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The Subroutine Package NAES for the Solution of a

System of Nonlinear Equations —— Deflation Algorithm

Takeo Ojika (Osaka Kyoiku Univ.)
Satoshi Watanabe (Yamagata Univ.)

Taketomo Mitsui (RIMS, Kyoto Univ.)

Abstract. The authors have been developing a subroutine package NAES (Non-
linear Algebraic Equations Solver)[1l4] for the numerical solution of the-system
of nonlinear equations. The purpose of the paper is to present an algorithm,
in the package, termed here as the deflation algorithm, for determining
multiple roots for a system of nonlinear equations, and to shoﬁ the effective-

ness of the algorithm by solving a numerical example.
I. Introduction

The purpose of this paper is to present a method, termed here as the

deflation algorithm, for finding roots of a system of nonlinear equations
F(X) = 0, F: R" > R", (1.1)
where the Jacobian matrix Fx of F is singular at the root X*, i.e.,

Fx(x*) = 0. (1.2)

1

If the Jacobian matrix Fx at a root Xx*eF ~(0) is nonsingular, it

is well known that the Newton (also Newton-Raphson) iteration:

kil Ry [Fx(kx)]’lF(kx), k =0,1,2,... (1.3)
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converges to X* from any initial guess 0X in a sufficiently small ball
centered at Xx* [1-6].

However, in the case of a singular Jacobian matrix FX(X*), the claé—
sical theory is not applicable and except for the one dimensional problem
only few results are available [7-13].

In this paper, several properties of the multiple roots of a system of
nonlinear equations are studied first. Then a practical algorithm is proposed
to determine the multiéle root. Finally the effectivenéss of the proposed

algorithm is illustrated by a numerical example.
ITI. Newton Method for Multiple Roots

2.1. The One-Dimensional Case
It is instructive to consider first the one~dimensional case of a

real-valued function f of a real variable x, i.e.,
f(x) =0, ' S (2.1)

In general, a root x* of the nonlinear equation (2.1) is said to have

multiplicity m if
f(x) = (x - x)"E®),  0# |ExH| <=, o (2.2)

where f(x) is twice continuously differentiable at the root x*.
Starting from an initial guess Ox in a neighborhood De R of x*,

the Newton method defines the sequence of approximations

‘k+lx = kx + Akx, Akx = —[fx(kx)]—lf(kx), k=0,1,2,... (2.3)

Let kn be the error of kx from x*, i.e.,



kh = kx - x*, (2.4)

Then, from (2.2) and (2.3), we have

k m= k
i (n) £ x1)< . (2.5)
o)™t 2001 + —1— £ %)
mf ("x)

From (2.5) and Taylor's theorem, it follows that

- @25+ o). (2.6)

Consequently, if the sequence {kx} is convergent to x*, the sequence ‘{kh}
will converge to 0 with the speed of a geometric progressionrwith ratio

(m~-1)/m. If m= 1, it follows from (2.6) that

B kg2, (2.7)

and the sequence {kx} is said to converge quadratically to x* which is
called a simple root; if m > 1, the convergence is said to be geometric,
with ratio (m-1)/m.

From the above diécussion, we now have the following theqrem.[16,17].

Theorem 2.1. If the sequence {kx} defined by (2.3) converges to x%*,
and f(x) has a Taylor series expansion at x* which converges in some

neighborhood D of k*, then the following asymptotic relations hold:

k+1 m
@ il Do @y (2.82)
oo £ (%) n
¢ &y 1, if m=1,
(i)  lim S —— = _— (2.8b)
ko fx( X) (_ul_;l_i) , if m> 2, '
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Proof. From (2.2), (2.4), (2.6) and a Taylor series expansion, we have

= m- 1= k k 2
ftLy o l)m. f(x%) + G %) 'n +0(n")
ky = m ey 4 F k k2
£(C7x) £(x*) + £ (x*)'n + 0(n")
- &b oy, — (2.9)

Since the sequence {kX} is convergent to x* as k > o, the sequence {kh}
is also convergent to 0. Hence, from (2.9), we have (2.8a).

