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Control Flow Aspects of an Algebraic Approach to Compiler Generation

Henning Christiansen
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Computer Science Department
Aarhus University
8000 Aarhus C, Denmark

This paper is an exposition of a new approach to compiler generation which was
described at the symposium on "Mathematical Studies of Information Processing!'
held in May 1981 at the Kyoto Research Institute for Mathematical Sciences. It
describes research currently in progress; we intend eventually to publish a more

polished and complete version including correctness proofs.

Abstract

An algebra-based method for automatically generating compilers is described.
Its input is the semantics of a programming language expressed In "imperative
semantics'', a restricted form of denoitational semantics. Its output is a compiler
which maps program parse trees into a target code consisting of flow charts with
""computed goto!, from which machine code may be generated by macro expansion
or traditional code generation techniques. Imperative semantics allow natural
semantic definitions for a wide variety of programming language features, and may
be regarded as a powerful compiler-writing language. The method generates

target programs and compilers which are both efficient and easily ported.

I INTRODUCTION

An idealized compiler generation scheme could have the form given in Figure 1,
Much progress in this direction has already been made. The well-understood
theory of context-free languages has been put to practical use Iin several systems
based on automatic parser generation including XPL [McK70], BOBS [EKM?Q] and
YACC [doh74] . These syntax-directed compiler-writing systems however leave all
semantic questions such as symbol table management and code generation to the
user, only providing a mechanism to call "semantic routines"!. when grammatical
phrases are recognized. The formalism of attribute grammars [Knu68] provides
methods to handle some semantic aspects, notably those with a "static!" character
such as symbol tables and the composition of target code sequences; however
control flow aspects are not handled at all. Compiler-writing systems based on

these include MUG2 [Gan77], DELTA [Lor75], HLP [Rai77], NEATS [RiM81].
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Automatic generation of code generators has been difficult due to questions of

how to describe the form and effect of machine code instructions. However some

progress has been made in this direction including [Cat79] and [Don79]. Many of

the remaining problems appear to be of an engineering nature.

Source - Parser

Syntax Generator.
_Definition YACC, BOBS

e Semantics—
Source directed
Semantics Compiler
Definition Generator
Target Code
Language Generator
Definition Generator

Compiler

Generation

Time

Parser:

Compiler
Semantic
Component

Code
Generator

Target
Code

Machine

Compile 7 Run-
Time Time

Figure 1. Idealized Compiler Generation Scheme.
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Earlier Work in Semantics-Directed Compiler Generation

Formal definitions of the semantics of programming languages are becoming more
and more widely accepted (e.g. [Mos74], [Gor79] and [ADA80]) for a variety of
reasons. ldeally it should be possible to start with a precise definition of the seman-
tics of a language and automatically produce from this a correct compiler. We have
termed this goal "semantics-directed compiler generation! in [Jon80].

An important step in this direction is the two-volume Milne and Strachey [MiS?G]
development (by hand) of a compiler from a specific language definition given in
denotational semantics. A series of alternative semantics are defined; each new
semantics is closer to machine code than its predecessor, and each is proven
equivalent to the original semantics. The transformations are complex and the
equivalence proofs even more so- (actually much more complex than writing a com-
piler).

This development is exceedingly complex, and appears extremely difficult to
systematize and generalize as would be necessary to do for compiler generation.
Nonetheless it has been the basis for many other works including [Bj¢77], [GanBO],
and [Ras80]. Wand describes in [ Wan80a] and [Wan80b] methods using combina-
tors to transform the right sides of semantic equations into forms closer to machine
code.

Another approach is to view the right sides of the semantic equations as an
intermediate language, to be further processed or translated. This approach is
implicitly taken in [ JoS80] and is one way to use SIS [Mos79].

An interesting class of methods is based on partial evaluation or mixed compu-
tation. Suppose § is a semantic definition, # is a source program, and i is a run-
time input. Then ($(r))i represents first finding the meaning 8{(ff) of program
(typically an input-output function), and then applying that to input i. 8 is normally
represented by a syntactic object, so ""compilation'" may proceed by attempting to-
evaluate (or reduce) 8() as much as possible in the absence of input i. This re-
duced form is then the target program.

Partial evaluation has been studied by Sandewall [San75] among others. Ershov .
and Turchin use it in contexts where 8 is defined operationally (by ALGOL.68 and
REFAL programs, respectively, see [Ers78] and [Tur80]). The Semantics Im-
plementation System (S1S) of Mosses uses similar ideas, where 8 is a denotational
semantics expressed in a lambda-calculus extension called DSL[Mos79].

\ Efficiency is a problem with this class of methods since compilation involves
complicated transformations within. the language which is used to write the seman-
tic definition. The target programs are of course expressed in the same language.

Another approach is due to Ganzinger [Gan80], who develops a series of

operations which allow a limited class of denotational semantics to be tr‘ans'for‘med



113

into attribute grammar form. The operations are, however, rather complex and
seem to be of limited generality. He also describes an approach for separation
of the dynamic and static (= invariant with respect to runtime input) components of
.the resulting attribute grammars, and ideas concerning code generation.

vet another class of methods is based on algebraic semantics. These seem to

have considerable promise, and are described in later sections.

outline of this paper

—-ln section Il we give a brief review of algebraic semantics, its application to
compiler correctness proofs, and an overview of the new approach, emphasizing
its relation to earlier work. Section Ill introduces IS, a family of algebras we use
for writing imperative semantics, and gives an example consisting of a set of
semantic equations without a specific model. We discuss general requirements
which we impose on all models which guarantee that program execution may be
viewed as performing a sequence of elementary actions which manipulate an
(as-yet-unspecified) "store!'. Next, an ""interpretation' of IS is defined; this in-
cludes a concrete definition of the store and specifies the effects of elementary
actions on the store and control point. Section [ll ends with the interpretation for
the example introduced earlier, and a discussion of the generality of the class of
imperative semantics.

