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ABSTRACT

The ring S_ of formal power series in the noncommuting
variables a,, . . ., a, with the coefficient field GF(2) is introduced
and studied. The term symbolic expressions is used instead of for-
mal power series, since it generalizes the concept of a symbolic
expression introduced in [2] and [3]. S_ is characterized as the
terminal object of the category Aut of automata. A category
theoretic characterization of the subring S™ of S_ consisting of

rational sexps is also given.

Introductlion

Theory of formal power series in noncommulting variables provides a use-
ful algebraic tool for the study of formal languages. In the most general setting
of the theory, the coefficients of a formal power series are taken from an arbi-
trary semiring, and it is possible to prove useful theorems in this general setting.
(See e.g. Salomaa and Soittola[1].) In this paper, however, we will take the two
elemented Galois field GF(2) as the coefficient semiring. This choice of the
semiring will turn out to be very convenient. We will use the term symbolic
expression (or sexp for short) instead of formal power series, since it generalizes
the concept of a symbolic expression introduced in Sato[2] and Sato and
Hagiya[3]. In [2] and [3], it is shown that symbolic expressions constitute a
flexible data structure, which is therefore used as a data domain of a program-
ming language called Hyperlisp. Here we study symbolic expressions from an
algebraic point of view.

In 1, we study the ring S_ consisting of all the sexps. We show that S.
satisfles a certain domain equation for an abstract data structure.

In 2, we characlerize S_ as the terminal object of the category Aul of
automata. We then study the subring S™ of S_ consisting of rational sexps.
The well-known characterization of regular languages (i.e., rational sexps) in
terms of finite automata is established in our formalism. A category theorelic
characterization of S™! is also given.

In 3, we introduce the subring S of S_ consisting of finie sexps. The rela-

tionship with the concept of a symbolic expression introduced in {2], [3] is also
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discussed.

1. S

Let Z=f{a,, ..., a.{ (n=1) be an alphabet consisting of n distinct sym-
bols, which we will fix for the rest of this paper. Let W=%Y* be the f[ree
monoid over the alphabet I, and let 2=§0,1} be the Galois field GF(2). We

put

S ={rlmw->2}.
We will use r,s,t etc. to denote elements of S_ and u,v,w etc. to denote ele-
ments of W. Elements of S_ are called symbolic expressions or sezps for short.
Elements of W are called words. For a word w, |w| denotes its length. We

write (r,w) for r(w). We remark that S_ may be identified with 2% (the
power set of W) by the correspondence:

r < supp(r)={we W|(r,w)=1}.
Any sexp 1, then, naturally becomes a language over W.
We now define addition and multiplication on S as follows.

(r+s,w)=(r,w)+ (s, w),

(rs,w)= % (r.u)(s,v).

w=uy

S, then becomes a noncommutative ring with the 0 and 1 defined by

(0,w)=0,

1 if w=1 (the unit of W),
(1, w)=
0 otherwise.

By identifying 0, 1 €S_ with those in 2, ‘we assume that 2CS_. S_ then

oo

becomes a vector space over 2. Next, for any we W we define weS_ by:

1 ifw="wu,
(w,u)=
0 otherwise.

Since the map: w— w is one-to-one and preserves multiplication on W, we will
identify w with w and assume that WCS_ .
Consider the map m:S_—S_ defined by
n(r)=(r1).
It is a ring homomorphism and satisfies n=m. If we regard S as a vector
space, m becomes a projection and we have the direct sum decomposition:

S . =ImnmneKermn.
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Since Im n=2, if we put
M_=Kern={r|(r,1)=0}
we have
S.=2eM_ ‘ (1.1)

We put A_=S_-M_. Elements of M_ are called molecules, and elements of
A _ are called aloms.

o

Next, we define a map 6:S_x W —=S_ by:
(6(r,u),v)=(r, ).

It is an action of the monoid W on S since we have

é(r,1)=r,
6(6(r,w),v)=6(r, w).
For a fixed w,
6(—,w):S_—S_
is a linear transformation. In particular, for each 1 (1=i=n), we define
0;S,—>S, by
0, (r)=6(r qa,).
We have the following
Proposition 1.1. o (st)=7n(s)o (t)+0,(s)t (1=1=n).
Proof.
(o;(st),w)=(8(st,a;) w)
=(st, a,w)
= ¥ (s,u)(tv)

w= qw

=(s.1)(t.qw)+ ¥ (s,qu)(tv)

oUW = aw

=m(s)(o (D w)+ T (o,(s).u)(L.v)

uv=w

=(n(s)o (t)+o,(s)t w).