Differentiating (2.2) with respect to x, it follows that

m-1

£ o = Ty ECTh + g ()
m-1

= o) Ean {1 + ol . (2.10)
From (2.6) and (2.10), we have
I+l o .
f (7 7x) m-1
= k = E=Ly T+ o (2.11)
m .-
fx( %) .

which shows that since the sequence {kh} is convergent to 0, (2.8b) holds

as k + «©, Thus the proof of the theorem are complete.

We now have the following corollary which is the same result previously

obtained by Rall [12].

Corollary‘2.l. Suppose that the conditions of thé Theorem 2.1 hold.

Then, from:(2.3), we have

Ak+lx m- 1

m

lim

X (2.12)
ko ATk
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Proof of the corollary is obvious from (2.3), (2.8a) and (2.8b).

From Theorem 2.1 and Corollary 2.1, it is easily seen that some proper-
ties of the approximate solution kx in the neighborhood of the simple root,
multiple roof or singular manifold are given in Table 2.1. The convergence
tendencies to the simple root (m = 1) and the multiple root (m > 2) are

shown schematically in Fig. 2.1.

Table 2.1 Properties of roots

simple multiple singular
]f(k+lx)] << 1 << 1 >> 1
k+1 k m- 1"
Y=| £ "x)/£(Cx)] <1 () >> 1
la¥ |  (x%) << 1 << 1
m-1
=la( /a0 | 1 E=3 <1
x=| A /0% «< 1 = >> 1

On the other hand, from (2.2), we have

E&,1/m m> 1 (2.13)
f(x)

X - x% =

which shows that if one wished to calculate x* to a single precision

accuracy on a computer, one must compute the value of f£(x) using m-precision
R . , k k . k

arithmetic. Otherwise, f£f( x) = f(x* + n) can vanish before N becomes

negligible with respect to the accuracy desired in x*, thus terminating the

Newton process prematurely.
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Z=]d(k+lx)/d(kx)|

I'e './ ; <\

singlar

0.5 Y—]f(k+lx)/f( x) |

. o.5 '
/.mr'mm \ ;‘é

Fig. 2.1. Properties of roots
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2.2. Systems of Nonlinear Equations

We now return to the problem of finding multiple roots of a vector func-

tion. For simplicity, let F : RZ Rz, and consider the following nonlinear
equations:
m, _
f(X) (x+a1y—b1) f(x)
FiX) = = =0, m,m> 2 (2.14)
m,_
X = (x,y), 0#|fx%)|, |gx*)| <=,
where
1 a;
det =1-aa, # 0, _ (2.15)
a, 1

and f and g are my and m, times continuously differentiable in a

neighborhood of a root x* which satisfies the following relations:

* % - = * * - =
x* + a;y b1 a,x +y b2 0. (2.16)

Taking (2.15) and (2.16) into account, from (2.14), we have, say, for x:

r 1/m

EE)/EX)) T 311

x - x* = det /// (1 - a,a,). (2.17)
l/m2 172

(8(x)/g(x)) 1

This fact shows that if one wished to calculate x* to a single precision
accuracy on a computer, one must compute the values of f(x) and g(x) wusing
m, - and m, = precision arithmetics, respectively,

In what follows, we denote, say, by Sif the j-th partial derivative_of

f with respect to x. Then the chain rule

-7 -
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i g 3 ml. m, - iz
Bxf(x) = Lo (i} ET—-(X + a;y - bl) 'Bx f(x), J=0,1,...,ml
(2.18)
i f y m,! m,-i j-i_
ayg(x) = 0 (]J 1_," (azx +y - bz) 'ay g(x), j= 0,1,.‘..,1112,
and (2.14) give the following relations:
ml—l
ax f(x) = (x + a;y - bl)Uml_l(X) =0,
(2.19)
o2 (X) = (ax +y - b))V . (X) =0
y 8V = Aax Ty =D m,-1 T
where
. ml—j :
Uj(x) = Bif(x)/(x + ayy - b)) » 3=12,...,m-1,
& m—k (2.20)
_ ok 2 _
v, (x) = Syg(X)/(azx +y - b,) s k=1,2,...,m,-1.
From the above, we now have the following [16, 17].

