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1. Introduction

In large database systems, we usually encounter the situation when a set
of similar data is to be stored and only one of these data, a reference
datum, is referred often(versions of programs; the most recent version is
referred often, monthly data of some organizations; the most recent datum is
referred often). In such cases, data compression procedures utilizing the
similarity of data seem to be promising.

Rodeh et al.[11]

have proved that a data compression procedure
utilizing repeated substrings can give optimal encoding scheme as the length
of the input string grows to infinity. The authors have presented efficient

[51]

data compression procedures for a set of similar data . Our compression
methods are one of the differential file approach, where data are expressed
by the differences from a reference datum when they are similar.

A key factor of efficient realization of such ‘procedures is the
computation of maximal repeated substrings(P1) or maximal common

substrings(P2). These procedures are well known pattern matching problems., A

native algorithm for the solution of problem P1 and P2 takes 0(n2) and O0(mn)
_1_
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time respectively, where m and n are lengths of given strings.

The position tree[1](which is called a prefix tree or suffix tree by
some researchers) is the previously known best result for the above problems.
Once a compacted version of the tree is constructed in linear time, P1 and P2
can be solved rin linear time by traversing the tree. Weiner showed an
[12]

algorithm for constructing a compacted position tree in linear time

More simpler and more space-economical procedure was introduced by McCreight
[10]

These algorithms are off-line algorithms and Majster et al.[9] have

presented an gon-line construction algorithm but it takes 0(n2) time in the
worst case, Moreover, the position tree itself is not so efficient in the

case when all maximal common substring between a reference datum, and

Sgs
other data, si(1SigN), should be calculated. In this case, position tree

should be constructed for each string s 3 (1<i<N) or a position tree for

0

the string s should be constructed, which is time-consuming or

051°°*Sy
space-consuming, respectively.
| In this paper, a new automaton model called an auxiliary-memory
automaton(AMA for short) is introduced. An SMM, one of AMA, which accepts all
substrings of a given string w of length n can be constructed in the time
proportional to n, while the construction of a conventional finite automaton
requires the time proportional to n2. This approach is better than the
position tree in the following points.
(1) The construction algorithm is an on-line algorithm and a linear time
algorithm.
(2) To find all maximal common substrings for two strings, the procedure

proposed in this paper requires less storage space.

(3) For efficient data compression, we need to calculate all maximal common
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substrings between each string and the reference string. The proposed
procedure is efficient since we only need to construct one SMM to accept
all substrings of the reference string and it is repeatedly used to

calculate maximal common substrings for other strings.
2. Basic concepts

In this paper, following notations are used. An alphabet y is a finite
set of symbols., A string over } is a finite-length sequence of symbols from
T A concatenation of strings x and y is the string xy. The length of a
string w, denoted by |w|, is the number of symbols in w. A string w may be
represented by w(1)w(2)...w(n) (w(idex, 1§i§n={w{) ‘and a ~ substring
w(i)w(i+1)...w(j) is denoted by w(i:j). A position in a string w is an
integer between 1 and |w|. The symbol aey occurs in position i of string w
if w=yaz with lyl=i-1. Empty string is denoted by €. z*' is a set of
strings over ¥ except €. For a string w of length n, w(k) (k<1 or k>n) is
considered as € unless noted. |
[Definition 1] Consider two strings W, and Woe w1(0) and w1(lw1l+1) are
considered as a special symbol #(%Z) in this definition. A substring u of w
1 is called a repeated substring‘of w1 iff u appears twice at least in w1.
and w iff u is a substring

1 2

of both w1 and Wye A repeated substring w1(i:j) is called a maximal repeated

A string u is called a common substring of w

substring (MRS for short) when neither w1(i-1:j) nor w1(i:j+1) is a repeated

substring of w1. A common substring w1(i:j) is called a maximal common

substring (MCS for short) of w, w.r.t, (with respect to) w, iff neither w

1 2 1

(i-1:3) nor w1(i:j+1) is a common substring of w, and w,.

