goooboooogn
O 454 0 19820 229-377

LECTURES
ON A

MATHEMATICAL THEORY
OF |

COMPUTATION

by
Dana S. Scott

University of Oxford
Mathematical Institute
24-29 St. Giles
Oxford 0X1 3LB

Michaelmas Term 1980

Preliminary Version

Completed November 1980

Revised May 1981

229

230

TABLE OF CONTENTS

INTRODUCTION ‘ (i1)
LEC TURE I : Domains given by neighbourhoods 1
LECTURE I1 : Mappings between domains A 19
LECTURE III : Domain constructs ' 33
LECTURE IV . Fized points and recursion . 51
- LECTURE V. : Typed A-calculus 69

LECTURE VI : Introduction to domain equations 89
LECTURE VI I : C’o@utabi lity in effectively given domains 1 1 3
LECTURE VIII : Retracts of the universal domain 133

(1)

231

INTRODUCTION

These notes were written in conjunction with the lectures
delivered by me for the Semantics of Programming Languages
sequence during Michaelmas Term 1980 at Oxford. I started
writing around the first week of October and finished at the
end of November. The purpcse of the course was to prbvide the
foundations needed for the method o0f denotational semantics;
in particular, I wanted to make the connections with recursive
function theory more definite and to show explicit, effectively
given solutions to aomain equations. Roughly, these chapters
cover the first half of the book of J.E. Stoy. I plan soon to
expand the notes into a book by adding additional chapters on
other theoretical topics that time did not permit me %o cover

in one eight-week term.

When I started writing Lecture I in October, I did not
know what the later lectures would contain: I could see no
further ahead than part of Lecture III in the beginning. _
The lectures had to be typed in advance of the class meetings,
however, so there was at the time of composition no opportunity
for second thoughts of any major proportions: I had to write
the text straight through. As a consequence there are many
remarks I would like to transpose and many additional points
of explanation I see are needed; further worked examples and
easier exercises are also required. During the spring, after
receiving many helpful comments, I was able to introduce a few
changes in the text and make some necessary corrections. However,
a complete retyping was impossible. Nevertheless, this prelimin-
afy version of the book seems to provide a quite detailed
introduction and is sufficient to exhibit the scope of the
approach and several applications.

- The idea of using neighbourhood systems to give set-
theoretical representations of domains had been in the back of

232

my mind for some time in connection with specific examples.
But the thought that a systematic development along these
lines might be easier to follow than the more abstract
lattice-theoretic and topological approach used by myself

and others in many publications only céme to me during the
IFIP Working Group 2.2 meeting in Copenhagen in mid-June 1980.
I gave a brief public presentation at ICALP '80 in Holland in
mid-July.

One large mistake I have made is to de-emphasize partial
orderings too much, since at the right point the concepts and
the language ére in fact helpful. The basic plan is that,
instead of axiomatizing the theory using partial orderings,
the necessary facts come out as theorems. For a neighbourhood
system D, the set of elements |7}, which consists of filters,-
1s naturally partially ordered. And approximable mappings
naturally preserve the ordering. And so on. The advantage
I see from the point of view of exposition is that properties
can be brought oﬁt one at a time instead of having to put them
down all in advance of any experience with the ideas. My own
feeling after writing these chapters is that the plan has .

~worked out far better than I could have dared to hope. I was
eépecially glad that I could generate so many éxercises, and
I hope eventually to provide many more. One interesting place
at which'partial orderings prove their usefulness is in
visualizing domains. As it stands now the text does not contain
enough in the way of pictures. This will have to be remedied
in a future version, Undoubtedly toinclude enough explanation,
several of the lectures will have to be sub-divided into separété
chapters.

One major improvement is neededf to bring Exercise 2.22
into the main text. I did not know in advance how often I would
need this result for giving (easy) set-theoretical characteriza-
tions of domains and structure on them. This will be an easy.
repair, but it will cause quite a bit of rewriting. Clearly

1)

233

much more has to be said about the interplay between elements

and neighbourhoods. 1In particular, the character of the elements
of a domain, like the power set of a set, has not been sufficient-
ly illustrated, and quite a bit of expansion on this topic is

also needed.

Finally I have to explain that I had no time whatsoever
to put in references and a bibliography. The ideas I have
used have occurred to many, many people who have worked on
domains, and I do not wish to claim originality. I am claim-
ing some advantage to my style of representation, but I fully-
Tealize that a published version will have to have detailed
historical references and notes at the ends of the lectures.
Needless to say I should very much appreciate any advice or
criticism from readers of this preliminary version.

I would like to give a warm word of thanks to the many
people who have already commented on the preliminary text both
at Oxford and in Boston, where I gave lectures. Very special
thanks are due to Steve Comer and Steve Brookes, who spent
many hours proof reéding the typescripts. The biggest word
of thanks, however, is reserved for Elsie Hinkes who, under
very considerable pressure, did a wonderful job of typing.

* Dana S. Scott
Merton College
Oxford

May 1981

(iv)

234

LECTURE 1

DOMAINS GIVEN BY NEIGHBOURHOODS

Often an object (or element) can be determined by a
selection of its properties. Often it is also the case that
it is easier (more convenient, more elémentary) to think of
these properties than it is to think of the elements them-
selves. Let us term the properties under consideration
netighbourhoods , the family of those allowed a neighbourhood system.
Generélly, the collection of these neighbourhoods is, for one
reason or another, somewhat restricted; that is, a completely
arbitrary property may not be allowable as a neighbourhood.
Therefore, the elements determined by selections of neighbour-
hoods may not be as separable into the discrete objects common
to the classical view of set theory. This is particularly true
in working with infinite objects: it is hard to specify an
infinite element ccmpletely. The theory of elements to be
studied here, then, is going to permit partialelements as well
as total elements, and each neighbourhood system will define a
domain of such elements.