Section IV describes the target programs - essentially flow charts with
"computed goto!!, whose boxes contain elementary actions. Section V introduces a
"compiling algebra C, and explains how this Is used to generate compilers. A
c‘orrectness theorem is stated but not proved, asserting that the generated com-
pilers always produce target programs whose semantics is faithful to their source
programs. Thus individual compiler correctness proofs (e.g. [MiS76], [ADJ79])
are not needed. ’

Section VI describes C in detail, the compiler generation function cg: IS =+ C,
and the standard interpretation of C. Finally, section VII contains practical re-
marks, mentions a pilot implementation in PROLOG, and ends with conclusions and

directions for future work.

11 AN ALGEBRAIC VIEW OF DENOTATIONAL SEMANTICS

Three major methods have been used to provide formal definitions of program-
ming language semantics: axiomatic, operational and denotational. To date
axjiomatic semantics have proyed to be difficult to apply to a broad spectrum of
languages, since features such as recursion with local and global variables,
aliasing and pointer variables complicate the logical formalisms which are used;
further, it seems very difficult to develop program execution methods from

axiomatic specifications.
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Definitions via operational semantics ([L.uc69], [01175]) have suffered from
the opposite problem, of being biased towards a specific implementation strategy.
Further they tend to be rather complex, typically involving an extremely complex
total execution state. (Some of these faults may however be alleviated by the new
"structured operational semantics'' now being developed by Plotkin [Plo81]).

Denotational semantics begins with the so-called !""denotational assumption'.

In [ScS71] this is expressed as:

"The semantical definition is syntax directed in that it ....
transforms each language construct into the intended operations

on the meanings of its parts. !

This leaves two questions open: "What is a meaning 7" and '"How does one
operate on meanings ?!'. Dana Scott has provided a rich theory of domains which
are sufficient to express both the meanings of syntactic objects and effective com-
putations involving these meanings [Sco?G]. While we use these foundations, we
will not dig into them. A syntactic object!s meaning - is typically called a denota-

A natural and general framework for operating on meanings is provided by many-
sorted algebras. We describe briefly only what is needed for this work; more
details and background may be found in [ADJ77] or [Mor73].

Definition A signature consists of
1. a collection S of sorts (examples: integer, boolean, program,

expression)

2. a collection of operator symbois w, each with its arity

Wt . e -» . i

Wis X SpX X s = sS4 where each sIES is a sort and

nz 0.
A constant is an operator symbol of arity w: = Sg» that is n =0,
A many-sorted algebra consists of
1. a signature (S, {wi} )
2. a set As for each s € S (called the carrier of sort s)
3. an operation w: AS X e0e X Asn - As for each operator symbol
1 0

w of arity s, x ... X sn-bs

1 o’
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Example A Term Algebr‘a for Syntax

Consnder the (;nflnlte) context-free grammar with productions

program ::= exp
exp HE Xy ‘ X, | ... (variables)
| o |1 l 2 | ... {(constants)
! exp + exp
‘ AX ;. exp | AX,. exp | ... (abstractions)
| exp (expz) . ~ (application)

This may be seen as a 2-sorted algebra:

Signature
Sorts: S = {pr*ogr'am,exp]

Operator Symbols: one for each production

Arities: map righthandside nonterminals to lefthandside
sort, e.g. the arity of exp ::=Ax o €XP is
exp -’ exp.

Carriers

Aex = {ﬂ' 1 m is a well-formed parse tree with
P root label exp }
program = similar
Operations

These build parse trees from their subtrees according to the

productions. For example, letf 1’"2 € Aexp and w.- be exp::=exp + exp.
Then
e AN
w(m 1""2) = " + ", is in Aexp
0 Example

The algebra above is known as a term algebra, since each of its elements may

be viewed as a term (= tree) built up from constants by use of the other operator

symbols. Here, each production A =+ terminal ¥ is a constant.

Denotational Semantics

A denotational semantics is naturally factorable into two parts, one mapping
parse trees into a semantic algebra and one mapping the semantic algebra further
into a domain of denotations. References: [Gor79], [ Ten76], [Sto77], [ADJ77].
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Terms in a v .
Semantic Model Domain of
Algebra Denotations

Syntax Semantic
Algebra Equations

The semantic algebra which has been most used in denotational semantics
(explicitly or implicitly) is the natural term algebra describing expressions of the
X -calculus. Stoy for example [Sto77] (following [Sco76]) defines the LAMBDA
notation, and models its operator symbols (abstraction, application, conditional,
etc.) by operations on the domain Pw . The notation can become complex to say the
least — for example semantic equations for the first two productions of the syntax

given above might be

e[ variable]] = XpXk. k(p [variable]))
elexp texp, ]| =xpAk. e[[exp Joha.c[exp,]p:(Ab. k(a+b)))

Alternative Semantic Algebras

In a series of papers ([Mos78], [Mos80], [Mos81]), Mosses has been advocating
the use of semantic algebras which better reflect the intuitive concepts naturally
present in computation-sequencing, production and consumption of values, binding,
etc. The benefits include not only more readable semantic definitions but also
greater modularity, and seem well-suited to generalizable proofs of compiler
correctness. As we shall see they are also well-suited to compiler generation.

Most of Mosses! work is based on abstract data types, so the semantic algebras
of [Mos78] and [Mos80] are the initial algebras obtained by factoring a term
algebra by an equivalence relation induced by a set of equations, as described for
example in [ADJ78]. However [Mos81] uses what amounts to a term semantic
‘algebra (his "syntax') modeled by Scott-style function domains.