1 2
[Example 1] Consider the following two strings,
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1234567178 123456
w1=b aaabaaa w2=a bbbab

w1(1:4) is an MRS of W, and it is also an MCS of W, Wer.t. Woye w2(6:9)(= W

1(1:4)) is not an MCS because w2(5:9) is an MCS of w, w.r.t. w

789
aaa

1°

[Definition 2] Let w=w(1)w(2)...w(n) be a string over an alphabet Z. Let

w'=w$ ($ is an endmarker of w and $ is not in I). A position identifier wi

for position i in w' is the shortest substring u of w' such that

(i) w'=yuz and |yl|=i-1,

(ii) u is not a repeated substring of w'.

If Wi is given, we can uniqdely identify the starting position of Wi
in w',

[Definition 3] A compact position tree T for a string w=w(1)w(2)...w(n) is a

tree which satisfies following conditions. Let w'=w$.

(i)T has n+1 leaves 1labeled 1,...,n+1. The 1leaves of T are one-to-one
correspondence with the positions in w'. Each edge of T is lebeled by a
string over 1U{$}. |

(ii)Every interior node of T has two sons at least.

(iii)For each node N in T, the edges leaving N have 1labels whose first
ksymbols are distinet from one another,

(iv)The string obtained by concatenating labels on the path from the root to
the leaf i equals the position identifier wi.

Note that there is exactly one compact position tree for each string.
[Example 2] The compact position tree for the string babaa is given in
Fig.1.

Weiner showed an off-line construction algorithm for a compact position
tree, which can be utilized for the calculation of MRSs and MCSs.
[Proposition 1] For given two strings w, and w,, all MCSs between w, and w

1 2 1

, can be obtained in time of O(}w1l+lw21) by the compact position tree for
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 the string t=w1)\w2 (&),
Weiner's algorithm is off-line and a known on-line construction

2)[9]

algorithm requires time of O(iw| . In the following section, an online
construction procedure of an SMM which is functionally equivalent to the

position tree is presented.
3. A new automaton model, auxiliary-memory machine

3.1 Auxiliary-memory automaton

In this section, a new automaton model, an auxiliary-memory automaton,
is defined. A machine, SMM (Substring Matching Machine), one of
auxiliary-memory machine, is introduced for computing MRSs and MCSs
efficiently. This machine is functionally equivalent to the position tree,
An online and linear construction algorithm of an SMM for a given string is
shown in this section. Previous algorithms are offline or require time
proportional to the square of the length of a given string. By the SMM, an
online linear-time data compression procedure ean.be obtained.
[Definition 4] An auxiliary-memory automaton (AMA) is defined by 8-tuple
(S,Z,é,u,A,I,so,co), where S is a finite set of states, I is a finite input
alphabet, s in S is the initial state, A is an auxiliary—memory and

0

contains one element of I which is a set of nonnegative integers, eo is an
initial value of A, S(the next state function) is a mapping SxZxI-->S and M
is a mapping SxIxI-->I., The configuration of an AMA is described by (s,e),
where seS is a state and cel is a content of A.

Online algorithm is obtained by using a backward position identifier
defined as follows.

[Definition 5] A backward position identifier (BWPI for short) for position

i in a string w is a substring w(j:i) (j<i) which is not a repeated substring

-5 -
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of w(1:i). The minimum length BWPI for position i is denoted by MBWi. or MBW

i
[Definition 6] An AMA with n+1 states s,y S,jeeey S is a substring
0 1 n

S

matching machine (SMM for short) for w(lwl=zn) iff it satisfies the following
condition.

Condition: When a sequence whose longest suffix is a BWPIi for some i (1§i§
n) is applied, the machine enters 8; and A has IBWPIiS. (It is assumed that
the machine starts from s

0

be accepted at Si’ When a sequence whose suffixes are not BWPIj for any j is

with 0 in 4). In this case, BWPIi is said to

applied, the machine enter SO and A has 0.
The following proposition holds.