Note that, by a simple computation, we have ai(ai)=6ij, where 4, is
Kronecker’'s delta.

We now regard S, as a right S_-module. M then becomes its submo-
dule (or, a right ideal of the ring S_).

Theorem 1.2. <a,, ..., a,> forms a basis of M, .

Proof It suffices to prove the following (a) and (b).
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(a) If TeM, then 7=} a,0,(r): Since re M, we have (r.,1)=0. On the other
i
hand, since ¢, € M,

(X aiai('r),l)=2(aiai(r),1)=2(ai,l)(ai(r),1)=0.

Next, for any we W we have

(2 aiai(r),ajw)=(oj(2 a,0,(7)), w)
=(E oj(aioi(r)),w)
=E (O'j(az'a-,;(r)):w)

=2 (0 (g} o (r) w)+(n(a)o ;(o;(r)) w)]

1

22(67,;01’(7-)»10)

1

=(gj(7-),w)
=(r,ajw).

Since any w€ W is either 1 or of the form a;w we have r=3 a,0.(7).

1

(b) Z‘,aiti=0 = =0 (1=1i=n):

(3

O=0j(2 aiti)=2Gj(aitl)=2oj(ai)ti+n(ai)oj(ti)=26ﬁti=ti.

By this theorem we have the right S_ -module isomorphism:

o:S_e - eS_—M,_ (1.2)
such that o (¢, . . ., t,)=a t,+ - +a,t . We have
o Hr)=<o(r), ..., g, (r)>
In view of (1.1), the map
7:S X xS, —A
defined by
(b, o t)=a (b, . ., t)+1

is a bijection. Combining (1.1) and (1.2), we have the following set theoretic
Isomorphism:

S,=~2xS_x - xS (1.3)

where r «» <mn(r),0,(7),....,0 ,(r)>. We have the following proposition by
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(1.3).
Proposition 1.3. s={ < n(s)=n(t).0,(s)=0,(t) (1=i=n).
(1.3) may be rewritten as:
S, =~ S+ S* (1.4)

where + denotes the (direct) sum of two sels. This isomorphism tells us the
basic properties of the data structure S_. Namely, any sexp is an infinite n-ary
tree which carries one bit information at each node. The recognwzer m distin-
guishes atoms from molecules. The constructor ¢ (7) constructs from given n
sexps t; (1=1=n) a molecule {atom, resp.) s whose i-th subtree t is
recovered by the selector o .

A sexp s is twnwvertible if there exists a ¢ such that st={s=1. Since the ¢

above is unique for an invertible s, it is called the tnverse of s and is denoted

by s”!. We wish to characterize invertible sexps. We need the following
lemma.

Lemma 1.4. [freM_ thent*e€ M, (k=0) where
M, ={res_ | |w|<k = (r,w)=0}.

Proof If k=0 then r°=1€ M. Assume r*€M,. Then for any w such that
lwl< k+1,

(rFrhw)=F (v u)(rv)

=(rk w)(r.1)+ 2 (7% uw)(r.v).

Since re M, we have (r,1)=0; and if us* w we have (7%¥,u)=0 by the assump-
tion. Hence (7%*!,w)=0.

Theorem 1.5. A sexp is tnvertible iff it is an atom.

Proof (=>) If s is invertible, then ss”!=1. Hence, 1= n(l)=
n(ss™!)=n(s)n(s™!). Then we have n(s)=1, so s is an atom.

(<==) Let s be an atom. We define a molecule r by putting r=1+s. Then we
define a sexp ¢ by:

(thw)=(1+7+ - - +7rlwl ).
By Lemma 1.4, for any k=0, we have
(L+r+ -+ 7wl )= (147+ - 4 rlwl),
We have si=1 because:

(st,w)= % (s.u)(t,v)

uw=w

=% (1+ru)(1+7+ - - +71¥0)
uy=w

=Y (I1+ru)(1+7+ - - +riwl )
uv=w
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=(1+7lwl+1 )
=(1,w)+ (rlwl*! )
=(1,w).

