goooboooogn
0 454 0 19820 211-228

211

A PREDICATE TRANSFORMER FOR WEAK FAIR ITERATIO

BY

DaAviD PARK

(to appear in : Proceedings, 6th 1BM Symposium on Mathematical Foundations of

Computer Science, Hakone, Japan.)

Department of Computer Science,
University of Warwick,

COVENTRY CV4 7AL,

ENGLAND.

May 1981

212

A Predicate Transformer for Weak Fair Iteration

David Park
Department of Computer Science
University of Warwick
Coventry CV4 7AL

Abstract: Two new constructs, wdo- and sdo— statements, are added to
the language of guarded commands as varieties of do-statement, with fairness
constraints on infinite execution sequences. With weak fairness, a clause
must be executed infinitely often unless its guard is infinitely often
false; with strong fairness, unless its guard is only finitely often true.
The relationship to unbounded nondeterminism is discussed, and a predicate
transformer wp (WDO,R) obtained for the weak version, by introduction of

fixpoint concepts.

Introduction:

In the author's previous work [9], [10], fairness was considered

in the context of parallelism, as in combinations such as:

(while b do skip) par b:= false

The emphasis there was to capture the constraint on all interleavings of
program executions, that all steps get executed ultimately - the constraint

that guarantees termination of the example above.

This paper studies fairmess in a slightly different setting, by

considering constraints on the execution of guarded iterations
doBl+clOB2+c20 ...01Bn ~+Cn od

which are appropriate when these are regarded as controlling the-parallel
execution of n processes each consisting of the iteration of some Ci. Im

this context, one looks for conditions to guarantee termination of

do b > skip I b > b := false epd” c,\

™ ¢
The work here has been inspired particularly from three recent sources.
The setting, of considering fair iteration constraints, is taken directly
from Apt & Olderog [11]; the statement transformations T(WDO), T(SDO) of
Section 3 are simplifications of transformations first described by them

(I was previously in doubt whether any such T(SDO) existed). The predicate

213

transformer of Section 4 arose from considering a preliminary version of
Lehmann, Pnueli & Stavi [6]; the corollary, completeness of a simple rule
for weak fair termination (called "justice" by them), was arrived at
independently by myself - though the inspiration clearly owes much to their
own original characterization. The predicate transformer itself derives from
preliminary work by de Roever aimed at capturing strong fairness in the

mu calculus of [5]. I am indebted to the Bad Honnef Workshop on Semantics,
where these ideas germinated, and to the Programming Research Group, Oxford,

where they were developed.

1. Preliminaries:

Language: The programming language to be considered will be an extension
of Dijkstra's language of guarded commands as presented in [43. Alternative
forms wdo, sdo for do will be described presently. In addition, we add a

"nondeterministic'" expression
?

which is to take as value any nonnegative integer on each evaluation, not
necessarily the same integer at different occurrences or evaluations.

Thus (99 + ?) may take on any integer value 99 or above; [in fact’

(? - 7) takes on any integer value, and (? = ?) has values true and false -

though we will not here be obsessed with such issues] .

Predicates: For uniformity with [4] (and also, for variety) we will cast
our ideas in terms of predicates rather than sets. While this implies a
widespread recasting of old terminology, the differences are here regarded
as cosmetic rather than essential. Taking S to be the set of states s, we
will talk of s %:A rather than s ¢ A, and of A A B rather than A N B.

More problematically, we will use infinite combinations such as \V/Fd s

for transfinite o and for an indexed set {FA} of predicates, A<a
without concern for expressibility or effectiveness of the result. Insofar
as predicates are regarded as having syntax, it will be the syntax used for
forming guards (but not involving the nondeterministic "?" expression)
extended by adding conventional logical combinations and the -, {— operators

introduced below. Fiﬁally, we will frequently assert a predicate A, where

strictly speaking we should write that s k:A.for all s.

214

Semantics: The semantics of the language as specified by axioms for

the wp predicate transformer is usually distinguished from its denotational
semantics. But there is a close relationship between wp—semantics and a
relational denotational semantics in the style of [9]. There, a
denotational semantics was obtained for a language involving parallelism
and unbounded nondeterminism, by specifying two semantic functions on

programs C

M(C)

T(C) < S , the termination domain of C

In

S x S, the relation computed by C

From M(C) we can define the operators 3© of dynamic logic, which are
convenient predicate transformers to use in conjunction with wp. The

relationships are as follows:
s = [CIr iff for all s', <s,s'> e M(C), s'F R
s F: <:>R iff there exists s', <s,s'> ¢ M(C) and s"= R
wp(C,R) = T7(c) » [C]R.
In this paper we are above all concerned with guaranteed termination,
which is
wp(C, true) = T(C)

since | CI true = true for all C.