[Proposit;on 2] M is an SMM for a string w iff M has n+1 states Spr Sqreees
Sy and § and yu are defined as follows.
(a) If x appears in w, (6(si,x,c), u(si,x,c))=(sj,k), where k is the maximal
number such that w(i-k+2:i)x=w(j-k+1:j) (1§k§e+1, Ogi,jgn) and j 1is the
minimum number that satisfies this condition.
If x does not appear in w, (6(si,x,c),u(si,x,c))=(so,0).
(Proof) =--> Consider an SMM M. If x does not appear in w, a string which has
x as its last symbol cannot be BWPIi for any i. So the machine enters Sq
and A has 0 from the definition of the SMM., Suppose that M is in Sg and A
has ¢ (igo). Because M is an SMM, a BWPIi of length ¢ has just been applied
to M. If BWPIix=BWPIj then M must enter sj and A has c+1. So 6(si,x,c)=s

and u(si,x,c)=c+1 hold. Otherwise, consider the 1longest suffix, y, of
BWPIix s.t. y is BMPIj for some J. It must be accepted in Sj and A
contains }BWPIj!. So 6(si,x,c)=sj and u(si,x,c)z{BWPIj{. The case that

w(i-c+1:i) is not BWPIi cannot happen from the definition of SMM. We can

define § and p arbitrarily in such a case. Then it is proved that an SMM
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. satisfies the condition (a).

(-- Consider a machine, M, that satisfies the above condition(a). Consider a
string x of length 1 (x&™), If 8 (ss%,0)=s; and 1(sg,x,0)=1 then x is BWPI
j° Assume that the machine M satisfies the definition 6 for the input w of
_ length i. Assume that M is in sj and A has c¢. By the assumption, w(j-c+1:j)
is a BWPIj. Ifr S(Sj,x,c)=sh and u(sj,x,c)=o+1 then it is easily observed
that w(j=-c+1:j)x is BWPIh. If 6(sj,x,c)=sh and U(sj,x,o)=k(§c) then it is

observed that w(j-k+2:j)x is a BWPI, of length k. If S(Si,x,e)=s0 then x

h
‘does not appear in w. So M is an SMM for the input of length i+1. (Q.E.D.)
To implement § and U, the concept of a labeled transition diagram and
two functions are introduced.
[Definition 7] A 1labeled transition diagram for a string of length n is a
labeled directed graph of n+1 nodes. Each node corresponds to each state in
{so, Sqreces sn}. Each directed edge is labeled by a symbol xe¢l and an
interval of I which is a subinterval of [0,].

Interpretation of a labeled transition diagram is as follows. If there
exists a directed edge from s, to sj labéled by x and [i1,12], the
transition from g is effective when the current state is Ss» the - input
symbol is x and the content of A is in [i1,12]{ The transition function §°
is defined to represent the next state on the labeled transition diagram, If

there is a directed edge from s, to sjlabeled by x and [11,12], then 5'(8i

i

yX,C)=8 for all ¢ in [11,12] and 5'(si,x,c)=“(undefined) if there is not

J
such an edge.

[Definition 8] Consider the string w=w(1)w(2)...w(n) and the SMM of w. For
each state si (1gign), a reset function r and a position function p are

defined as follows.,

~1! -
r(si)- MBWiI Te
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p(si) =Sj’ where J is the minimum number such that w(i-r(si)+1:i)=w(j-r(s
i)+1:j) and 1<j<i when r(si)£0

=s,. when r(si)=0.

0
(1 (n

p(m)(si) and r(m)(si) are defined as follows: (i) p' ‘=p and r' ‘=r, (ii) p
(m) o (m=1) (m) o (m=1)

(si)-p(p (si)) and r (si)-r(p (si)) for m>1. p(so) and r(so)
are undefined(”). So p(”) and r(”) are also undefined.