Theorem 2.2. Let X%

(x*,y*) be the solution of (2.14) and satisfy

(2.16). Then the following equations hold:
ml—l : v ml—l_ - mz—lr m2—1 :
1 * = * = * = =
‘(1) ax £ (X*) ay £ (X*) ax g (X*) ay g (x*) 0, (2.21)
i *) = 1F(X*
(ii) Uml_l(x ) ml.f(X ) £ 0, (2.22a)
vmz_l(x*) = m,!g(x*) # 0, (2.22b)
(iii) det [Jij(X*)] = 0, i-= 1,2,...,m1-2; j = 1,2,...,m2—2, (2.23a)
% = - F o
det [Jml—l,mz—l(x )] a alaz)ml!mz!f(x*)g(x*) 0, (2.23b)
where
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i+l i
BX £(X) Byaxf(x)
Jij(x) = . (2.23¢)
i i+1
5,358(¥) 3y 8()

Proof. The equation (2.21) can easily be seen from (2.18). The equa-
tions (2.22a) and (2.22b) are obvious from the definitions of U(i) and V(j)
given by (2.20).

On the other hand, from (2.19), we have

m.

1 - .

9 _TE(x) = Uml_l(x) + (x + a;y - bp) axuml_l(x), (2.24)
ml—l

aysx f£(X) = alUml_l(x) + (x + a;y - bl)'ayUml_l(X).

Since (x* + a,y* - bl) = 0, we have

1

Uml_l(x*) = m 1E(x%) # 0. (2.25)

m,~-1
Similar results can be obtained for 3y g(X). Substituting these results

into (2.23c), we have (2.23a) and (2.23b). Thus the proofs of the theorem

are complete.

Since the matrix (2.23c) is nonsingular in the neighborhood of the root

X%, from (2.19), we now have the Newton iteration for multiple root:
m,-1
k+lx kx — axl f(kx)
- S o ) : (2.26)
k+1 k 1772 mz—l Kk
Y Y 8,7 8(x)

It suggests that for the singular root of such the type as in (2.14) a
convergent Newton iteration may be given by some partial differentiations for

the original equations.



183

We note that, by virtue of (2.19), the sequences {kx} and {ky} gener—
“ated by (2.26) will converge quadratically to x* and y*, respectively,

and m=m X m, is called here the multiplicity of the system of equations

given by (2.14).

IIT. Deflation Algorithm

In the previous section, we studied the multiple roots of a system of
nonlinear equations. Let us now propose a practical algorithm, termedvhere
as the deflation algorithm, for determining the multiple,roqts, For simplic—\
~ity, let F: R™ » Rn, and consider the system of general nonlinear equations
given by

%00 = @0, £0,..., %0y =0,

X = (Xl’xz"'f’xn)" (3.1)
. . [0] . *
where the Jacobian matrix F (X) is singular at the root X , i.e.,

al%xx) = ger (FL(x0)1 = 0. G

Here ['][2] denotes the value of [*] at the root X* -after the %-th

deflation process.
3.1. Deflation Process
The Newton iteration is now given by
P odtx - B = p M, e = 0,10, (3.3)

Assume now that the rank of Jacobian matrix at kX in the neighborhood

%
of the root X is given by

_10_
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r* = rank FiO](x*), 0Lr*<n-1, (3.4a)
r = r[z] = rank Fizl(kx),‘ r* < (2] < n, (3.4b)

and that the system of linear equations (3.3) is solved by the familiar

Gaussian elimination method [1, 6].