We find the latter approach more natural for compiler generation, since a
generated compiler is after all a syntactic object. In any case one wants both in
practice: equations are needed so that one may manipulate (e.g. compute with)
the terms appearing in semantic definitions without having to think of the complex~
ities involved in an underlying domain theory; and a model is needed to show that

the equations are not inconsistent. The only question is where to begin.

Compiler Correctness via Algebraic Semantics

A series of papers have been written concerning expression and proof of
compiler correctness in the framework of algebraic semantics ([Gauso], [ BuL69],
[Mor73], [ADJ79], [Mos80]). We now describe two of them and relate them briefly
to the new method; deeper comments will be made after the new method has been

more fully described.
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L
semantic \\ compile
equations s,
compile implement 3
L > T S > T
source o
semantics target z(lan;ir:}alc f:lwgg;a
(equations semantics mogdel mc?del
and model) encode

Figure 2. Compiler Correctness Diagrams

In both parts of Figure 2 L is a source language regarded as a G-algebra,
where G is the context-free grammar defining the abstract syntax of L. M is a set
containing denotations (meanings) of pieces of source programs. T is a collection
of target programs, and U contains their denotations.

In the left part of figure 2 (from [ Mor73] 'and [ ADJ79]) one is given a com-
piling function L - T, a source semantics L. + M and a target semantics T 2 U. The
problem is to show that the meanings of compiled programs faithfully represent
the meanings of the original source programs. This is done by introducing an
"encoding! function mapping source meanings to their representations via target
meanings and proving commutativity of the diagram (and perhaps injectivity of
"encode! to show that T and U were not badly chosen).

By the "denotational assumption'" the source semantic function L. + M may be
expressed as a homomorphism to an algebra derived from M. This is obtained by
associating with each syntax operator of L a corresponding derived operator on M.
Both [ Mor73] and [ ADJ79] assume "compile" is given homomorphically via derived
operators oh T. Thus a compound program is compiled by combining the results of
compiling its parts, using combination operators present in T. The target semantics
T =+ U is also specified homomorphically, so in the diagram each corner becomes a
G-algebra, with M, T, U all derived.

A syntax algebra is "initial" in its category, meaning that there exists a unique
homomorphism from it to any other algebra in the category. Consequently if it can
be shown that "encode'" is a homomorphism, then commutativity and so compiler
correctness follows at once from initiality of L. [Mor73] and [ADJ79] use this method.

From this viewpoint it is natural to view the carriers of T as cbntaining
"pieces!" of target pragrams, and to map each operator symbol of L. into an opera-
tion for "pasting tbogether-“ these pieces of target programs in an appropriate Way.
This view is quite clear in the (rather different) target algebras of [Mor73] ,v
[ADJ79] and [ JoS80]. A note: correctness in [ JoS80] is not shown by commutativity,

but by a more operational argument involving equivalence of phrases in L.
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The right part of the diagram, from [MosSO], introduces an explicit semantic
algebra S as an intermediary between L and M, as described in the previous section.
S is defined independently. of L. Further, [Mos80] requires that each of S and T be

an abstract data type - that is the initial algebra ‘TE e for the category of all alge-~
bras with signature ¥ which satisfy a set ¢ of equations between T - -terms (Sand T
always exist but may be trivial). The "implement" function should be a correct im-
plementation of one abstract data type by another as defined, for example, in
[ADu78].

The "compile" function is simply the result of composing the original semantic
equations with "implement'. Note: models M and U are needed to show the nontri-
viality of S and T, but are not involved directly in the proof that "implement" correct—q
ly implements S by T.

This approach has significant advantages over the first. If S is well chosen
it can serve to express the semantics of a wide variety of source languages; propo-
sals for S may be found in [ Mos80] and [Mos81]. Correctness of "implement' need
be shown only once; thereafter a correct compiler for any language L. whose seman-
tics is expressible via S can automatically be constructed by composition with
"implement!.

Typically this can be done at a symbolic level, so a set of semantic equations
for LL can be transformed into a new set of equations, a "compiling semantics'" which

maps parse trees directly into elements of the target algebra.

Compiler Generation via Algebraic Semantics

Our method most resembles that of [ Mos80] but has some important differences.
To begin with our approach is model-based (like [MosBi] but not [MosSO]). Two
term algebras are used: IS (for "imperative semantics"), a simple semantic algebra
playing a similar role to S in figure 2, and a new "compiling algebra C. In effect

T in figure 2 has been split into two parts as in figure 3.

L
~
semantic "~ compile
equations” 8 AN
Sc
s S >
l model
lcom
modelI cden
lu.
T
l run,
v encode
M -

Figure 3. Compiler Generation Scheme.
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The separation between C and T corresponds to the traditional distinction
petween Ncompile-time! and "run-time!'. It allows for great flexibility in the choice
of C since it is not required that each element of C have a concrete meaning in the
target semantic model U (as must be true of T in figure 2). In this particular appli-
cation ""cg' maps elements of IS into. "compiling functions' rather than pieces of
target program. If such a function is applied to a partially constructed target pro-
gram, it will cause the generation of additional target code and/or the updating of
a "compile-time state'. Other choices of C and its compile-time model might allow
expression of compile-time loops, multipass compilation, etc., which seems diffi-
cult to express In the frameworks of figure 2.