123456789
[Example 3] Consider the string w=b b a a b b a b a. The reset function and
position function of the SMM of w are shown in Fig. 2. For example, r(s3)=0
and p(s3)=s0 because w(3)=za is an MBW3. r(s6)=2 and p(s6)=s2 because
w(ld:6)=abb is an MBWG.
The functions ¢ and U of an SMM are expressed by ¢'(The transition

function on the labeled transition diagram), r and p as follows. Suppose that
the present sate is si and an input symbol is k and the content of A is c.
(1) If 6'(si,x,c) is defined (i.e. corresponding edge exists), then the SMM
follows this transition and the content of A is incremented by one.
(2) Find the minimum m such that 6'(p(m)(si),x,r(m)(si)) is defined. If such
(m)

m exists, the next state is 5'(p(m)(si),x,r(m)(si)) and A is set to be r

(si)+1. Otherwise, the machine enters s, and A has O,

0
The following example shows an example of an SMM defined by 5',r and p.
An operation of the SMM is also presented.
[Example 4] The labeled transition diagram of the SMM of the string w=b b a
a bbabais shown in Fig. 3. Whenever an input symbol is applied to the
SMM, the machine makes a transition. If the next state is defined on the
labeled transition diagram, the machine enters a new state according to the
labeled transition diagram and the content of A is incremented by 1. If there
is no transition egde corresponding to the input x at state si with c in A,

then the machine enters the state p(si) and the content of A is set to be r(s

i). Then the machine continues to make transition by the input x recursively

-8 -
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until next state is defined or the machine visits s, twice, For example,

0

suppose that the machine is in s3. When "a" is applied, the machine enters s

3 When "b" is applied, the machine enters 35 if the content of A is 1 and

sg if A contains 2 or 3, respectively. In other cases, next state is

undefined on the labeled transition diagram and the machine enters f(53)=sO

and the content of A is set to be r(s3)=0. Continuing the transition at So

by the same input symbol, the machine finally enters s1( for the input "b")

or s, ( for the input "a") or s, (for other symbols).

3 0

The formal construction algorithm of the SMM for a string w is shown in
Procedure 1.
[Procedure 1] Construction of an SMM

(1) For a given string w=w(1)w(2)...w(n), make S0 and 8,

transition from Sy to 8, labeled by w(1) and an interval [0,®].

(2) p(s1)<--so, r(s1)<--0.

and make a

(3) For i=2 to n do begin
make a state sy and make a transition form S 4 to s, by w(i) and
[0,°]. PSTATE<--s; ,, ASTATE<--p(PSATAE), call CONST(ASTATE,PSTATE,1i)
end
Procedure CONST(ASTATE,PSTATE,i)
if ' (ASTATE,w(i),r(PSTATE)) is defined
then begin p(si)<-— St (ASTATE,w(i),r(PSTATE))
r(si)<-- r(PSTATE)+1. end
else begin if O'(ASTATE,w(i),j) is undefined for any j>0
then begin make a transition from ASTATE to s, by w(i).
if ASTATE:s0 then begin p(si)<—-s0, r(si)<-—0. An
interval [0,°] is labeled to the new edge. end

else begin An interval [r(ASTATE)+1,r(PSTATE)]

is lebeled to the  new edge. call
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CONST(p(ASTATE),ASTATE,i). end
end
else begin find the maximum j such that O'(ASTATE,w(i),j) is
defined. For such j, p(si)<--6'(ASTATE,w(i),j), r(s;)<==J+1.
make a transition from ASTATE to sy by w(i) and the interval
[j+1,r(PSTATE)] is labeled. end
end end of procedure CONST
We show that the machine constructed by Procedure 1 is an SMM.
For Procedure 1, next two theorems hold.
[Theorem 1] The machine constructed by Procedure 1 is the SMM for w under the
interpretation of §',p and r.

(Proof) Consider the machine for w=w(1) constructed by Procedure 1. This
machine 1is shown in Fig. 4. It is trivial that this machine is an SMM for
w(1). Assume that the SMM for w (lwl=zi) is correctly realized by the machine
constructed by Procedure 1. Let us consider the machine for wa. There is an
edge created from si to si+1 labeled by ™a" and [0,«]. Suppose that
w(i=h+1:1i)=w(j=-h+1:j) and 5'(sj,a,t) is defined for some t, where h is the
maximal number that satisfies this condition and j is such a minimum number.
If such h does not exist, let h and j be 0. From the definition of r and p,
for some m, p(m)(si)=sj and r(m)(si)=h hold. From the definition, S and M of

the SMM for w should be changed at the states p(1)(si),..., p(m-1)(si), i.e.