In a wider context, termination properties generalise to the "liveness"
properties discussed by Owicki & Lamport [7], as distinguished from

"safety" properties which are related to our predicates R-

Fixpoints: to obtain a wp(DO,R) which is correct when there is unbounded
nondeterminism, and for our wp(WDO,R) we need to translate fixpoint theory

into "predicate-—theoretic" terms:

Definition: A predicate transformation F(X) is monotone in X if,

whenever X = Y (i.e. whenever s F-(X = Y), all s) then F(X) = F(Y).

Theorem [Knaster—Tarski]: If F(X) is monotone, the identity

X = F(X)

has a strongest solution (the least fixpoint pF) and a weakest solution

(the maximal fixpoint'JF).

Note: This assumes that 'predicates' form a complete boolean algebra - a
somewhat artificial assumption if ''predicates' are to be construed as

expressible in some fixed formalism.

215

Fixpoint Induction: The following are valid inferences:

(F.1.) from F(X) = X to deduce YLF = X

(dual F.TI.) ‘J
from X = F(X) to deduce X = MF

Proofs of these results are well-known (see [81).

2. Unbounded Nondeterminism:

There are general conceptual problems to do with unbounded nondeterminism;
the reader may be familiar with the arguments in Chapter 9 of Dijkstra [4 J.
In this section we summarise the relevant portions of [9]. 1In particular
we will reformulate Dijkstra's characterization of wp(DO,R) so as to make
unbounded nondeterminism acceptable (prior to [91, this formulation was

made in Boom [31]).
Fairness constraints ensure termination of statements such as:

b := true; z := 0;

wdo b » z :=2+1 [0 b ~>Db := false od
But they put no bound on the resulting value of z.

This means that the above would be equivalent to (i.e. would map to

the same objects under M(C), T(C) as)

b : = false; z := 7 ;

The fairness constructs therefore face similar objections to those concerning
unbounded nondeterminism , since expressions involving " ? " may be
systematically eliminated in favour of wdo (or sdo). There are three

points to be dealt with:

2.1 Iterations and Unbounded Nondeterminism

There is a definitional problem, illustrated by the example
C:doz<0~+>2z:=717 O =z>0>2z:=2z1o0d
in which z is taken to vary over integers only. According to Dijkstra's

specification, we should have

T(C) = wp(C, true) = NJ/ Hi v \
i=o
where Hi is defined inductively by
- (*)
Ho = (z= 0) f
= o= 9
Hi+1 = Hi v ((z < 0= wp(z := 27, Hi))

A(z >0 =wp(z i= z-1, B))) |

216

which solves as

noting that
wp(z := 7, 0 ¢ z ¢ 1) = false
wp(z := z-1, 0 g z < i) 20 < z g i+l

But then

7(c)

i
=
He

mn

(z 3 0)
This is anomalous. We expect T(C) = true.

The anomaly disappears if the definition (*) is reformulated in

fixpoint terms.

T(C) = H where H is the strongest solution to

H=(z<0=wp(z:=272, H) (*%)
A(z > 0= wp(z := z-1, H))

(**) now determines T(C) = true; H = true is in fact the unique solution

to the equivalence.

An amended definition for wp can now be given to allow for unbounded

nondeterminism. As in [43, DO denotes the statement
do OB.>¢C. 0 od

Replace the wp(DO,R) definition by:

2.0.1. wp(DO,R) is the strongest solution H to

B = (N\-B;, =R A A (B, = wp(C,,H)
1 1

2.0.1 can be justified, incidentally, by appeal to an operational
semantics as we will do in Section 4 for WDO. If the right hand side

of the equation in 2.0.1. is abbreviated F(H), the scheme is to show
(1) F(wp(DO,R)) = wp(DO,R); so uF = wp(DO,R)
by Fixpoint Induction

(ii) If H = F(H) and s k& -H
then s ': - wp(DO,R) ;
so wp(DO,R) = yF.