Another consequence of the approaches of figure 2 is that T must have ‘a suf-
fiéienﬂy rich structure so that derived operations modelling the syntax operators,
of L can be defined. This in turn implies that corresponding operations must be
defined on U. This can lead to some complex and unnatural semantic rules. For
example (from [Mor73], p. 149),

"To compute in a flowchart sewn together from pieces is to
compute by turns in the pieces, jumping back and forth as

often as one pleases at the stitches. "

We see no good reason for introducing such complexities into the semantics of
a target language which is intended to model, for example, machine code instructions.
Separation of C and T allows program construction to occur at compile time, and
target program execution to be expressed by a more natural and low-level semantics

(run, in figure 3) independent of L, IS and C.

lThe left side of figure 3 indicates that the semantic equations map parse trees
into terms of a semantic algebra IS, which are then modeled via "modell" in an
algebra M of source denotations. In this paper IS will be very simple, specifying
only control flow; consequently target code denotations will be almost the same as
source denotations, so M=U (exception: labels in U represent continuations in M).

The semantics of a source program in L may be thought of as the execution of
a sequence of elementary "actions!", each operating on a "store" which might typi-
cally hold values of variables, control stacks, etc. The elementary actions will be
represented syntactically by the constants (plus parameters) appearing in 1S. Their
semantics will be specified by the Yinterpretation" | seen in "modell" - this defines
the set of all stores, and the effects of the elementary actions on the store and on
the control point (all this will be precisely defined in the next section).

We will define (in section V1) a "compiler generation! function cg which will
map terms of the semantic algebra-IS into terms of the compiling algebra C. Com-
position of this with the given semantic equations yields a "compiling semantics",

a set of equations mapping parse trees into terms in C. The compound map

L+Ca Cden will map a parse tree into its denotation, namely a compiling function
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which upon application to a partially compiled target program will cause target..
code for the parse tree to be added to the target program.
Note that L - C » C is also a semantic definition; further C is a subalgebra

den
of IS and Icom is an interpretation specifying compile-time stores and store trans-

formations. Thus a common framework is used for source semantics and the gene-
rated compilers. Denotations of programs in L. will be target programs, so Tgcden'

The target code | can loosely be described as "flowcharts plus computed gotos'",
The exact instruction set produced depends on the constants appearing in the seman-
tic equations for L, and their semantics :is specified by the interpretation|. In

fact, the target language semantics function run, is also determined by I.

Correctness can be established by showing lthat the diagram between IS and U
commutes for every interpretation I. This implies that the function "compile!' will
take any parse tree in L into a term of C which, if executed with the compile-time
interpretation lcom, will produce a target program whose semantics (when inter-
preted accor‘ding. to I) is identical to that of the given parse tree. Note: we will see
that In practice compiling can be done without explicitly building the C term, so in

spite of appearances this is not really an intermediate-language method.

Il IMPERATIVE SEMANTICS

We now define a rather simple semantic term algebra IS (for "imperative seman-
tics"). An imperative semantics of a programming language will be given in two
parts. One is a set of semantic equations mapping source program parse trees into
terms of IS; these terms will be constructed from elementary actions and atomic
values (integers, strings, etc.) by the operator symbols of IS. The remainder of
the semantic definition is an interpretation | which defines the domains of ''stores"
and "final answers'', and gives meanings to the elementary actions. More precisely,
I specifies a certain hoinomorphism from IS Into a continuation-based domain of
denotations.

The models of IS we consider are restricted so that term evaluation may be

thought to consist of performing a series of elementary actions upon a store (the
exact sequence is of course determined by the initial store). Imperative semantics
may thus be thought of as a formalization of (continuation-based) ""store semantics"
as used in [MiS76] and by many others. One extension is that we factor the defi-
nition so that store-related details appear only in the interpretation and not in the
semantic equations. Further, the combination of IS and | is capable of expressing
a great many disciplines of program control flow. ‘

Given an imperative semantics, it is easy to translate parse trees into a
target code T. This is essentially a flow chart language with "computed goto",

where the boxes in the flow charts contain elementary actions, Oddly enough, the
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flowcharts contain no explicit branching structure, being simply collections of
jabeled linear instruction streams. All nonsequential control flow (e.g. looping,
'éanditional br*anching,‘ calls and returns) is handled by passing labels as para-
meters to elementary actions, which can save and fetch them in and from the store
as well as branch to them. The counterpart in IS of these labels are the "delayed
action sequences'" allowed as parameters to elementary actions.

In spite of the close connections between IS and sequential, machine-like exe-
cution, the class of programming languages whose semantics can be naturally

defined is surprisingly large. This will be discussed further at the end of this sec-

tion.

Table 1. Signature of IS
Indices: A= {a} u s | s is an atomic sortv}
Sorts: ans answers (values of entire source programs)
e elementary actions, each with a source ge in A*
(=AU Ax AU ...)
p parameters, each with a targetTp € A
actions
s various atomic sorts, e.g. integers, boolean, string
Operations:
a <= skip empty action
| a;;a, sequencing - do a,, then a,
| e elementary action with empty source
| e(p1 g ooy pn) elementary action with parameters.
Requirement:ge = ‘rp1 X eoe XTP,
] fix L: a recursively-defined action (where L is a
variable)
p <= con constant of atomic sort as parameter.
p has target Tp = sort of con
! a open action as parameter. Target Tp = a
| a; L closed action as parameter. Target 7p = a,
and L. is a variable from a fix.
ans <= execute(a) perform an action sequence

Notation

IS is presented in a style close to that of [Mos80] or [Mos81]. Operator
symbols are written in "mixfix" notation (called "distributed-fix" in [ Gog78]).
This is a generalization of prefix, infix and postfix notation: operator symbols

can be distributed freely around and between operands. Further, the arity of an
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operator is indicated by the notation

Sy <= f(S;5.--»S,)

where f has arity Sy X - X s, - Sg-

One unusual construction is used (resembling one used by Mosses). Each
elementary action with parameters will have certain "type!" requirements on the
sorts of its parameters (e. g. find(x) requires x to be a variable). These require-
ments are expressed by equipping each elementary action with a "source! which
is a sequence of sorts, and each parameter with a "target" which is the sort of its

value.