(k) _ )
(p (si),a,c)-si+1, I|MBW (k)(s )I§c§.MBw (k'1)(s )|-1 (1¢kgm=-1). (Note
(k+1),_ P is g b i (k)
that MBW (k) z=r (si)+1). This is realized by the edge from p (si) to
p o (s;)
841 labeled by "a" and [r(ASTATE)+1,r(PSTATE)]. By these edges, BWPIi+1s

}+1 are accepted at s, .. To

whose lengths are not less than |MBW ( i+

p

m=1) )
implement § and uat CHRT the maximal value v s.t. w(i+1-v+2:i+1)x=w(u-v+1:u)

should be found. I show this is realized by 8*, p and r. Consider Fig. 5.

There are 3 cases to be considered.

- 10 -
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(1) w(j+1)=a: In this case, we need not alter § and u at sj. To realize §

and r(s, )=r(m)(si

and W at s, ., it is easily proved that p(si+1)=s 341

J+1

}+1= | MBW {. Then all BWPI, .s are accepted at s,
i+ : i+

p(m—‘l)(s.) 1 1°

(2) 6'(p(sj),a,r%m)(si)) (=sh) is defined: 6 and U need not be altered at S

(m)(s
i

. p(s, )=6'(sj,a,r(m)(si)) and r'(si+ ):r(m)(si)+1 hold because w(h=-r

i+1 1

):h)ﬁw(i+1-r(m)(si):i+1) hold from the assumption.
(3) 6'(sj,a,c) is defined for c<p(m)(si): Let ¢ be such maximal number and

5'(sj,a,c)=s ir 6'(sj,,a,c') is defined for some c'>c and Jj'<j, the

n

machine for w becomes not to be an SMM. So p(s and r(si+1)=c+1 hold

141775y

to realize § and py at s » To accept all BWPI at si+1, an edge from sj

i+ i+
to 8541 labeled ‘by wa'' and [e+1,r(m)(si)] is created in Procedure (1.
(Q.E.D.).
[Theorem 2] The SMM of w can be constructed by Procedure 1 in time of O(|w]).
(Proof) In Procedure 1, subprocedure CONST is called n-1 times and n+1 edges
are constructed iq main procedure. When the procedure CONST is called, there
are 3 cases to be considered.
1) Transition §' is made.
2) A new edge is created and CONST is called.
3) A new edge is created and a transition §' is made.

1) and 3) are executed in constant time. We show that CONST is called

- at most 2lw! times in Procedure 1. Consider r(si) and r'(si+ Yo If r(s

1 i+1
)=r(si)+1 then CONST is called only once. If r(si)gr(si+1) then CONST kis
called at most {r(si)-r(si+1)l+1. By this fact, CONST is called at most
n-1+(n—r(sn)) times. We can also prove the fact that the number of edges in
the labeled transition diagram does not exceed 2n-r(sn). Creation of a new

edge and a transition can be executed in constant time. By this fact,

Procedure 1 requires time of O0(jw!). (Q.E.D.)

- 11 -
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We can find all MRSs and MCSs efficiently. MRSs of w are expressed by

the functions p and r of the SMM for w. To calculate MCSs of w1 w.r.t. w2,

we only need to apply w2 to the SMM of w1. From the definition of the SMM,

if the SMM of W, has a configuration (sj,c) after applying w2(1:i), then w

(j-c+1:j)=w2(i-c+1:i) holds. By this observation, all MCSs of W, W.r.t, W,

1

can be found efficiently by an SMM. A formal procedure for this purpose is
presented in the follwing section.

The next example shows how Procedure 1 works.

