot

not contained in the linking induces the matching (u,,u*) on BG; the union
of those two kinds of matchings is a maximum matching on BG. Note here

that (uy,u*) is out of the matching if u (in U) is contained in the

-13-
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Fig.l. A graph G and its M-decomposition

(™= 7 . M-decomposition (2.5) (V )
1 ] 0

]

Vl’VZ ,V3 ,V4 ,V5 : .’Ef.fectlve components

V6 , V7 ,V8: Ineffective components

\ @ : Connectors

-14-
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Y Y3 Vs
F—]————’_"‘W l‘"]'_—"‘"'l ('—2—"_"""’—._","_—]
| Xg (=) Ui 1) ue <;> uf )l () i ol

7 4

x5

|
I
1
|
l
|
|
I
|
|

Fig.2. The associated network N, of G and its M-decomposition
( ): Capacity -
—: A maximum flow f
- ——

L ! : M-decomposition (2.6) (V,= ?)

-15-
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Fig.3. The'auxiliary graph Gf corresponding to the maximum flow f
on associated network N

.
L <j»: Min-cut decomposition

G

-16~
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V7='{u]1}

V1='{x],u]} Vo= {x2,u3,u4,u5}

Va= {ug,up,ugsugl

V5='{u6,u7} V8='{u]0}

7 R =:{u ual

Fig.4. The Hasse diagram representing the partial order of the

M-decomposition of G. -

(VO= ¢ has no relation with others.)

~17-
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corresponding maximum linking.

By the DM-decomposition we mean the decomposition of a general

pipartite graph B(W,,W*;E) due to Dulmage and Mendelsohn [3], [4], [5],

[(12]. It can be found by the following procedure ([5]; [12], p.209).

Algorithm for the DM-decomposition of B(Wy,W*;E)

1. Find a maximum matching M on B(W,,W*;E) and fix it.
2. Define the auxiliary graph GM(W,UW*,E) as follows:
(nm;E <=> [(v,W)e E, v eW,, weW¥]
or [(w,v)e M, weW,, v eWk],

3. Let wo be the set of vertices v such that w;i—>v on GM for some
W in Wy which is not covered by M.

4. Let W, be the set of vertices v such that v=-£->w on GM for some
w in W¥ which is not covered by M.

5. Let Wi (i=1,...,p) be the strongly connected components of-the

graph obtained from GM by deleting the vertices of W,U W, and the

0
ares incident thereto.

6. Define the partial order > on {Wo,wm}u {wi}§_1 as follows*: for
0<i,jX =,

_ % . .
wigw. {=> wj >wi on‘GM fqr some Wy in wi and wj in wj.

J

* The partial order concerning W, or W, defined in [12] is slightly

0

different, i.e., wogwigwa, for any i (1<ilp) according to the definition in

[121].

-18-~
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We will call WO (W, , resp.) the maximal (minimal, resp.) inconsistent part

and {wi}f the consistent part. (In [5] they are called the vertical

=1
(horizontal, resp.) tail and the core.)
The following theorem elucidates the relation between the

M-decomposition of a graph and the DM-decomposition of its associated

bipartite graph.

Theorem 3.1. For a graph G with entrance and exit specified, the

M-decomposition (2.6): {V Vm}LJ{Vj}§=1 of the associated network Ng

O'
agrees, inclusive of the partial order, with the DM-decomposition
P . 3 .
{Wo, W} U{wj}j:? of the associated bipartite graph BG' I
Proof: As usual, we transform the maximum matching problem on BG to a

max-flow problem by adding to B, the source s and the sink t, and

G
connecting s and t with the vertices of Wy and of W¥, respectively.
Consider the auxiliary network NB which corresponds to the matching
{(UE,U§)1§_1 on B, where K=|U|. The assertion of the theorem follows from

the fact that N. is identical with the network obtained from NB by deleting

G
the ares (uy,s) and (t,u#) (k=1,...,K). Q.E.D.

The associated bipartite graph BG of the graph G (in Fig.1) is given
in Fig.5. Fig.6 illustrates that the DM-decomposition of BG agrees with

the M-decomposition of NG in Fig.2.