Explanation
An action can be the null action "skip", an elementary action (possibly with

parameters), or can consist of two subactions to be done in sequence. Further, an
action can be defined recursively via fix. This may be conceived of via infinite
"unrolling", i.e. fix L:a is expanded replacing each free occurrence of L in a by
fix L:a and iterating. Note that L. may only be used to close an action parameter,
i.e. 1t may only appear in "tail recursive! position. This will make it possible to
translate IS terms into flowchart code.

Intuitively an action specifies for each store a series of transformations to be
performed and the "final answer!" execute(a) is obtained by applying a's transforma-
tions to the initial store. Each store transformation is specified by an elementary
action, with or without parameters. The mapping from elementary action constants
in the IS algebra to store and control transformations is given by the interpretation I.

. An action appearing as a parameter can be thought of as a data value repre-
senting a ""delayed action!". This value may be put into the store by an elementary
action (e. g. pushed onto a "return stack"), and can at some later time be fetched
from the store and executed. An elementary action may change the flow of contr‘ol‘\
dynamically by selectively activating delayed actions, thus giving the effects of
loops, conditional branches, subroutine or coroutine calls and returns, etc.

An open action parameter, e.g. a in .. .e(a, 13)... represents a series of
elementary actions which after execution will normally be followed by the actions
after e(a, 13) — the second '"..." in this case. A closed action parameter a;L. is
similar; except that after a's actions are performed, execution will continue with
the actions specified in the smallest enclosing fix L:a'.

Actions as parameters are represented in the standard model by continuations,
and in the target programs by labels. Otherwise, actions are modeled by continua-

tion transformers (all described later in this section).
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Table 2. An Example Imperative Semantics 8§

Atomic sorts: integer, variable

Semantic Equations:

P [ program] = execute (e [ program])

e [ con] = load(con)

e [var] = find(var)

e ﬂ:exp1+exp2]] = 6]]:exp1]]; el[expz]]; plus

e [if exp, then exp, else exp3:[}= € [ exp, 1; choose(e[[ expz]], el exp3]])
e [exp, (exp,)] = e[exp,I; e [exp,]; apply

e xx.exp] = save(bind(x); € [ exp]l; return)

Examples of use of ¢

el[x + (ify then7 else z) + 8]

= find(x); find(y);
choose (load(?7), find(z));
plus; load(8); plus

e[ Oux. xx)xy. y)7]
= save(bind(x); find(x); find(x); apply; return);
save(bind(y); find(y); return);

apply;
load(?7); apply

Intended Interpretation of Example Semantics

Table 3 contains an interpretation | precisely defining the meanings of the
elementary actions used in table 2. Here we describe them informally, partly to
demonstrate the naturalness of an imperative semantics. Formal definitions of an

interpretation | and its induced model follow table 3.

The store consists in this case of a value stack and an environment mapping
variables to values. The intended effect of performing £[[ ex]] is to push the value
of "exp" on the stack, leaving the environment unchanged. It is easy to define
meanings for "load" and "find" doing this, and "plus! should thus pop 2 values and

push their sum(as is expressed by the first three equations of table 3).

ellif ... 1 first pushes the value of expy, and ""choose! pops this and. activates

g[expz]] or 8[[ exp3:[|. After the appropriate 8|[expi]] actions are performed, exe-
cution will continue with the first action following €[ if ... ] (this follows from

the way parameters are modeled - see the definition below of the model induced by

an interpretation).
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e A x. exp]] will push a certain "delayed action" onto the stack. The equation
for eﬂ:exp1 (expz):[] resembles that foreg ﬂ:exp'+exp2]] but "apply" is essentially
different from "plus!: it saves the action sequence following "apply" on the stack
and then activates the delayed action which must be the value of £ exp1]] (i.e. the
value of some abstractionX x. exp). This will bind x to the value of exp,, evaluate
the body exp in the updated environment (leaving the result on the stack), and

finally return to the control point and environment which were saved by “apply!.

Table 3. Interpretation of Example Semantics

Domains:
Store = Env x Value* typical element: st = (e, s)
where Env = [Variable » Value] typical element: e
Value = N + Cont x Env typical elements: a,b
Cont = [Store » Answer | typical element: c
Answer = Value

Elementary Actions:

(6load) con c (e, s) c (e, con-s) [push constant]

c (e,evar]+s) [push value of var]

c (e,(a+b)-s) [pop a,b, push a+b]

(6find) var c (e, s)

(8plus) c (e, b-a-s)

(gchoose) (cl,cz) c (e,a-s) if a then c1(e, s) else cz(e,s)

(esave)(cl)c (e,s) c (e, (c1, e)es) [save action on stack]
(6apply) c (e, a+ (c1,e1)- s) = <, (el,a- (c,e).s) [activate saved action]
(greturn) c (e, a- (cl, el)- s) = <, (e1,a- s) [return]

(6bind) var c (e, a-s) cle{a/var},s) [update env. binding]

Final Continuation:

c_(e,a:s) = a [answer = stack top]

Initial Store:

Sty = (empty environment, empty stack)

Note: The '"value' stored for an abstraction consists of a continuation and an
environment, essentially the '"closure!! typically used in A -calculus implementations
(the environment is needed so binding is static rather than dynamic). Thg function-

alities of gload, etc. are found in the definition of "interpretation!''.
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Omission
For the sake of simplicity in the rest of this paper we will no longer treat

actions containing fix or variables, or their implementations; No essential problems
arise, and a fuller treatment will be given in a later version of this paper. Briefly,
fix and variables can be handled by introducing a semantic environment in modell
e €[Vvar 2 Cont], binding a new continuation to L wherever fix L.:a is encountered
and accessing e wherever a variable reference is found in a. Similarly, a "compile-
time environment!" binding variables to runtime labels must be added to the compile-

time store in the domain of denotations modelcom of the compiling algebra C.

interpretations and induced homomorphisms

We now define an “interpretation! | and the homomorphism it induces more

formally. The underlying ideas are simple enough:

1. We only consider homomorphic images of IS In which actions are modeled
by continuation transformers, the semicolon operator is modeled by
composition of continuation transformers, and a few other natural re-

quirements described in the second definition below.
2. Thus any particular image of IS can be specified by defining the store
and answer sets and the denotations of the constants (e. g. "plus!,

Wif'} which are used. This is an interpretation.