But we omit the details of this scheme. We should note the case

when R = true and each Ci terminates:

217

2.0.2. If Bi = T(Ci) then 7(DO) is the strongest solution to

H = /}\ (Bi = Ci H)

Finally, we should cope with the addition of " ? ", It will

suffice to restrict”?“to the right hand sides of assignments only.

Then we must add:

T
2.0.3. If E contains occurrences of " ? ", then B

wp(x := E,R) = ({\ wp(x :=E',R)
Eed(D)
where d(E) is the set of expressions obtainable from E
by substitution of nonnegétive numerals for occurrences

Of LU, N 1)

2.2 Continuitz

The anomaly in 2.1 is thathi does not necessarily satisfy the

H E/i\ (Bi = Wp(Ci,H))

This indicates a failure of continuity. In the particular example the

fixpoint identity

right-hand side F(H) is not a continuous function of H. We have

o 0
F(\/ B # v F(H,)
i=o i%o
for a sequence with Hi = Hi+1’ all i.

A simpler example of a non—continuous function is just
F(H) = wp(x := 7?7, H)

Taking Hi = x < 1, we have F(Hi) = false for all i; butVHi = true.
So

Fthi) = wp(x := ?, true) = true ¥\/F(Hi)

While monotonicity can replace continuity for the purposes of [4], failure
of continuity forces a departure from the usual assumptions of domain-
theoretic denotational semantics (as described in Stoy [11], for example).
This is a deep technical difficulty, which motivated the return to elementary
relational notions of Park [9 1. Apt & Plotkin [2] present recent work

aimed at reconciling the domain—theoretic approach.

218

2.3 Implementability

The continuity comstraint which is violated in 2.2 is one which arises
from a priori considerations of what is '"computable'. We should expect an
anomaly in this respect also. For example, consider the (diverging)

statement
do z=0 + z:=?+1; b:==1b 0z>0 + z:=z-1; if b > write (0) O b > write (1) fj od

This should produce as output an infinite sequence over {0,1} - and the set

of all possible outputs forms the "fair set"
(0*1 1*0)*
of all sequences with infinite numbers of both Os and ls. This set is

not "computable" in any accepted sense; testing any finite number of

initial segments of a sequence is irrelevant to deciding membership in the set.

The technical consequences of this difficulty are essentially those
mentioned in 2.2. But there is an added perplexity. If the denotation

is "uncomputable', it seems to follow that the program is "unimplementable'.

We have to consider what “implementation" means in the sense of

nondeterminism being used.

Definition: A statement Cl is a slice of statement C2 iff

wp(C2,R) = wp(C1l,R) for all predicates R.

Thus, x := 1 is a slice of x := 7. If we admit as "implementations’
of C2 any implementation of a slice Cl, the perplexity disappears (presumably
Cl is "minimal" - i.e. a deterministic slice). The slice Cl may be "computable"
independent of C2. The language specifier is not interested in the
enumerability of all possible results of "nondeterministic" programs, in the
sense in which he uses the term. If he does intend some such "tight"
sense of nondeterminism, he will need to distinguish it from the "loose'

sense we are used to hearing from him.

2.4 Termination and Ordinals

The reader familiar with ordinals, transfinite induction, and their
connection with fixpoints of non—continuous functions will be interested

in the link between the termination predicate 2.0.2. and the familiar

2.4.1. If (B, = T(C,)) then s | T(DO) iff there exists a
well-ordering (W,>) and a partial map £ : § >y with

(1) f£(s') defined, <s',s"> e M(C)
imply £(s") defined, £(s') > £(s")

(ii) f(s) is defined.

219

Adequacy of this rule is obvious. An infinite iteration would produce

an infinite descending sequence in W, contra well-foundedness.

Definition: Given a function F(X) on predicates, define FA for

ordinals X, by

false

=z F(\/

A<a

Theorem 2.4.2: The strongest solution to

X = F(X
F monotone, is F* , some ordinal a.
[for proof, see [[5] 1]
2.4.1 can then be shown to be complete by taking F(H) as the right hand

side in 2.0.2., a monotone combination of H; taking W = a from 2.4.2.,

and defining
£(s) = min (A / s EFY)

In the cdse that F is continuous, we can take a = w, so that only finite
ordinals need be involved. But if unbounded nondeterminism occurs,

ordinals up to w? may be necessary (see [(13).