For simplicity, suppose kx has been eliminated from equations 2,...,n

1

of (3.3); hence X remains only in the first equation, and X715 X, from
equations 3,...,n and so on up to Xpseors Xy from equations r*+l,..., n.
Then we have the pivot matrix Pr defined by

£l s e

i 3 i j
- N\ s \
1 1 1 1
POy = | 2 2 |, pMom = |2 2 , 2 =1,2,...,
r* T* J L r[z] r[Q] ) (3.5)

and the equation fEQ] and variable xj in (3.5) are called the pivot equa-

tion and variable, respectively.

Taking (3.5) into account, let us define an (r[£]+l) X (r[2]+l)
(2]

Jacobian submatrix D", termed as the deflation matrix, by

1 r s
(2] 7
Bf1 11 °t dlr d1s
pM ey = : ¢ , s =r+l,..., n, (3.6)
Bf[R] d e o o d d
r rl rr rs
(2]
CE 3 - S dssj
where
L
dij ax f£ ], i j =1, »T,sS,
J (3.7)
T L R S SR R Y2

- 11 -
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Note that dij is given in ananalytic form,

At the (r[gl + 1)st formal elimination stage, the deflation matrix
D[Q] is transformed into the form:
s
e e . . e e, | [2]
11 12 : 1r 1s _ 2l
. r=r
280y - ey : . " (3.8)
s T, i s =1 "+1,...,n.
e e
rr rs
0
e
~ ss

[£1]

s

Here the (r[£]+l) X (r[R]+l) upper triangular matrix E is termed here

(21

S

as the eliminated matrix of D We now have the following

Theorem 3.1. . Suppose that r#* = rank FLO](X*), 0 < r*< n-1 and the

pivot matrix PEO](X*) is given by (3.5). Let egi](X) be the diagonal

) 2
element of the eliminated matrix Eil](x) obtained from the (r[2]+l)x(r[ ]+l)
deflation matrix Digl(x). If the approximate solution kX of (3.3) is

sufficiently close to the root X*, then the following properties hold:

@ el et & 1, i - 1,2,...,c, . (3.9a)
(i1) lez’l(kX)l - ldet.Dim(kX)I «<1, s=r*a,. o0, (3.9b)
(111) et Dty =0, ar Mg, (3.9¢)
@) 1/e <] M &) <12, ke =0, (3.9)

Proofs of the theorem are obvious from Theorem 2.1. The upper and lower
bounds in condition (iv) can be easily derived from (2.8b) with m = 2 and

m = ©, respectively.

[2]

At the root X%*, the deflation matrix DS\ satisfies the relation

(18]

, [R]_
4+ I (3.1) by det DS =0,

(3.9¢). Taking this fact into account, replace

_12_
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s = r[2]+l,..
stage by
r f§-2+l] (X) h
fEHl] x)
F[2+1](X) -
el
i f£Q+l](X)/ i
Here F[2+l](x) is termed as the

It is easily seen from the above discussion that, compared with F

the convergence of F[l+l]

will be improved.

(21l
[0 ]

fl[f” x)

[2]
det Dr+l(X)

det Dr[l“ ®) |

Section 2, we have the following theorem.

Theorem 3.2.

fi(x) = (a, X, + ...

11¥1 ta

where

=
[V

Then at the {-th deflation process, the multiplicity m

+x, 4 ...
i,i-1%4-1 7 %4

# 0.

_13_

., n and define a new set of equations in the next deflated

21 (3.10)

(2+1)st deflated equationms.