Definition Let 8 be a set of IS semantic equations. An interpretation of 8 is

a 5-tuple I = (Store, Answer,8, C,» st»o) satisfying 1-6 below. First, let the set of
continuations be Cont = [ Store =+ Answer] ([ A » B] is the set of continuous functions

from domain A to domain B).

1. f associates with each parameter p appearing in 8 a domain Dp
such that
a) if Tp = a then Dp = Cont (action parameters are interpreted

as continuations)
b) ifrp = s for an atomic sort s, then Dp = a domain corresponding
to s (e.g. sort "integer' can map to {0,1,2,...})"

2. Let e be an elementary action with empty source appearing in 8.
Then

ge € [ Cont - Cont]
3. Let e(p1 yeoey pn) appear in$. Then .
e € [Dp1 X ... xDp_ = [ Cont + Cont] ]

4, If p is a constant parameter of atomic sort appearing in 8, then

6p € Dp (e.g. the constant "13" of IS maps to the integer thirteen)
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5. c,, € Cont (the final continuation)
6. st, € Store (the initial store)
0 definition
Remark

2-4 imply that 9 assigns values to all the generators (i. e. constants') of IS
which appear in8 . This implies | can be extended to a thomomorphism on all of

IS (restricted to8 ) in the following way:

Definition Let 8,1 be as above. The model induced by | is defined as follows:
Modell
Carriers:
Ajns = Answer, A_= [ Cont + Cont]
A, = [cont~ Cont] if e has empty source
A, = [Dp1 X ... x Dp_ - [ Cont = Cont]] if e(p,, ceey pn) appears in §
As = Dp if8§ contains a parameter p with atomic sort s
‘ Ap = Cont - Dp for each parameter p appearing in 8§
Operations:
a <= skip (pa) c = ¢ [no action]
| a;3a, {ga) c = (ea1 )(eazc) [sequencing]
| e . Ba = Qe ‘
| elpy,...,p,) (Ba)c = peldpyc,..., pc) c [each parameter is
given "next" c as
argument |
p <= con (6p) c = gcon
| a (6p) c = pgac [action parameter is|
linked to "next" c]
ans <= execute(a) 6ans’ = (Ba)c, st,

How general are imperative semantics ?

To date semantics definitions for five minilanguages embodying various pro-
gramming language features have been constructed, and may be found in [Chr‘Bl].
(These use an earlier nonalgebraic version of imperative semantics, but are easily

converted to the present formalism.) They include

1. A simple language similar to those of [ADJ79] and [Mos80].
2. One with recursive procedures.

3. One with coroutines.

4. One with nested blécks and gotos.

5. The lambda calculus.
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The definitions are easy to read and were not difficult to construct. Further,
it appears straightforward to combine t;e various features into a single imperative
semantics. Some '"nontraditional'! approaches had to be used when writing the se-
mantics due to the limited domains allowed. For example, procedure names are ''tradi-
tionally" bound to continuation transformers [Cont + Cont]. In order to replace
this by Cont, it was necessary to add a data structure to the store - the familiar
npeturn address stack! - holding the continuation used to exit from a call statement.
For another example, the usual fixpoint definition of label semantics had to be done
in a different way, but the result is not especially difficult to understand or write.

in fact, the kind of reasoning one uses to write semantics in imperative form is
quite similar to that used in ordinary compiler design -~ just at a higher level. At
the very least, one could regard IS as a rather powerful compiler-writing lanéuage,
from which the semantics components of compilers can automatically be produced.

On the other hand imperative semantics are certainly limited — for example they
lack the produced and consumed values of [Mos80] (corresponding to traditional
usage of expression continuations), and allow no segmantic variables beyond those
found in fix L.:a. Another limitation is that no form of static/dynamic analysis and
separation is done. This could lead to undesirable features such as runtime svmbol
tables (as are seen in our small .example).

None of these Iimitationsvseems to be intrinsic to our method; they are simply
other aspects of compiling which we expect can be comfortably fit' into the paradigm
of figure 3, and plan to work on in the near future. The main point is that an alge-
braic approach using operators natural for expression of primitive computing con-
cepts, and a clear formalization of "compile-time" versus "run-time'" seem to
provide a very appropriate framework in which to develop more sophisticated

compiler generation methods.

IV THE TARGET LANGUAGE

Table 4. Syntax of T

program = [O: streamy 1: stream, ... k: str‘eamk]
stream ;= instr | stream; instr
instr ::= goto (destination)
| e elementary action
| e(p .- ,pn) ditto with parameters
o} ::= atomic value

| I label of stream origin
| = integer origin labels

destination ::= | + integer stream origin + displacement
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Note that the syntax of T contains neither conditional branching nor the ""com- .
puted goto!" referred to earlier; these will be handied semantically, using label
parameters and the saving of labels in the store. Terms in IS are easily translated

into T code by hand - for example:

Code[[x + (if y then 7 else z) + 8]

= [0: find(x); find(y); if(1,2); plus; load(8); plus
1: load(7); goto(0+3)
2: find(z); goto(0+3)]

} both go to 'Y'plus ..." in stream 0
Code[[ (Ax. xx)(\y.y)7]

= [0: save(1); save(2); apply; load(7); apply
1: bind(x); find(x); find(x); apply; return[;goto(0+1)]
2: bind(y); find(y); return|;goto(0+2)] ]

Note: the code above is actually the output which our generated compiler will pro-
duce for the semantics of table 2. The goto'!s in brackets are redundant, but are
produced since the compiler does not '"know!! that in this interpretation ""return"

always ignores its continuation.