3. Strong and weak fairness

"Fairness" is to be expected when

DO : do ... 0B, »~C, O... od
. — 1 1

is thought of as scheduling processes in parallel by suitable interleaving,
the ith process being just the iteration of Ci' If processes do not
interfere with each other, i.e. if no Ci affects Bj’ j # i, the appropriate

fairness interior is clear. With interference there is a choice.

e
Notation: Write Ci: st>s' for <s,s8'> ¢ M(Q) g S,{é-‘-:itii‘

Definitions: A finite or infinite sequence 8,8y - is a DO-sequence

if, for each i # 0, there is a j such that si_lkz Bj and Cj P

[DO-sequences provide the operational notion needed for checking 2.0.1.

in the way indicated.]

220

An infinite sequence is weak fair if, for each j,

either (i) Cj : si_li-—->si for infinitely many i

or (1i1) 55 F:‘ﬂBj for infinitely many 1.

The sequénce is strong fair if, for each j,
either (i) above

or (ii) SiF: Bj for only finitely many i.

The fairness constraints allow us to disregard some infinite DO-sequences.
To indicate contexts where only weak fair infinite sequences are considered,

we replace do by wdo; or by sdo if only strong fair sequences are considered.

The effect of replacing do by wdo, or wdo by sdo is to increase T(DO),

without affecting the relation M(DO). As an example, the statements

wdo b + skip I b + b := false od
sdo b2 -+ bl := =bl
bl > b2 := false; bl := false od

both have guaranteed termination, though neither need terminate with weaker
constraints. In the first case, infinite repetition of the skip is not
weak fair, since the other guard would remain continuously true. In the
second case, infinite repetition of bl := =bl is weak but not strong fair.

bl is infinitely often true and infinitely often false.

The weak/strong terminology derives from Apt, Plotkin & Olderog
(see [11). Strong fairness is favoured in the literature - a point we
return to in a moment. Lehmann, Pnueli & Stavi [6] refer to weak fairness
as "justice'.

3.1 Fairness and Unbounded Nondeterminism

In Section 2 we pointed out how unbounded nondeterminism can be
simulated using wdo or sda. Apt & Olderog [1] prove a converse result,
that both varieties of fair iteration can be simulated, using statements

involving " 72 "

and ordinary do-loops. Here we will present rather simpler
versions of the transformations used by them and proofs using informal
operational reasoning [the reader should be wary of accepting plausible
alternative transformations without rigorous proof.] Since the wdo
justification suffers from a technical complication, we consider the sdo

transformation first.

221

3.1.1. strong fairness

SDO : $do .ev... OB, »C, Oovuvvrs od
— 1 1

T(SDO) ¢ weeeeee Z. =7 5 tiveus 3

i
_d‘q ceseen
0B. A /\ (B. = z; £z.) »C.; z =z, +1+7
]
O evevnn
od

To see that SDO, T(SDO) are equivalent (disregarding the introduction
of Zi)’ consider first any finite or strong fair infinite SDO-sequence
5,81 e We need to arrange successive values for " ? " so that T(SDO)
goes through the corresponding sequence of clauses. This can be dome by

arranging that z,, at the jth step, holds either

(1) pﬁn {k/k=>j, Ck : sk+—+sk+1}

or (ii) if there is no such k, some k such that
nm 3 k= S %:'ﬂBi for all m

Such a choice is possible, at any step, since the SDO-sequence is either
strong fair or finite (in which case it terminates with some skF:14-1Bi).

In the converse direction, there is no difficulty in seeing that every
T(SDO)-sequence corresponds to an SDO—sequence; every iteration obeys an
appropriate guarded command. To see that infinite sequences are strong fair,
note that Ci is executed only finitely often if and only if z; reaches some
final Qalue. After some N iterations, each such z; will have reached its
final value, .and every other zj will bound all such final values. But then

each such B, must remain false in all later iteratioms.
i

3.1.2. weak fairness

WDO : wdo 0B. >cC.0O...... od

. . =7
T(WDO) : eeveee 3 z; 1= e

E;{? (z; z) »if B, > C; 0 B, » skip fi;
a

do ceesnes

T

z, + 1+ 7
1

se0c e

/ od

1o

222

Proceeding as in 3.1.1., the complication arises in simulating a

particular WDO-sequence 5,8 We need to cope with "dead" clauses,

1
which WDO no longer takes, but which are still periodically inspected by
T(WDO). One solution is to encode the death/life property in z; as follows:
when the minimal 2 is 2j or 23j+1, T(WDO) is about to simulate the transition

from sj to s . The index z, is then

i+l

either (i) 2k+1 where k = min {ndCi : sml—+sm+1, m> 3}

or (ii) 2k, if Ci is dead (i.e. if the set in (i)

is empty) for some k > j, with Sy b:~1Bi.