3.2. L-decomposition
Consider a graph G(V,E) (V=Xu UUuY) with disjoint entrance X and exit

Y such that there exists a Menger-type complete linking from X to Y. The

-19-
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1
Xg O
Xz \
ul Q ufl‘
ui \ 2 u’zE
ui O=x u§
S

4 A ,__.m-ziiE!Eil.i!.lllla--__,. u*
Uy "‘, “lﬂ!.ll..~\~ 4
50& u*
™ 5
ug ug
7 “.\~ u*
U* 7
u§ ug
9 *
Uy ug
10 *

Fig.5 The associated bipartite graph BG of G
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*® N

* ~

Fig.6. The DM-decomposition of the associated bipartite graph BG

¢ The maximum matching corresponding to the

maximum flow f on NG

(w0= 9)

-21-



149

L-decomposition of G with respect to (X,Y) is defined as folloﬁs {131,
First fix a Menger-type complete linking from X to Y on G. Then construct
a graph G' from G by identifying each pair of vertices x, y (iezx, ye Y)
which are linked by the linking. The strongly connected components of the
graph G' thus constructed determine a partition of the vertices of G in a
natural manner. This partition of the vertices of G, together with the
partial order induced from that among the stréngly éonnected components of
the graph G', is called the L-decomposition of G with respect to (X,Y). It
is known that the L-decomposition is uniquely determined independently of
the choice of the complete linking ([13], Theorem 3.1). An alternative
characterization is given below in connection with the DM-~decomposition of

the associated bipartite graph.

Proposition 3.1. Suppose that tﬁere exists a Menger-type complete linking
from X to Y on G. Let,EG be the bipartite graph obtained from the ‘
associated bipartite graph BG by adding an edge (x4,y¥) to’BG for each pair
of vertices x (in X) and y (in Y) such that x-%->y on G. Theﬁ for each u
in U, ﬁ* and u* belong to the same component in the DM-decomposition of'EG,
and the DM-decomposition of 5G agrees with the L-decomposition of G with
the natural correspondence between the vertices of BG'and those of G. 1
Proof: Let (xie X, yi€ Y) (i=1,...,N) be the linked pairs in a Menger-type
complete linking on G. Then there exists on BG the complete matching
{(xi.yg)}§=1 U{(ug,ui)}§=1. This implies that (uy,u*) (ue€U) is an
effective edge [12] (called an admissible edge in [3], [41, [51), and
therefore uy and u* belong to the same component in the DM-decomposition of
BG'

By definition, the L-decomposition of G is identical with the
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decomposition of G' into strongly connected components. On the other hand,
as is easily seen, the DM-decomposition of EG agrees with the |
DM-decomposition of the associated bipartite graph of Gf. The relation
([51; [12], p.166, Theorem 6.6) between the decompositioﬁ of a graph into

strongly connected components and the DM-decomposition of its associated

bipartite graph establishes the proposition. Q.E.D.

The following theorem relates the L-decomposition to the

M-decomposition.

Theorem 3.2. For a graph G with a Menger-type complete linking from X to
Y, the M-decomposition is a refinement of-the L-decomposition, inclusive of
the partial order among the components. The L-decomposition is an
order-homomorphic imagé of the M-decomposition; two M-indecomposable
components wiﬁh a connector in common, as well as those M-components lying
between the two components with respect to ‘the partial order, are to be
merged into one to yield the L-decomposition. 1

Proof: The first half is evident from Theorem 3.1 and Proposition 3.1.

Let Gf be the auxiliary graph of NG corresponding to a fixed Menger-type
complete linking. Merging the M-components with common connectors as well
as the intermediate M-components is eduivalent to decomposing Gf into
strongly connected components after identifying uy and u¥* for all u in U.
This, in turn, is equivalent to decomposing Gf into strongly connected
components after identifying those vertices which lie on each directed path
from X to Y contained in that complete linking. The final decomposition is

nothing but the L-decomposition. Q.E.D.
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We will consider the case where there is a complete linking from X to
Y on G.  As far as the decomposition of XUY is concerned, the
L-decomposition ignores the internal structure of G, in the sense to be
made precise below.

Consider a‘bipartite graph BE(X,Y;E*) which has an edge (x,y) iff
x-£->y on G. This is‘called in [18] the underlying bipartite graph of the

gammoid G(X,Y) in the context of linking systems.