Semantics of T

For brevity we only outline this, since no difficult or new concepts are involved. -
Actually two semantics are defined. One is for use in the statement of correctness,
and yields M = U, i.e. identical source and target denotations. This is however
unsuitable for implementation purposes since it involves storing higher-order
objects (namely continuations) as data objects in the store. Thus an equivalent
first-order se;fnantics is defined In which all continuations are represented
by the target code labels they correspond to. We give a fewcharacteristics of the

first semantics; extension to the second is straightforward.

1. The semantics run, of T is induced by an interpretation

| = (Store, Answer, 0, sty c.).

2. Given a programf = [0: streamg ... k: str‘eami],
a) each str‘eami and instruction is mapped to a continuation transformer
b) each label | € {0,...,k} is mapped to a continuation p(l) with
the aid of a runtime environment p: Labels + Cont
c) p is defined recursively by a fixpoint

d) the program is mapped to the "final answer! p(0) (sto).

3. An instruction which is an elementary action e without parameter -is

mapped to its value ge as specified by interpretation 1.
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4, Suppose e(p.l,pz) takes an integer parameter Pq and an action parameter
p, inIS. Then in the target code instruction, e(p]',pz') will take an
integer parameter p1' =P, and a runtime label parameter pz'. The

semantics of e(pl',pz‘) is exactly ee(pl',ppz'),. i.e. the label parameter
is interpreted as the continuation which is its. valuation by p.

VvV COMPILER GENERATION

We now return to figure 3. The compiling algebra C is simply a subalgebra

of IS, restricted to an interpretation lg:om which specifies the compile-time store

and the elementary actions needed to generate target code. The only actions we
need (in the absence of fix and variables) are the following. More formal descrip-

tions will be found in the next section.

addcode(ins) -~ add a new instruction "ins" to the end of the
instruction stream currently being generated
newor ig - establish the origin of a new stream (used when an
action parameter is processed)
oldorig - re-establish the old origin previously in use;
further, save the new origin in a compile-time stack p*
push(atom) - push an atomic parameter on the compile-time stack p¥
addcoden(ins) -~ add instruction ins(p,, ..+.,p,. ) to the current stream,
where Pyse-+sP,are paramert’er's found on the compile-time
stack
goback - end the current stream with an instruction

igoto(destination)" to transfer control back to the stream
previously in use

Table 7 contains a ""compiler generation! homomorphism cg: IS + C , mapping
each operator of IS to a derived operator of C which is built from the above by
semicolon. For any action a of IS, cg(a) will be a term of C whose denotation in
Cden will be a function which, if given a program, will add to it instructions to per-
form M"a'' at runtime.

Table 5 contains the result of composing the original semantics of table 2 with
"cg'!, yielding a "compiling semantics'. Table 6 contains the target program re-

sulting from application of the compiling semantics to a source program.
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Table 5. Compiling Semantics Generated from Table 2

P[program] = execute (5c[[program]])
"ec[[con:[] = push(con); addcodel(load)
ec[[var]] L = push(var); addcode](find)
c .
e [[exp1+exp2]] = Ec[[epr]]; 8C[e‘xp2]]; addcode(plus)

e°[if exp, then exp, else exp,] =
E‘,c[[exp 1]; .
neworig; E:C[]:expzj]; goback; oldorig;
neworig; ec[[exp3]]; goback; oldorig;
addcodez(choose)

[}

6c[[exp 1(expz):ﬂ

E',C[[expr:[]; 86[[exp2]]; addcode(apply})
e x.exp]] :

neworig;

push(x); addcodel(bind);

c

e [exp];

addcode(return);
oidorig;

addcode l(save)

Table 6. An Application of Table 5

Source Program m = (if x then 7 else (y+1)) + z

Compiling Semantics Output (a sequence of elementary compile-time actions):
Pe[n] = execute(push(x); addcode ,(find);
neworig; push(7); addcodel(load); goback; oldorig;

neworig; push(y); addcodei(find);
push(1); addcodel(load); addcode(plus);
goback; oldorig; \
addcodez(if);
push(z); addcodeI(find); addcode(plus) )

Value of PC under Compile-time Interpretation lcom
[0: if(1,2); find(z); plus '
1: load(7); goto(0+1)
2: find(y); load(1); plus; goto(0+1) |
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pumm———
Table 7. Compiler Generation Function cg: IS =+ C
IS Operators Derived Operators on C
a <= skip skip
| a,; a, cg(aj); cgla,)
l e addcode(e)
| e(pl’ cees pn) cglp 1); ces cg(pn); addcoden(e)
p <= con push(con)
a 7 neworig; cg(a); goback; oldorig;
ans <= execute(a) execute({cg(a))

Correctness statement

Referring to Figure 3 we can now state correctness of the method. Proof of a
closely related result may be found in [ChrBl]. The compiling semantics of'for

example table 5 becomes 8' =8 ° cg in the current notation.