An appropriate value for z. here always exists, from weak fairmess, or

from the termination condition, if the WDO-sequence is finite.

The converse direction for 3.1.2. is not difficult. Every iteration
of T(WD0O) either skips or obeys an appropriate guarded command. To check
weak fairness of infinite computations, note that T(WDO) executes each
clause infinitely often; so if some Ci is executed only finitely often,

the corresponding Bi must be false infinitely often.

3.2 Simulating strong fairness with weak fairmess

There is a direct construction, as follows:

18

Tw(SDO) : ... ; b,

false; ...

cee 3 2

n
o
-

i
Wdo teeee

D/\((B.Ab.)”z.SZ)A\/B.
. 3 j .

J J

z

+ 1f B, > C.; z, := z,+1l; b, := false
= i i’ 74 i _—

od

Justification: An SDO-sequence is simulated by the Tw(SDO)-sequence

which makes corresponding clause choices; but Ci may be chosen at any

point from which Bi will remain false, to ensure weak fairness. In the
converse direction, consider those clauses for which bi holds as forming

a "queue" which is ordered by the corresponding zZ;s which holds the number

of times Ci has been executed. At each step, either both loops terminate,

or at least one guard of Tw(SDO) is true — for the earliest clause in the
queue whose guard holds (or for every clause, if no guard in the queue holds).
Moreover at any stage, Tw(SDO) eventually executes some Ci’ after possiblg.

additions to the queue, either by selecting the earliest appropriate clause

223

(which is eventually done, by weak fairness) or otherwise. To see

that weak fair Tw(SDO)?seqUences correspond to strong fair SDO-sequences,

the argument proceeds as for T(SDO). In some final segment of the
computation, the values of z; for Ci obeyed finitely often remain constant,
bounded by the other values zj. Among these dead clauses, those in the

queue must have guards which remain false, or else the guard in Tw(SDO)

for the earliest such would be the only true guard and it would be
resurrected. But this means the Tw(SD0O)-guard for any dead clause (in the
queue or not) must be true throughout the final segment; so the corresponding
command eventually gets obeyed, which must add it to the queue, and its guard
must be false thereafter. So the only clauses of SDO executed finitely

often have guards which are true only finitely often.

3.3 Implementing fairness

Here we are interested in efficient slices of WDO, SDO.

3.3.1. weak fairness

There are many reasonably efficient slices - what is involved

is a straightforward fair scheduling algorithm, for example:

z =1
do

z=1 >41if B, »C. [l B. » skip fi; z :=1i + 1
. /i i i — =

A
('4 N oZ2=n e 0 e e e e 3z =1

3.3.2. strong fairness

One algorithm is obtained from T(SDO) above, by suitable
choice of " 2 " :

., =7 ., =0
replace z; by z;
z, :t=2z, + 7 + 1 by z. := max{z.}+ 1.
i i 1 .]
J B ~
This is, in effect, a '"queueing' algorithm; at each stage, the earliest

clause with true guard is obeyed, and moved to the end of the queue.

3.3.3. Discussion

The problem of implementing strong fairnmess is disquieting.
It is not clear that there is any algorithm which is essentialiy more
efficient than the queueing algorithm of 3.3.2. All that have been
explored by this author involve the (eventual) memorization of arbitrary
queue states (i.e. of arbitrary permutations of {1,2 ... n}) and the

overheads of excising from and adding to queues. If the problem is

12

294

essentially as complex as this, then strong fairness in this form would
seem an undesirable ingredient of language specification, at least as the
sole "low level" fair primitive. As we have shown in 3.2, strong fairness
can be simulated using weak fairness with a queueing regime. One suspects
that programmers would prefer the option of coding some such regime - and
exploiting special features of their task to simplify it. If strong
fairness is the only fair construct around, and has inherent inefficiency
of the order suspected, there is cause for concern on pragmatic grounds.