Propésition 3.2. Suppose there exists a Menger-type complete linking from
X to Y on G. The decomposition of XuY induced by the L-decomposition of G
agrees with the DM-decomposition of Ba. ]

Proof: Let (xi,yi)€ XxY (i=1,...,N) be the linked pairs in a fixed
complete linking from X to Y. Then BE haé the éomplete matching
{(xi,yi)}§=1. Consider a graph G¥ with vertex set X which has an arec
(xi,xj) iff xi-*-)yj‘on G and i#j. Evidently BE is the associated -

bipartite graph of G*. The rest of the proof is the same as that of

Proposition 3.1. Q.E.D.

Finally it may be remarked that the L-decomposition restricted to XuY

agrees with the decomposition defined in [15] for a linking system [18].

4. Structural Analysis of a Large-Scale System of Equations

4.1. M-decomposition of the representation graph
In this section the M-decomposition is applied to the structural

analysis of a system of equations. The following result is known [13]
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concerning whether or not the system (1.1) of equations has a structure
which admits a unique solution for arbitrarily specified values of

parameters y; (i=1,...,M.

Theorem 4.1 ([13], Theorem 2.3). A system of equations in the standard
form is structurally solvable¥* iff there exists on the representation graph

a Menger-type complete linking from X to Y. [

Let G(V,E) (V=XUUUY) be therrepresentation graph of ‘the system (1.1)
of equations, where X and Y are the entrance and the exit of G,
respectively. It is shown in [13] that the L-decomposition of the
representation gréph leads to a bloek-triangularization of (1.1), i.e., a
decomposition of (1.1) into hierarchical subpréblems. The M-decomposition
brings about another block-triangularization which, by Theorem 3.2, is in
general finer than that by the L-decomposition. Each M-indecomposable
component Vj corresponds to a éubproblem with parameters Yj (defined in

(2.7)) and unknowns Vj—Yj, where Gj defined in section 2.3 is the

¥ We consider the "general" case where the partial derivatives of fi
(i=1,...,M) and gy (k=1,...,K) with respect to X5 (j=1,...,N) and u,
(1=1,...,K) can be regarded as elements of some extension field F ofvthe
rational number field Q and they are algebraically independent over Q. The
system (1.1) of equations is said to be structurally solvable if, under the
generality assumption above, uy (k=1,...,K) can be eliminated in (1.1) and
the Jacobian of the resuiting system of equations with unknowns xj

(j=1,...,N) is not equal to zero as an element of F.
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representation graph of that subproblem. The unknowns Vj'Yj will be called

the inherent unknowns of this subproblem.

The theorem below follows from the condition for: the structural
solvability (Theorem 4.1) combined with the properties of the M-

decomposition (Theorem 2.2). -

Theorem 4.2, (i) A subproblem corresponding to an M-indecomposable
component Vj (1<j<R) in the consistent part is structurally solvable and
cannot be further decomposed with the structural solvability maintained.
It has a structure that admits a unique solution if the values of all the
variables belong;ng to some Vi such tﬁat ngvi are determined. (This
statement holds true even when V0 or Vo, is ﬁon-empty.)

(ii) The subproblems corresponding to the inconsisteﬁt parts VO' Vo, if
they exist, are not structurally solvable, The problem correspondiqg to V0
is underdqtermined i.e., has more unknowns than equations, and that to Vg
is overdetermined, i.e., has fewer unknowns than equations.

(iii) (1.1) is structurally solvable iff V. =V, =0. |

0
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Let us consider an example:

fz(uz, u7)

«
n
n

u, = g1(x1, Uy, Usgs u7)
u2 = g2(u19 us)

ug = g3(x2, uu)

uy = gylxy, uz)

-< ug = gs(u3, uu) : 4.1)
ug = 86Uy, Ug, Uyg)
Uy = &y (ug)

ug = ga(u7, u9)
ug = 89 (u8)

= g10(u9)

-
o
1

\ Uqq = 8yq(uy, ug, ugy)

The representétion graph G, as well as its M-decomposition, is shown in
Fig.7. The system (1.1) of equations is structurally solvable, since
V0= w=0. G is decomposed into 9 M-indecomposable components,'V1 through
V9, with the partial‘order among them depicted in Fig.8. By solving the
subproblems according ﬁo this partial order, the solution to the whole
system (4.1) can be obtained. Note that Ugs Uy, u5. Ug and u7 are

connectors and that the arec (uz,u1) does not belong to G the subgraph

3!

corresponding to V It should be remarked that V., through V8 are merged

3° 1

into one in the L-decomposition.