(21

In fact, for the system in

Assume that a system of equations is given by

m

i- —
+a, x) "f.(x) =0, (3.11)

(3.12a)

(3.12b)

(3.12¢)

B ¢ Pl s
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given-by
2] _ 2 | .
m = I {max[1l, m,-21}, 0< 4 <ml, (3.13a)
i=1 +
MUY (3.13b)

From Theorem 2.2 and the definition of F[Q](X) given by (3.10), the
theorem can be easily proved.
Let m = m[O] be the multiplicity of (3.11). Then this theorem shows

that, for the system (3.11), (m-1) deflation processes are necessary to

obtain the m-ple root of (3.11) in the same accuracy as usual simple roots.

3.2. Computational Realization

As we have seen, the determinant of the deflated matrix (3.6) must be
calculated in ananalytic form. In the package NAES, a symbolic and.algebraic
manipulation language, REDUCE 2, is adopted for this purpose. However from
a practical standpoint, it is often pbssible to simplify or skip computations
of the determinants by using some properties of the deflation matrix[le, 17].

Consider the 2-th deflation process at k-th iteration given by
r1 k) = o, (3.14)

and suppose that the pivot matrix PLQ](kX) is given by

ey
1 X,
- J ~
1 1 |
Pizl(kx) -2 2 . kL =0,1,... . (3.15)
ECEY

- 14 -
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It is noteworthy that while solving the linear equations (3.3) by the Gaussiap
elimination method, the pivot matrix can easily be obtained by checking the

properties (3.9) in Theorem 3.1.

If (i) the i-th equation f£2] of (3.14) contains xj explicitly and
its partial derivative at the root =x* is zero, (ii) the equation fgg] does
not contain X explicitly, then the (i,j) and (i,s) elements of the
Jacobian matrix are given by

1RRIC3) NPT IS SUUOUIE T 4ot SRR i 4 MRS NI

j s
= [ ..., 0, vooy, 0, ... 1. (3.16)

Here O and @ in (3.16) are called numerical and algebraic zeros, respec-

tively. As for the numerical zero, we have the following

Theorem 3.3. Suppose that the sequence {kx} defined by (3.3) converges
(2]

X

to the root Xx*. If the (i,j) element of the Jacobian matrix F at the
root is the numerical zero, then the following estimate at the 2-th deflation
process holds:

1im o £ &y eIk < L (3.17)

Koo xj i xj i =2

Applying (2.8b) in Theorem 2.1, this theorem can be easily proved.

The estimation (3.17) is useful to identify the elements with nﬁmerical
zeros in the Jacobian matrix Fiz]. In the following assume that the deflated
equations and the pivot matrix at the f-th deflation process in the k-th

iteration are given by (3.10) and (3.15), respectively. From the computational

standpoint, we first provide the following category.

Category 1 (numerical zeros);

- 15 -
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(2]

Suppose that the (iu’jv) element of the Jacobian matrix FX’ (u=

ulz] v[g]; Q;u[z], v[£]<n) has a numerical zero. If the

1,250 , v=1,2,...,
(iﬁ’j%) element has the least total degree of variables which are not in
the pivot variables in (3.15), it is called the minimum zero element. Let

us explaiﬁ the procedure of the category by showing an example with three

numerical zero elements:

[2] ' ‘
3 f g = X.°X = 0, (3.18a)
le 1, X=x* 1 r[Sl]ﬂ = g

(21 2 *
5 fl = x . x =0, (3.18b)
ij i, X=x* [5&]+l I[JL]Jr2 X= ¥

(21 2 2 {
9 £ ok = X *X _.. =0, (3.18¢)
Xj3 13 1 X=X Ly TPl | ox=x*

(i) It is easily seen that (3.18a) is the minimum numerical zero element.

Since X is already in the pivot matrix (3.15), put x 0] into the
r T+l
pivot variables and revise the matrix:

f!z] kx.
1 J
1 1 |
(el _
Pr+1 =1 : : y (3.19a)
L0
g r[£]+l r[2]+1 ]
where 9 f£21 is replaced by f[%g] .
jl 1 r +1

(ii) Deleting (3.18a), consider further (3.18b) and (3.18c). Since (3.18b)

is now the minimum element, we have the following pivot matrix:

g Ky
i 3
1 1
(2] _ 1 . .
Po=1|: : . (3.19b)
r[£]+2 r[2]+2

- 16 -
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(iii) Since there is no new variable in (3.18c), the procedure is terminated.