Theorem Let 8 be an imperative semantics (i.e. a homomorphism from a syn—
tax algebra to terms of IS). Then for any interpretation | of 8 and any source program

parse tree T,

modell(Sn') = runl(modellcom(CQ(S m)))

‘This theorem asserts that for any semantic definition 8 written in terms of IS,

the "compiling semantics" 8' =8 °ccg is a correct compiler, This completely avoids

the need for individualized (and difficult) compiler correctness proofs such as those

of [ADJ79], [BulL69], [Gau80], [McP67], [MiS76], [Mor73], [Mos80] and [Wan80b].
Generality of the method follows from the expressive power of IS combined with

the fact that interpretation | may be chosen freely. However it is clearly desirable to

expand IS to aliow for more powerful and less operationally oriented semantic defi-
nitions.
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VI A COMPILING ALGEBRA C

The elementary actions of C have been listed in section V; their interpreta-
tions are found in Table 8. The complile-time state is minimal since it only needs

to handle control flow. Its components are: a partially-generated program

m=|[0: Stgs .- , ke Stk]’ a stack to hold parameters of target instructions, and a stack

of origins of streams (the top is the origin of the current stream). Catenation of

item a to the top of stack s is written as a-s.

Table 8. Interpretation of Compiling-Algebra C

Domains:

Store = program x p¥* x I*- (notation of Table 4)
Answer = program

Elementary Actions:

program, i = instruction
label

Notation: n
‘ I

upd(m,1,i) =&, with instruction i added to the end of its
I'th stream ‘

paddcode(i) c (,p*,1 . 1%)
=c (upd(m,1,i),p*,1 « 1¥)
eaddcoden(i)c ('l‘r,pn I P p*, p*, 1« 1I¥%)
=c (upd(‘n,I,i(p1,...,pn)),p*,l . I¥)

gpush(p) c (m,p*,1*)
gneworig c (m,p*,1¥).

cim,p-p*, 1%
clm, p*, (k+1) - 1%)
where 1 = [0: str ... ki str]

pgoback cim, p¥, ke« 1+ 1%)

c (upd(m,k,goto(l + i)), p*, ke I« 1%)
where i = length of the I'th stream of

goldorig c(m, p*, I« 1% clm, 1« p¥*, 1%

Final Continuation: c_(m, p*, 1*¥)=1n

Initial Store: s't0 =(emptyprogram, :emptystack, 0)
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VIl CONCLUSIONS AND FUTURE WORK

practical Remarks
armm—

summarized in operational terms, our method is used as follows:
1. A semantic definition 8 is written mapping parse trees into IS (e. g. Table 2).

2. This is transformed into a "compiling semantics" 8! associating with each parse
tree a sequence of compile-time actions (e.g. Table 5). This is done by applying

the "cg" function of Table 7 to the right sides of 8 equations.

3. A source program f can be compiled by using 8' to see which compile-time actions

are appropriate forff, and performing them (e.g. Table 6).

4. Meanings of the elementary actions of 8 can be specified by an interpretation.
| such as that of Table 3. The target program compiled from % will contain

these elementary actions as instructions, with labels and atoms as parameters.

5. Consequently target programs can be made executable on a computer by writing
routines (e.g. macros) for the elementary actions which are consistent with the

interpretation I. This seems to be straightforward in practice.

Step 3 above has been described as though one began with the entire parse tree,
built all of 84, and then evaluated 8! via lcom. Clearly 8'f can be evaluated while
it is being formed since it is constructed in left-to-right order. Further, it often
happens that in 8 the subexpression:references in semantic equations occur in the
same order as in the productions. In this case 8! is essentially a "simple syntax-
directed translation' [Ahu73], and compilation can be performed during top-down
parsing, e.g. as istypically done in handwritten recursive descent compilers. The
implications for automatic production of efficient one-pass compilers should be obvious

The target programs produces are minimal, containing only the elementary ac-
tions given in the semantics and a few gotos. Consequentiy it should be possible to
produce reasonably efficient machine code, either by macro expansion as in step 5
or by more sophisticated special-purpose methods (e. g. peephole optimization, or
writing a code generator which maintains a compile-time description of_the run-time
store). Another promising possibility is automatically to produce the code generator
by applying similar algebraic methods to the terms used to describe stores and the
elementary actions on them (e.g. an automatic analysis of Table 3 or Table 8).

The approach is clearly well suited to "bootstrapping" since the compiling
algebra C is a subalgebra of I1S. The second author has constructed a semantics

which maps a set of semantic equations into the corresponding compiling semantics
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(by applying Table 7), and has implemented its elementary actions as well as those
of lcom using the PROL OG language. The result can be used to translate a semantics
into a compiler in flowchart form with instructions "addcode™ etc. This compiler can
then be used to translate source programs into flowchart form in a quite efficient
way.

The whole system could thus be "ported" to a new machine simply by writing

routines for the elementary compiling and compiler generation actions.

Directions for Future Work

Much work remains to be done to develop a realistic compiler generation system

using this approach. Following are some open problems.

1. To use the method all run time data structures (e. g. stacks, displays, etc.)
must be specified in the interpretation. Methods to transform more abstract
definitions into imperative semantics need to be investigated. A promising
direction is to extend IS to include, for example, the binding semantic algebra
BBS of [MosBl]. It appears to be possible to synthesize necessary stack
components of the store (e; d. temporary results and return addresses) directly

from 8§ for at least a reasonably large subalgebra of BBS.

2. A general method to isolate the evaluation of static information (e.g; symbol
tables) and move it into the compiler needs to be developed. This has mostly
been done by ad hoc methods until now, although [Gan80] is an exception. It
appears likely that flow analysis methods (e.g. [MuJ81]) can be applied to this

problem.

3. A general method for transforming definitions of elementary actions into code

generation modules should be developed.
Finally, it should be mentioned that the method cannot handle al! programming
language constructs. Examples include self-modification, concurrency and parallel-~

ism.
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