In the standard form (1.1) of equations, the output variables [19],

i.e., the unknowns u, on the left-hand side, may be chosen arbitrarily to

k

some extent. For example, the equations g1 8¢ and g7 in (4.1) may
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Fig.7. The representation graph G of example (4.1) and its M-decomposition
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(X‘I) V-l ' Vg' (U]])
(xzsu35ug) Vp

{ugsug) Vg

/

Vg (uyg)

/

(uﬁ) Vs v, (u8,u9)

<

Ve (uq)

Vy (uy)

Fig.8. The Hasse diagram representing the partial order of the
M—decompositioﬁ for example (4.1)

( ): Inherent unknowns of the corresponding subproblem
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Fig.9. The repreéentation graph G' with its M~decomposition for
exainple (4.‘1) wivth a different set of oufpﬁt variables

(Vg=V,= 0)
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alternatively be put as

U.' = g-l(x-lo uzv U3, U7) U7 = 87()(1, U.', u2, U3)
u6 = g6(u1, u5, um) => u.‘ = g1(u5' u6' u10)

if 1> 8¢ and g7 are easily solved for u7. uy and Ug» respectively. Then
the representation graph G is changed to G', as shown in Fig.9 with its M-
decomposition. |

However, it is observed that the inherent unknowns Vj'Yj of each
subproblem are invariant and that the partial order among subproblems being
unaffected as well. The following theorem shows that the M-decomposition
of a system of equations is invariant in this sense under the change_of

output variables.

Theorem 4.3. The inherent unknowns of the subproblems derived from the M-
decomposition of the representation graph, as well as the partial order
among the subproblems, are independent of the choice of output variables. |
Proof: Since the M-decomposition of a graph agrees with the DM-
decomposition of the associated bipartite graph (Theorem 3.1), and since
the change in the choice of output variables corresponds to the permutation

of the rows of the Jacobian matrix of (1.1), followed by scaling. Q.E.D.

4.2. Cycles on the representation graph

As described in [13], [14], [20], part of the variables in (1.1) can
be virtually eliminated by evaluating the functions fi and 8y according to
the structure of the representation graph. In the case where the
"representation graph is acyeclie, the values of U and y; can be computed by

successive evaluation of the functions, once the values of xj (j=1,...,N)
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are given; in particular, u, (k=1,...,K) can be regarded as intermédiate
variables and not essential unknowns. Then the number of unknowns
virtually reduces from N+K to N.

In the general case where the representation graph contains directed
cycles, it has conventionally been consideréd that each cycle stands for an
equation, which is "to be solved" by some iterative method or other. By
choosing a set of variables Wy (d=1,...,D) in U (called variables of <DD>
type in [14], [20]) such that every cycie on G contains at least one w,, we

obtain the reduced system of equations of the form

Fi(x,u) (i=1,...,M, :
: (4.2)

P~
<
e
"

wd.= Gg(x,u)  (d=1,...,D)

with (N+D) essential unknowns X (j=1,...,N) énd Wy (d=1,...,D). "In (4.2),
Fi and Gd are functions computable byvsuccessive straightforward evaluation
of fi (i=1,...,M) and By (k=1,...,K) in an appropriate order. Thus we may
solve (4.2) by an iterative method, e.g., by the Newton method. -

' Consider Example (4.1), specifically the L-indecomposable component of
the union of”V1 through Vs. At least three variables, e.g., 01, u3 and'us,
of <DD> type are necessary in 6rder-to cut all the cycles in that part of G
in Fig.7. Then the reduced system has five essential uhknownsfxi, x2,'u1,
u3 and u8; On the other hand, if we solve V1 to V8'separately on ‘the-basis
of the M—decompositipn, we have only to introduce one variable of 'KDD> type
for each of the subproblems corresponding to V2 and V7; e.g., u3 for V2 and
u8 for V7. Then the number of essential unknowns is equal to two in V2 and
V3; one in V1, V&’ V5. V6 and V7; and zero in V8. Thus each of the reduced
systems for the eight subproblems contains at most two essential unknowns.