(2] and det D[Q]

+1 2 in (3.10) need not to be com-

Thus, the equations det D

puted and can now be replaced by (3.18a) and (3.18b), respectively.

L]

(iv) If r[ +2 = n, then replace £ by £+1 and terminate the 2-th

deflation process. Otherwise proceed to Category 2.

Category 2 (nontrivially proportional rows);

Suppose that, except for the elements with numerical or algebraic zeros,

[£]

all the elements in the i- and j-th rows of the Jacobian matrix Fx at the
root X* satisfy the following relation:
(2] (2] - S < Yy <
SXSfi (x)/axsfj X | o =0 GO, lo] , 1<V <n, (3.20)

where O is a constant. Then it is easily seen that the rank of FLR](X*)
is degenerated by one. From (3.20), we form the n(n-1)/2 equations:
s P Moo -5 fPlyes Pl = o,
x i X j x i X
u v v u

1<u<n-l, utl <v<n. (3.21)

It is worth mentioning that (3.21) is generated by the REDUCE 2.

We now provide the procedure for Category 2. (i) From (3.21), find
the equation with the minimum toatl degree of variables and a new pivot
variable which is not in (3.19b), and let u=1u and v = v. (ii) Denote

(4]

(3.21) with u=u and v=vV by f and its new pivot variable by

r[£]+3
X 21..° and put them into the pivot matrix:
r- 43
g Ry
1 |
1 1
plA . . (3.19¢)

r+3 *
“ r[2]+3 r[2]+3

- 17 -~
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(2]

4] @ 1o (3.10) by el iy 16 Plas o,
r +1

Also replace det D 0]
r 43

then replace £ by 2+1 and terminate the 2-th deflation process. (iv)
otherwise, delete (3.21) with u =71 and v =7V, and repeat the procedure
(i) n (iv) until a new pivot variable can not be found in (3.21) for Yu and

Yy

Category 3 (nontrivially proportional columns);

Similarly to Category 2, suppose that, except for the elements with
numerical and algebraic zeros, all the elements in i- and j-th columns of the

Jacobian matrix F[g]

X at the root X* satisfy the following relation:

«=B #0, [B] <w, 1<V¥%c<n (3.22)

X

(2] 2]
b fo 00/ 100 |

=X

where B 1is a constant. From (3.22), form the n(n-1)/2 equations:
C 5PN 7 5 DN (% RN J 5 U
by fa 000 6500 = 2, £ w0, £ 1w = o,

1< u<n-l, utl < v < n. (3.23)

Then the same procedures (i) v (iv) in Category 2 also hold for Catégory 3.
Applying Categories 1 v 3, computations of the deflation matrix (3.6) can

greatly be reduced. However, if n pivot variables were not abtained by

these categories,it is then necessary to compute some of the matrices by the

following procedure.

Category 4;

Suppose that, from Categries 1 v 3, the pivot matrix is given by

f!l] X,
1 J
1 1 |
o R R ) | (3.24)
% %
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Then the procedure is executedas follows:
(i) TFrom the Jacobian matrix .FiQ], find the element with a new pivot wvari-

able, say, x. which is not in (3.24). (ii) Form the (r[£]+l) X (r[2]+l)

T+1
deflation matrix hDiz], s = ?+l,...,n4% given by (3.6) so that the element

is included. (diii) If ¥+l =n, then replace £ by £+1 and terminate

the §-th deflation process. (iv) Otherwise repeat the procedures (i) Vv (diii).