That {s=1 holds can be proved similarly.

2. sm
We define S™ as the least subset of S_ such that
(i) 2uzgcs™,
(ii) s,teS™ == s4+teS™,
(ili) s,t€S™ => steS™,
(iv) seS™nM_ => (1+s) les™,
S™! is a subring of S_. In this section, we will study the relationship between
S™! and finite automata. Here we define an automaton (over I) as a triple
X=<X6y,€>
where
(1) X is a (possibly infinite) nonempty set of stales,
() 6,:Xx W— X is an action of W on X,
(3) expX—2.
Let X be an automaton. For each i (1=i1=n), we define the map
o XX->X

by putting ¢ X(z)=6,(z.q,). This function determines the transition of states
for the input symbol a,. A state z€ X is considered to be accepted if ex(x)=1.
We now define a function

Ly:X-S,

by putting (Ly(z) w)=e,(d4(z,w)). L,(r) may be considered as ‘the
language which X, with the initial state z, accepts. Here we also note-that
S.,=<S_,:6,m> becomes an automaton. Moreover, L, becomes a morphism
in the category Aut of automata which we now define. .

The category Aut, by definition, has all automata as its objects. Its mor-
phisms are defined by:

h€eHom(X,Y) <= h is a map for which the diagram beiow commutes:
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hx1y
Xx W —> YxX W
6X 6Y
.\L h £ 4
X > Y
€x €y
v L
2 > 2

12

Proposition 2.1. Ly:X—S_€Hom(X,S,_).
Proof.
(6(L(z) w)u)=(L(z) wu)=e(6(z, wu)),
(L(6(z.w)) u)=e(6(6(z, w),u))=e(é(z, wu)).
m(L(z))=(L(z).1)=€(6(z.1))=€(z).
Proposition 2.2. Lg :S_—S_ 1s idenluly.
Proof.
(L(r),w)=n(6(r.w))=(6(r,w).1)=(r,wl)=(r w).
Proposition 2.3. h€eHom(X,Y)=> Lych=L,.
Proof v
(Ly-(h(x)),w)=€y(éy(h(x),w))=€y(h(dx(i,w)))=ex(6x(x,w))=(LX(x),w).
These propositions yield the following theorem. |

Theorem 2.4. S™ is the terminal object of Aut.

Proof Let X be any automaton. We have LXEHom(X,Sm) by Proposition
2.1. Next, take any h€ Hom(X,S_). By Proposition 2.2 and Proposition 2.3 ..
for Y=S_,, we have Ly=Lg ch=lch=h. Thus we have proved that
Hom(X,S_) is a singleton set for any X, i.e., S_ is terminal in Aut. ,

oo

We now wish to characterize S™ categorically. For a ring R, we let
M, (R) denote the matrix ring consisting of kx k& R-matrix. We define a ring
homomorphism ' ‘

MM, (S.)~ M(2)
by putling ﬂk(S)=(n(si].)) for S=(sij)€Mk(Sw). The set
G.=N741),

where [ is the kxk unit matrix, then becomes a monoid under matrix

-7 -



167

multiplication. Moreover, we have:
Theorem 2.5. G, forms a group under matriz multiplication.
Proof Let E; (1=14,j= k) be the kx k matrix such that its (4, ) element is 1
and all other elements are §. For any molecule re M _, we put
Qk(i,j;r)=1+rEij.
It is easy to see that @,(1,j;7)€ G, and
oy Qk(i,j;l+(1+r)‘1) if 1=7j,
Quligir) =] TN i
e (1. 7i7) if i= 7
We can then prove, using usual sweep out method, that the group generated by
the set $@, (4, 7;7)} coincides with G,.
Remark. The proof also shows that if S€G,n M, (S™), S7! is also a
member of M, (S™). '

Let X=< X6, .ey> be a finite automaton with & states so that
X={z,, .. ., z,}. For each | (1=1=n) we define & ,:§1, ..., ki={1,.. . , k}
by the condition:

o,(V)=j<= le(xi)=:r:j.
We then define a kx k£ S_ -matrix S=(sij) by putting

sij=(5ij+ » aldat(i)]"
l

We note that S€ G, n M, (S™). Let X; (1=i=k) be k distinct indeterminates
and let x=4(X, - - X,). Wealso put e=!(e(z;) - - €(z,)): We call the equa-
tion: : .
Sx=e .- (2.1)
the characteristic equation of the finite automaton X. By Theorem 2.5 it has thev

unique solution x=S"!e. Remark that (2.1) is equivalent to the following sys-
tem of equations: '

X=a, X S +anXa"(i)+e(xi) (=1, ..., k).

o, (i
Theorem 2.6.
L(xi)zalL(xal(.