[Example 5] The SMM for w=bba is shown in Fig. 6-(a). Consider the SMM for

wa. An edge labeled by "a" and [0,°] from s. to sy is created. 5'(p(s3

3
),a,r(s3)]=6'(so,a,0)=s3. So p(s4)=s3 and r(su)=r(s3)+1=1. Then consider
is

the SMM for wab., An edge labeled by "b" and [0,°] from su to s5

created. 6'(p(su),b,r(su))=6'(s3,b,1) is undefined. Then we must create a

new edge from s., to s., which is labeled by b and [r(33)+1,r(su)](=[MBw

3 5
JMBH,~11=[1,11).  Then 51 (p¢® (s

3
u),b,r(z)(su))=6'(s0,b,0) is tested. &'(s
(2)(s

0
,b,0)=s1. So p(s5)=s1 and r(35)=p 4)+1=1. The SMM for wab is shown in
Fig. 6-(b).
3.2 Required space

McCreight has presented a position tree which requires less storage
space than the one presented by Weiner. For the storage space, next
proposition holds[10].
[Proposition 3] The Suffix tree(called by McCreight) for the string w
requires 4n log n+3n loglZ|+in bits[10].

McCreight uses hash function to express the connection between nodes of
the tree, The SMM constructed in 3.1 can be realized by the tables in
Fig. 7, which represents the SMM shown in Fig. 2 and 3. The Table 7-(a)

represents the functions p, r and the edges created in the Main procedure(

The number of tuples in 7~(a) is n+1. The table T-(a) requires

- 12 -
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(n+1)(2 log(n+1)+log!Z |) bits. The table T-(b) represents the edges created
in procedure CONST, i.e., start node, input symbol, interval and end node of
each edge. Each edge labeled by [n1,n2] (n1§n2) is decomposed into n2-n1+1
edges labeled by [n1,n1], [n1+1,n1+1],..., and [n2,n2]. So an interval is
represented by one column in 7-(b). By the Proof of Theorem 2, it is proved
that the number of tuples of the table 7-(b) never exceed n. As well as
McCreight, we can use Lampson's hash fﬁnotion to store the table 7—(b)[7].
Then Table 7=-(b) requires n(log|Zl+3log(n+1)+1) Dbits. String w requires
‘nlogiZ| bits. Finally we have the following theorem concerning about the
storage space of the SMM. 7
[Theorem 3] The SMM for w(|wl=n) requires (3n+1)log!Z!+(5n+2)log(n+1)+n
bits.

The algorithm for computing all MCSs between two strings s and
w(ls!=m, |w!=n|) requires u4(m+n+1)log(m+n+1)+3(m+n+1)log|Z}+4(m+n+1) bits by
the proposition 3. On the other hand, to compute all MCSs of s w.r.t. w, we
only apply s to the SMM of w. So we only need (3n+m)logiZ|+(5n+2)log(n)+n
bits. By this result, SMM is efficient at the view of the storage space for

the purpose of computing MCSs.

4, Computation of MRSs and MCSs and their application to data compression
In 4.1, procedures to eompute MRSs and MCSs are presented and in 14,2,
online data compression procedures by MRSs and MCSs are briefly discussed.
4,1 Computation of MRSs and MCSs
By the definition of r and p, we can find all MRSs, The’ following
'propbsition is useful for this purpose.
[Proposition 4] Consider the SMM for w. When r(si+1)£r(si)+1, w(i—r(si

' )+1:i) and w(j-r(si)+1:j) are candidates of MRSs of w, where sj=p(si).

- 13 -
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(Pr&of) We show an MRS of w is included among the candidates obtained in
Proposition U4, Let an MRS of w be w(i-k+1:i). By the definition, neither
w(i-k:i) nor w(i-k+1:i+1) is an RS of w.
(1)When w(j-k+1:j)=w(i-k+1:i) for some j(<i): Because w(i-k:i) is not an RS,
w(i-k:i) is MBWi. By the definition, r(si)=k. Because w(i+1-k:i+1) is not
an RS, r(si+1)=!MBwi+1I-1§k+1-1=k=r(si). In this case, w(j-k+1:j) satisfies
the condition of Proposition 4.
(2)When w{(j=k+1:j)=w(i-k+1:i) for j(>i): Let j be such the minimum number.
Then p(sJ.):si and r(sj)=k hold. So w(i-k+1:i) satisfies the condition of
Proposition U4. (Q.E.D,)