IV, Numerical Example

4
Consider the same nonlinear equations in Samanskii [18], i.e.,

x, +x, +x, -1

1 2 3
[0] - 3 2 2 _
f (x) = 0.2xl + 0.5x2 - Xy + 0.5x3 + 0.5 | = 0. (4.1)
2 R
Xy + X, + O.5x3 - 0.5 ]
This has a double root X* = (0, 0, 1). From (3.2), we have
1 1 1
(0] (yxy = 2 _
det Fx (x*) = det 0.6X1 X, 1+x3 (4.2a)
1 1 X3 X=X*
1 1 1
=det |0 0O 0| =0. (4.2b)
1 1 1
It is easily‘seen that the rank of the Jacobian matrix is omne.
Let us here define a convergence condition by
B G N G S LIPS (4.3)
. ‘o 6.[0] -4 . . .
(i) When the condition E <10 at the sixth iteration was

- 19 -
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satisfied, the diagonal elements ejj(kx) in (3.8) were computed:
[lejj(6x)/ejj(5x)|] = [1.000, 0.505, 0.5001, (4.4)

(ii) From the properties (3.9) in Theorem 3.1 and (4.4), the pivot
matrix was given by

in] 6xj
p{o](ﬁx) -1 1. (4.5)

(1ii) Since there are numerical zeros in (4.2). Category 1 can be

applied. In fact, from (4.2a) at X = 6X, the following pivot matrix and

deflated equations were obtained by the REDUCE 2:

f!l] 6x.
i i
1 1
P£1](6x) -2 2 |, ' (4.6)
3 3 ‘
Xl + X2 + x3 -1
ey = x, - 0. (4.7)
X3 -1

(iv) It is easily seen that the rank of the Jacobian matrix at the solu-
tion corresponding to (4.7) is three. Thus the first deflated equations (4.7)

has a simple root.

(v) The original equations (4.1) with X = kX (k=0,..,6) and deflated

equations (4.7) with X = kX (k=7,8,9) were solved by the g-secant method
[15] with ¢ = 10'-8 which is a numerical realization of the Newton method.
The convergence tendency of kE[z] with the deflation is shown in Table
4.1. That of the original equations without the deflation is also given in
the table. As would be expected, the deflation algorithm resulted in faster

convergence as well as the higher accuracy for the solution given in Table 4.2.
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Table 4.1. Convergence tendencies

iteration gg%lazion with deflation without deflation

0 0 0.103 x 10° 0.103 x 10°
1 0 0.569 x 1071 0.569 x 101
2 0 0.157 x 107t 0.157 x 107t
3 0 0.394 x 1072 0.394 x 1072
4 0 0.986 x 107> 0.986 x 107>
5 0 0.247 x 107> 0.247 x 1073
6 0 0.617 x 107% 0.617 x 107%
7 1 0.739 x 1072 0.154 x 107%
8 1 0.758 x 10713 0.386 x 107°
9 1 0.0 0.964 x 107°

22 0.149 x 10733

23 0.368 x 10714

Table 4.2. Numerical solutions

with deflation without deflation
Xy 0.0 0.32895108875564 X 10—7
X, -0.16787888226717 x 10.18 0.59028952604004 x 10-7
Xq 1.0 0.99999990807594
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V. Concluding Remarks

In this paper, several properties of the multiple roots for a system of
ponlinear equations have been discussed first. Then the deflation algorithm
for determining the multiple roots has been proposed. According to the algo-
rithm, both convergency and accuracy can greatly be improved.

Finally a numerical example was solved. As would be expected, the e£-
gecant (the Newton) iteration with the deflation algorithm converged quadrat-
ically to the roots with sufficient accuracies.

We note that the deflation procedure can efficiently be executed by using
a language for algebraic and symbolic manipulation, e.g., REDUCE 2.

All the numerical calculations were done on the DEC-System 2020 in the
Computer Programming Laboratory of the Research Institute for Mathematical

Sciences, Kyoto University, Kyoto.
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