Here we will take notice of the cycle on G consisting of Uqg, Ug and

u7. In solving (4.1) on the basis of the M-decomposition, no variable of
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<DD> type is necessary to cut this cycle. 1In other words, it may be said

that this-cycle does not stand for an essential equation "to be solved”, -
Besides this cycle, we may observe that the‘cyclg consisting of Ugs u7, u8,
ug and Usig and that of u, and u, are of the similar kind.

As opposed to the above, the cycle'composed of u3 and uy contained. in

the subgraph 62 for V, is a cycle that cannot be broken up in any .

2
decomposition that preserves the structural solvability and may be regarded
as representing an essential equation. Also of this kind is the cyecle of
u8 and u9 in V7, as wgll as the self-loop at upq in Vg.

As illustrated above, the cycles on the representation graph can be
classified into two according as they pass through a connector of the M-

decomposition or not. Such cycles that contain no connéctors correspond. to

essential equations "to be solved". We will name them essential cycles.

Note that an essential cyecle is contained in a subgraph Gj for a single ﬁ-
component Vj.. '

- The two kinds of cycles are not distinguished in the L-decomposition,
since a strongly connected component of G is contained in an L=~
‘indecomposable component. Consequently, more variables of <DD> type (u1,
in the example above) must be introduced than is really necessary,
increasing the number of essential unknowns in the reduced system of_
equations. |

Let us consider an M-indecomposable component that is struecturally
solvable. lIn the following, we assume that (1.1) itself is M-
-indecomposable ‘and structurally solvable. For each of the variables Wy
(d=1,;.;,D)‘of <DD> type, the representation graph is conceptually modified
as in Fig.10 with a new maximal vertex xN+d‘and a new minimal vertex yM+d;

the ares going out of Wy in the original graph leave from XNed in the
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difi .
mo 1/}ed graph and the new ares (w_, ) and (XN+d' yM+d) are introduced.

YM+d
The entrance X and the exit Y are accordingly modified to
X,U{XN+1""’XN+D} and Y U{yM+1""'yM+D}' For example, the equation

u=g(u) (X=Y=0 and U=z{u} in (1.1)) is modified to

{y = X -u,
u = g(x)

and value zero is set to the parameter y.

The following theorem shows that an M-indecomposable component remains
M—indecompoSable after the modification of this kind. In other words, a
system of equations that has an M-indecomposable representation>graph
cannot be decomposed into subsystems even after the cycles on the
representation gréph are conceptually éliminated by splitting the variables

of <DD> type.

Theorem 4.4. Let G(V,E) (V=XuUuY, E#P) be an M-indecomposable grapﬁ with
entrance X and exit Y. Then the graph resulting from the modification»(as
in Fig.10) corresponding to variables in U of <DD> typé is also Mf‘;
indecomposable. ﬁ |

Proof: Consider the associated network NG of G (see section 2.2). When Wy
is chosen as a variable of <DD> type, NG is modified as in Fig;11 in
accordance with the modification of G in Fig.10. Consider a maximal
linking on G from X to Y, as well as the corresponding‘maximuﬁ flow f on
NG' It is not difficult to establish the theorem by inspecting the arcs on
the auxiliary graph Gf for both cases Where Wy is contained in the linking

and where it is not, Q.E.D.

In general; the number of essential unknowns of the reduced system
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IM+d

Fig.10. The modification of the representation graph for a

variable of <DD> type

(1 , (L)

(1)

Fig.1ll. The modification of the associated network for a
variable of <DD> type

( ): Capacity
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(4.2) of equations depends on the choice of the variables of <DD> type.

However, the theorem above shows that the number of essential unknowns of

the reduced system of an M-indecomposable system gf equations is not less

than the sum of the size |X| of the entrance and the size of the minimum

feedback vertex set of the representation graph.

4.3. Decomposition of ingonsistent parts

When the inconsistent parts VO, V, exist, the system (1.1)‘is not
structurally solvable as a whole. However, the subproblems corresponding
to the M-components Vj in the consistent part are structurally solvable in
themselves, once the variables in VOU”Wn are fixed. In particular, such Vj

as has no order relation with VO or V, can be solved uniquely without

regard to the inconsistency in V. and/or V_ (Theorem 4.2 (i)).

0
In this subsection, we extend the M-decomposition to investigate'the
structure of the inconsistent parts. To this end, we parametrize the

capacity of the associated network NG(;,E,C) (see section 2.2) of a grapth

with entrance X and exit Y:
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