Pt ra Lz, )relz) (=1 k).
Proof Since LEHom{X.S_) we have

0 (L(z))=L(0 Mz))=L(z, ).

m(L(z))=¢(zx,).
Therefore we have:

n(RHS)=n(a,L(z Y+ +ﬂ(akL(:zak(i))+7T(e(:z:i))

o,(%)
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=€(I~,;)
—n(LHS),
))'*'U[(E(Ii))

OL(RHS)ZU[(alL(I )+ "'+Cfl(akL(:rek(i)

&,(4)

=L(Ial(i))

=0 ;(L(z;))
=0 ,(LHS).

This proves LHS=RHS.

This theorem says that L(z;)’s give the solution to the equation (2.1) and
hence they are in S™.

We next show that, éonversely, any language in S™! can be represented by
a finite automaton. First we remark that, for a finite set X, 2% becomes a vec-
tor space over 2 under the addition defined by: ‘

U+V=(U-V)u (V-U).

If we identify any z€X with the singleton set {z} then X becomes a basis of
the vector space 2%. Let V be any vector space over 2. Then any map fiX—>V
can be uniquely extended to a linear map from 2% to V. We will denote this
extended map also by f. We will write '

X2z kErT
if z is a state of a finite automaton X and 7=L,(z); and in this case we say
that z€ X realizes r. Such 7's are called realizable.
Theorem 2.7. A sexp r is realizable iff r€ ST,
Proof Onlyif part follows from the remark after Theorem 2.4.
We prove 1if part by induction on the construction of .

(i) Since the set 2Uu T &S, is closed under the functions o, (1=(=n), it
naturally becomes a finite automaton and each state realizes itself.

(ii) r=s+{: Assume that X>z,Fs and Y2y, Ft. We define an automaton Z
by putting:

Z=XxY={zxy | reX yeY},

Sy(zxy,w)=0,(z,w)xd,(y, w),

ez(zxy)=ecy(z)+e,(y).

Then by a simple computation we have Ly(zxy)=L,(z)+L,(y). so that
Z3xyxyy Es+i.

(iii) r=st: Assume that X>z,Fs and Y2y, Ft. We define an automaton Z
by putting: :

Z=2Yx X={yxz | ye2¥ ze X},
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o Hyxz)=(0 () +ex(z)0(y))x0 f(z) (1=i=n),
ez(yxz)=ey(y)+ey(z)ey(yy).
We show that
L(yxz)=Ly(y)+Ly(z)Ly(y,) (yxz€2)
solves the characteristic equation of the automaton Z. Il.e., we show that
L(z)=a,L(a Z(2))+ - +a,L(0 2(2))+e,(2) (z€2Z). (2.2)
Letting z=yx z, we compare the LHS and RHS of (2.2) as follows.
m(LHS)=m (Ly(y))+ 7 (Ly(z))m(Ly(yy))
=ey(y)+ey(z)ey(yy)
=g ()
=n(RHS),
0 (LHS)=0 (Ly(y))+0 (Ly(z)Ly(yy)) ,
= L(0 X(3))+ 7 (Lyg9)0 ( Ly (o)) + 0 ,(Ly(2)) Ly ()
=L(0 f(y))+ex(z) Ly(o (ye))+ Lo (z)) Ly (yy)
=L(0 (2))
=0 Z(RHS) (1=(=n).