One waits for appropriate complexity results.

4, A Weakest Precondition for WDO

We will establish and justify wp(WDO,R).

Notation: EA(WDO,A,Y) is the weakest‘solution to
=9
X zAA /1\ (B, = wp(C;, XV V)

Lemma 4.1: s f= EA(WDO,A,Y) iff s{:—‘ A, and for every WDO-sequence 5,8y -

with s = s ,
o
either (i) sil': Y for some i > O . .
TN o ol 05 ¢
or (ii) sil=A for—allei—z0r /A (BJ = / Legd ujl“\)\ié()‘

Proof: =) let H = EA(WDO,A,Y) and let s s, ... be a WDO-sequence with

ol
s, E-t,i>0, s FH 1f 5. H then sif’;Bj”wp(Cj,HVY)
for each j, from the fixpoint equation for EA(WDO,A,Y). So
si,,ll‘: HvVY; so Si+1!: H since Si+l%= —3 Y by choice. So every

sif: H, and H ® A from the fixpoint equation.

A
=) Let H abbreviate the converse predicate of s. We use the

dual Fixpoint Induction principle, by showing
A
=ar/\ @, »
B=an/N\ @, ~wc, ivD).
A
Clearly, H = A. Suppose

P A
s=80%=HAAABiA ~wp(C,, H v Y).

e
Then there exists s, such that Ci o8 i—-—»sl, and 5, h-—;(H v Y).

1

3 A . o [
Since $1 F —H, there is a WDO-sequence 818y «+- 8 with

S.F—‘_‘Y i>0ands%‘lA. But then s s o
i i - n o

.. 8 .contradicts s }::H
1 n o i

13

Corollary: EA(WDO,A,Y) is monotone in A,Y. [?ince the equivalent

predicate is clearly monotone in A,Y;} The required wp is now

4.2 A
wp(WDO,R) is the strongest solution H
. .

O \/
H = (/i\-’lBi AR) V 4 EA(WDO,Bi A W‘p(Ci,H), H)

Note that wp(WDO,R) is defined using alternating fixpoints, since EA

involves the weakest solution to a fixpoint equation.

Justification of 4.2:

Let T be wp(WDO,R) as defined operationally - the weakest predicate
~
guaranteeing termination with R. We must prove H Z H,where H is defined

in 4.2,
=) Use standard Fixpoint Induction; we must show

: A A A
(/\-,Bi ARV \1/ EA(WDO,B, A wp(C,H), H) = H

A
Clearly 0/\-ﬁBi A R) = H; suppose
A A
s, E EAGWDO,B, A wp(C,,H), H)

From the Lemma, if a WDO-sequence avoids ﬁ: it passes only through
states sj %: Bi A wp(Ci;ﬁ). But in such a sequernce Ci would remain
permitted but never applied; so the sequence would be infinite and not
weak fair. So all finite or weak fair sequences reach ﬁ} s0 sokzii,

since termination with R is guaranteed.

=) suppose E F:—1H; we construct an embarrassing WDO-sequence

Syt Sy ces Sy enn with each s, %:-jH, by induction on i. Suppose.

si F:'ﬂH, then
3; {F T EAGDO,B; A wp(C,, 1), B)

for each j. So for each j, from the Lemma, we can find a WDO-sequence

to some

| i S . |
s }- —H with s l—-—,(Bj A wp(Cj,H)).

If s' #Z '1Bj, take s, = g'; otherwise choose Cj : 8! s, with

i+l 1+1
S:41 F:-wH. This can be repeated indefinitely, for any sequence of
clauses Cj' By choosing each j infinitely often we obtain §,8

1
such that

14

226

either (i) there is an infinite weak fair

WDO-sequence through s 0’51 "

or (ii) some 5; /\-1B A . =R, and there

is a flnlte WDO-sequence reaching —R.

Finally, we can obtain our analogue of the'Lehmann, Prnueli & Stavi

result [6] .