By Proposition Y4, we can have a linear time procedure to find all MRSs.
[Procedure 2] Calculation of MRSs
(1)Construct the SMM for a string w(|wi=n) by Procedure 1. A(i)<--0 (1§i§

n). r(s_ ,)<-==0

n+1
comment: the array A stores MRSs.
(2)For i=1 to n
If r(si+1)£r(si)+1 then begin
Let sj=p(si)- A(i-r(si)+1)<--r(si), A(j—r(si)+1)<--r(si). end
end
(3) If A(1)#0 then w(1:A(1)-1) is an MRS,
If A(1)=0 then X<-- A(1) else x<--A(1)-1.
For i=2 to n
If A(i)+i-1>X then begin w(i:i+A(i)=1) is an MRS. X{--i+A(i)-1. end
end end of Procedure 2.
For Procedure 2, next theorem holds(Proof omitted).

[Theorem 4] Procedure 2 requires time of O(|w}!) and it is an off-line

procedure.
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We can show in 4,2 an on-line data compression procedure utilizing MRSs.
By the definition of SMM, MCSs can be computed efficiently. Before the
formal description, an example is given.
[Example 6] s=a bbbab and w=b baabbabaare considered. The SMM
for w is shown in Figures 2 and 3. We can find all MCSs of s w.r.t. w as

follows. The machine starts from s, with 0 in A. When the first symbol

0
s(1) is applied, the machine enters 53 and A has 1. When s(2)="b" is
applied, the machine enters 6'(51,b,1) and A has 2, By the same way, after
applying s(3), the machine is in Sg and A has 3. When s(4)="b" is applied,
6'(36,b,3)=“(undefined). By the definition of SMM, s(1:3)(=w(l4:6)) is found
as an MCS of s w.r.t. w. Then we consider 6'(p(s6),b,r(s6)). Because §'(p(s
6),b,r(s6))=“, 6'(p(2)(s6),b,r(2)(s6)) (=82) is considered. Finally the
machine enters s, and A has r(z)(s6)+1=2. By the same way, s(3:6) (=w(5:8))

2

is obtained.

The brief procedure to calculate all MCSs is as follows.
[Procedure 3] Calculation of MCSs of s w.r.t. w
(1) Construct the SMM for w. X<--0.
(2) For i=1 to |s!

Apply s(i) to the SMM, If A has not X+1 then s(i-X:i-1) is an MCS of

s w.r.t. w. X<--the content of A. end
(3) X<--the content of A. s(ls|-X+1:|s|) is an MCS,

end of Procedure 3

The following theorem holds. Proof is omitted.

[Theorem 5] Procedure 3 requires time of 0(ls}+lwi) and it is an on-line

procedure.

Then we show data compression procedures.

-15 -



38

4.2 On-line data compression procedures
The authors have presented data compression procedures utilizing MRSs

and MCSS[S]. In [5], the position tree is used to compute MRSs and MCSs. In

this section, we consider on-line data compression procedures.

[Definition 9] An encoded datum w is sequentially decodable if W can be

decoded by scanning from the head to the tail.

It is easily proved that if a coding procedure is online, the resulting
code is sequentially decodable. So there is an online decoding procedure for
codes generated by our data compression procedures. The first one is to
utilize MRSs. Rodeh et al. have proved that a data compression procedure
utilizing RSs can give optimal encoding scheme as the length of a string
grows to infinity. The key idea of utilizing MRSs is to replace the second
or later occurrences of an MRS by identifiers of the first occurrence of the
MRS. Consider the following example.

123456789
[Example 7] Consider a string w=baaaaaaaa

10 13
baaa. We can know

w(10:13)=w(1:4) and w(3:9)=w(2:8). Then we need not store the whole string.
w is expressed by w(1:2)w(3:9)w(10:13) which can be expressed by
w(1:2)w(2:8)w(1:4)., Corresponding to this sequence, we will define a coded
string w=ba#2,6#1,3, where w(i:i+k) is represented by #i,k. Note that w is
sequentially decodable.