This proves (2.2), so that ‘we have Lz(z)=L~(z). Hence, we have
Ly(¢pxzg)=Ly(zy)Ly(yy)=st. lLe, Z>¢xz,Fst | -
(iv) r=(1+s)”!, sesS™nM,: Assume that X>z,fks Since l=7"lr=

{(1+s)r= T+ ST, we have r=1+srT. So, a,(r)= n(s)o ,(r)+
o,(s)r=0,(s)r (1=l=n). We define an automaton Z by putting o

Z=2X={x | x< X},
alz(x)=alX(X)+ex(x)olx(x)) (1=1=n),
ex(x)=¢€,(x).
We show that
f,(x)=LX(x)r (x€Z)

solves the characteristic equation of the automaton Z. le., we show the equa- .
tion:

L(x)=a,L(c Z(x))+ ~  +a,L(0 Z(x))+e,(x) (x€Z) (2.3)
We compare the LHS and RHS of (2.3) as follows. o
m(LHS)=n(Ly(x))m(7r)=€,(x)=c,(x)=n(RHS),
o ,(LHS)=0 ,(L(x)7)

_10-
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’_‘U[(Lx(x))T""ﬂ(Lx(x)_)Ct(T)
=LX((7[X(X))7'+ €x(x)a,(s)r
=(L)((a [X(X))+€X(X)Lx(0 [X(xo)))T

=LX(0[X(X)+€X(X)G Kz )T

~

- Lo A ey 000 )
iZ(U[Z(x))
=01(RHS).~

This proves (2.3), so that we have LZ(x)zi(x). Hence we have
Z>z, I=f,(xo)=LX(x0)'r= sr=1+7. By (ii) above, 7 is also realizable.

Corollary 2.8. 7€S™ =>g¢ (r)e€S™ (1=<I=<n).

Proof By Theorem 2.7, we can find X and z such that Xz =r. Then we
have X0 X(z) Fo,(r). Hence ¢ ,(r)esSm™.

Remark. It is possible to prove Corollary 2.8 directly by induction on the
construction of r. ,

Let X be any automaton and let ¥ be a subset of X which is closed under
alX for each { (I=!=n). Then we can naturally introduce into Y an automa-
ton structure, by restricting that of X to Y, which makes Y a subaulomaton of
X. Since S™ is closed under ¢, for each | (1=(=n), S™ becomes a subauto- -
manton of S_. Although S™ is not a finite automaton, it is a locally finite
automaton in the sense of the following definition. ’

Definition. An automaton X=<X;0,e> is locally finide iff the set
Xiz=fy | y=6(z,w) for some we W} is finite for all z€ X.

We will denote by Aut’™ the full subcategory of Aut consisting of all the locally
finite automata. "We have the following theorem.

Theorem 2.9. S™ is the terminal object of Aut™ .

Proof We first prove the claim that S™ is a locally finite automaton. Suppose
that 7€ S™!. By Theorem 2.7, we can find X and z such that Xz Fr. Since
Im Ly is finite and closed under o, (1=1=n), the set X|z is also finite. This
proves the claim.

Next, let X be an arbitrary locally finite automaton, and consider the map
Ly:X—S,. Forany z€ X, X[z becomes a finite subautomaton of X. Then we
have Ly(z)=Ly ,(2)€S™, so that we may regard Ly as the map Ly:X—>S"™.
Now the theorem can be proved similarly as Theorem 2.4.

3. S
We define S as the least subset of S such that

- 11 -
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(i) 2uzZcs,

(ii) s,t€S =>s+1€S,

(iii) s,teS =>steS.

According to this definition of S, S becomes a subring of S_. Elements of S
are called finile sexps. We can establish the set.theoretic isomorphism:

S =~ S™ 4+ S" ' (3.1)

similarly as (1.4). Just as (1.4) expressed some characteristics of S_, this equa-
tion says that S is a data structure equipped with the recognizer n, constructors
o, 7 and selectors 0, (1=1=n). Furthermore, it is easy to verity that S can be
characterized as the least subset of S_ such that -

(1) 0€S,
(2) t,.... t,€S=0(t,. . ., t,)€S,
(3) t. . ... tesS=1(t,... .. t)ES.

We remark that Scott[4] (p. 96) also discusses the domain equation of the
form (3.1), and gives a solution for it as a neighbourhood system. In Scott[4],
the interpretations of sums and products are slightly different, so that total ele-
ments in his solution corresponds to symbolic expressions in our sense. He
also points out that eventually periodic total trees (which correspond to our
rational sexp) represents an automaton which accepts itself.

Finally, we remark that in case Z=}a,,a,} finite sexps are precisely the
symbolic expressions in the sense of Sato[2] and Sato and Hagiya[3]. In [2]
and [3], the functions ¢, 7, 0, and 0, are respectlvely called cons, snoc, carand
cdrfollowing the tradition of LlSp ‘
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