Corollary 4.3:

If Bi = T(Ci)’ then sf: T(WDO) iff there exist a well ordering W, ,

a partial map f : s - W, and predicates Q, Qi with
(1) s F Q iff s FZ\;/ Qi iff f£(s) is defined

‘ (ii) if s #:Q, Ci : 8 s’ then s'#: Q and f(s) > f(s')
(iif) if s [FQy, €5 ¢ s o', £(s) = £(s") then ' Q,
(iv) if s FzQi, Ci : 8 »s' then £f(s) > f(s")

J -

Proof: analogous to the argument in 2.4. Suppose (i) - (v) are satisfied
for s, and 5,81 - is an infinite WDO-sequence from s = S, From (ii)
every,f(s.) is defined, and f(so) z.f(sl) >... ; s0 from well foundedness

f(sk) f(sk+1
every s _, m > k, from (iii). So 8,87 --- is not weak fair, from (v).

) = ...for some k. sk;#: Qi for some i; but then so does

Conversely, abbreviate the right hand side of the fixpoint equation
4.2 as F(H); define
£(s) = min {X / s F=FA}
and take sl’:Q

-s{_/\—.BvEA(WDOB Awp(C \/F) VF))

A<f(s) A<£(s)

i.e. iff s terminates, or.satisfies the ith component of

r¢ \/

r<£f(s)

Then (i) - (v) follow, using Lemma 4.1 and the definition of EA.

15

227
Example: Consider the standard ex;mple
C:wdob +skip[Ib >Db := false od
We want to check that wp(C, true) = T(C) = true
Writing G(C1,R) = EA(C,b o [CL] R, R), for amy Cl,
T7(C) is the strongest solution to ‘

X = F(X) _
where F(X) = -b v G(skip,X) v G(b := false,X)

The iteration of FA goes:

FO

Fl

false

it

F(false)

= b, since G(C, false) = false, all C.

F~ z«=b v G(skip, -b) v G(b := fvalse,ﬁb)

b A 'skip'}-,bsb/\-,bsfalse

G(skif, —<b) = false

While G(b := false, -1b) = EA(C, b A -,b,—:b)

= EA(C, b, =b)
= b

Since

So F2 =—4b Vv b = true;

and FA = F2

"

true, A > 2
Finally, for the predicates Qi of 4.3
Ql = b

Q2 =—=b Vv b = true

5. Conclusions

The analogues for SDO of the results in Section 4 appear to be rather
more complex than for WDO, as will be clear from the Lehmann, Pnueli, Stavi
investigatioﬁ of (strong) fairness. This fact, with the pragmatic
considerations discussed in Section 3, heightens the author's concern that
weak rather than strong fairness is the appropriate constraint to use.
Further theoretical work is needed, however, to back up this intuition -~

which so far rests on purely negative evidence.

228

References:

1. Apt, K.R, E.-R, Olderog: Proof rules dealing with fairmess.

Bericht Nr. 8104, Institut fur Informatik u. Praktische Mathematik,
Kiel University (1981)

2. Apt, K.R., & G.D. Plotkin: A Cook’s Tour of countable nondeterminism.

Technical Report, Department of Computer Science, University of Edinburgh,

(1980) -~ (to appear in Proc. I.C.A.L.P. 81, Springer—Verlag (1981))

3. Boom, H.J.: A weaker precondition for loops. Preprint. Mathematisch

Centrum, Amsterdam (1978)

4. Dijkstra, E.W.: A Discipline of Programming, Prentice-Hall (1976)

5. Hithcock, P. & D. Park: Induction rules and termination proofs.

Pp. 225-251 in: Automata, Languages and Programming, ed. Nivat,
North Holland (1973)

6. Lehmann, D., A. Pnueli & J. Stavi: Impartiality, justice and fairness

the ethics of concurrent termination, to appear in Proc. I.C.A.L.P.81,

Springer-Verlag (1981)

7. Owicki, S. & L. Lamport: Proving liveness properties of concurrent

programs. Technical Report. SR1 International, Stanford (1980)

8. Park, D.: Fixpoint induction and proofs of program properties;
pp. 59-78 in: Machine Intelligence 5, ed. Meltzer & Michie, Edinburgh
University Press (1969)

9. Park, D.: On the semantics of fair parallelism. pp. 504-526 in:
Abstract Software Specificttions. Springer Lecture Notes in Computer

Science 86 (1980)

10. Park, D.: Concurrency and automata on infinite sequences in: Proc.
GI Conference on Theoretical Computer Science, Karlsruhe, March 1981.

Springer Lecture Notes in Computer Science (1981)

11. Stoy, J.E.: Denotational Semantics: the. Scott—-Strachey Approach
to Programming Language Theory. MIT Press (1977)

17