Remember that the second or later occurrences of an MRS are represented
by the reset function of the SMM by Proposition 4. Then an on-line procedure
is obtained. This procedure is similar to the one using MCSs which is shown
below. The major difference is to use MRS instead of MCS, We omit the
formal procedure in this paper.

Consider the data compression procedure by MCSs. We assume the

situation when similar data are to be stored and only one of them is referred
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very often. In this case, the most frequently referred datum is used as a

reference datum (say it wo). Other data are stored using w We represent a

00

datum by a concatenation of substrings of w When two data are similar, one

00
datum is represented by a concatenation of few substrings of the other.

Consider the following example.

1=a adcadc and w2=c aadcecba. w1

w.r.t. Wy each of which equals w2(2:5) and

[Example 8] Consider two strings w

(1:4) and w1(5:7) are MCSs of W,

w2(3:5) respectively., When W, is used as a reference datum of Wis

be expressed by a concatenation of substrings of w

w can

1
5+ When w2(i:i+k) is coded
as i,k, w1 is coded as 2,2,3,3,2, where the first value 2 means that the
reference datum is Wye

For the best compression, a datum must be expressed by the concatenation
of the least number of substrings of the reference datum. Following
procedure is an online data compression procedure and generates the best
results in this sence.
[Procedure 4] On-line data compression procedure by MCSs
Let w0 be a reference datum. w1,...,wN are othér data.
(1) Construct the SMM for Wy
(2) For j=1 to N do

X<==1, i<==1, h<{==0, Suppose the SMM is in s, and A has O.

0
Do while(not end of wj)
begin Input wj(i). Let the present state be sp.
Ir 6'(sp,wj(i),content of A) is undefined then
begin wj(i—r(si_1):i—1) is an MCS, .
if i—r(si_1)§x then begin h<{--i-1. m<--p. end
else begin replace wj(X:h) by an identifier p-(h-X),h=-X.
X<{--h+1. h<--0. end

end
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Make a transition.
end
Replace wj(X:ijl) by p-({ij-X),leI-X.
end end of Procedure U4

In the above procedure, the case h=0 (there are some symbols in wj that
do not appear in wo) is not considered for simplicity. The following
proposition can be proved easily[S].
[Proposition 6] Procedure U4 generates the best result in the sence that a
datum is represented by the minimum number of substrings of the reference
datum.

The fact that Procedure 4 may not give the optimum compression scheme

because the sequential decodability is attained should be remarked.

5. Concluding Remarks

In this paper, an online and linear time construction procedure of an
SMM is presented. And on-line data compression procedures utilizing the SMM
are presented. The SMM seems to be more useful than previous results for
many string matching problems such as finding differences between two files.

Data compression procedures by MRSs and MCSs seem to be useful for the
sets of similar data. Our data compression procedures are extensions of the
one presented by Kang et al.[6]. The remaining problems are i) analysis of

data compression rates, ii) optimum data compression(sequentially

decodability is not assumed).
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Fig. 1- The compact position tree for
the string babaa.

reset fun. r 0 1 0 1 1 2 3 2 2

position fun. p So S1 Sp S3 Sy Sp S3 Sg S3

Fig. 2- The reset function and position function
for the string bbaabbaba.
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Fig. 3- The labeled transition diagram of the SMM for the string

w=b baabbaba ( each edge without an interval has

the interval [0,*] )

1) [0,=]

p(sy)=s,
r(s])=0
Fig. 4- The SMM for a string w(1) of length 1.

pMsy  p™ sy p(s,) S. Siu
-1
rtm () (s ) isg) - , a
r(m)(s ) r(z)(s ) r(si)

Fig. 5- Relations between substrings and two functions.
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Fig. 6-a

Fig. 6- Construction process of an SMM. (interval [0,~] is omitted)

Table 7-(a) Table 7-(b)

P r input state | input | interval | next
state

A A b So a o S4

So 0 b S a 1 S3

Sy 1 a S3 b 1 Sg

So 0 a S3 b 2 Sg

S3 1 b S3 b 3 Sg

S5 1 b Sg a 2 Sq

So 2 a

S3 3 b

Sg 2 a

Sy 2 *(any)

Fig. 7- Realization of an SMM.
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