Since we may wish to use a neighbourhood system to intro-
duce elements not previously invesfigated,the neighbourhoods do
not have to be regarded as sets of the as—yetQto—be-defined
objects. We can take a non-empty set A of tokens (or '"traces')
that function as "parts'" of elements - or even as parts of
"descriptions' of elements. -Then a neighbourhood is a subset
Xg A containing all those tokens that provide sufficient
information when taken together to "approximate'" a possible
element up to a certain 'degree'". All these words in inverted
commas. are vague, and in any case we shall have at the start
only é qualitative theory of '""degree of approximation'". A token
should be considered as a very "rough" representative of an
element, and a neighbourhood should be regarded as '"smoothing
out" irrelevant details by grouping together q«ll those repres-

“entatives sharing some common feature. One neighbourhood, then,

235

may be only a very incomplete specification of an (ideal)
element; fuller specifications can be secured by taking
"convergent" sequences of neighbourhoods. Even then conver-
gence need not be to a total element.

Let us call the family of allowed neighbourhoods 7; it
is a family of subsets of the set A. An obvious first
question is: when are two neighbourhoods X, Y€ D neighbour-
hoods of the "same" element? This question of course generalizes
to a (finite) sequence of neighbourhoods. This property we will
call the consistency of the sequence of neighbourhoods. By
definition this will mean tha%égiven neighbourhoods all contain
a common neighbourhood in U. That is, for X, Y to be consistent,
there must be a Z €D with Z<X and Z<Y. This is not a very in-
formative definition, but it has something of the flavour - of a
notion of consistency insofar as it can be'expressed within D.
When consistency holds it seems reasonable enough at first
glance to say that the intersection XnY is also an approximation
to this common element. If this is reasonable, then XNnY should
also be regarded as a neighbourhood. This assumption has many
consequences, but as a preliminary theory of approximation we
will find it quite workable with many natural instances.
Taking intersections just means taking more and more properties
~of the element and putting them together'conjunctively. It is
something we do all the time. We therefore accept the idea for
the present for giving our first principal definition.

DEFINITION 1.1. A family D of subsets of a given set A is
called a neighbourhood system (over 4A) iff it is a non-empty
family closed under the intersection of finite consistent
sequences of neighbourhoods. That is to say, D must fulfill
these two conditions:

(1) Ae D,

(ii) whenever X,Y,Z€0 and Z<XnY, then XNnY€ED. O

236

We remark that by convention A corresponds to the inter-
section of an empty sequence of neighbourhoods; in particular,

() x,
i ,
i<n

» (ﬂxi)nx , ifn > 0.

i<n-1

A

, if n=20;

Of course, from (ii), we can extend the intersection property

to any finite sequence. Consequently, we can say XO,..., Xn-1

is consistent in 0 iff

(N x, <o
i

i<n
Some examples will help us understand the notions better.

EXAMPLE 1.2. Let A= {0,1} and let
D={{0,1}, {0}, {1}}

In pictures we have<::: :z::>

The intention is that 0 and 1 can be completely specified and

that they can be identified with the total elements. As we
shall see, there is only one partial element: either we give
no information (the neighbourhood {0,1}), or we decide between
0 and 1 (by giving {0} or {1}). O

EXAMPLE 1.3. Let A={0,1,2} and let
D={{0,1,2}, {1,2}, {2}}

In pictures we have:

237

Instead of stepping to the total element (here represented by
2) in one big step, the passage 1s divided into two steps.

(Note 0 and 1 cannot be taken as representing total elements.)
This example is not very interesting because the direction of

approximation ‘in unique. We need an example with some choice. 0O

EXAMPLE 1..4 Let

A= {A,0,1,00,01,10,11}

D {a,{0,00,01}, {1,10,11},

{o0}, {01}, {10}, {11} }

Or more understandably in pictures:

The tokens are finite sequences of 0's and 1's (up to length 2)
with A the empty sequence; they form - in the picture - the
binary tree with the sequences as the nodes. The neighbourhoods
are the subtrees of all nodes above a given node. . Obviously
this can be generalized to sequences of any length (and to

trees less regular than the binary tree). The total elements

of the example correspond to the top nodes 00, 01, 10, 11 and
the lower nodes to the partial elements. When we are not at a
top node we have only partially determined a sequence, and the
branching indicates that we have some choice as to how the

sequence can be extended. O

It should be noted that, in these three examples, the reason

that we have a neighbourhood system is a simple consequence of a

238

very special circumstance: in these systems two neighbourhoods
are either disjoint or one is included in the other. This

arrangement of neighbourhoods is by no means necessary.

EXAMPLE 1.5. Let A={0,1,2,3} and let D be the family of all
non-empty subsets of A.

This system is a direct generalization of Example 1.2.,
which was special owing to the small number of tokens. (The
other examples were special by virtue of the choice of neigh-
bourhoods.) The verification that the present D is a neighbour-
hood system rests on nothing more than the remark that sets are
consistent in D iff they have a non-empty intersection. Clearly
the arrangement of neighbourhoods in U can be as varied as a
four-element set will allow; 1f A were made larger, the possible
combinations of neighbourhoods could be made as complex as you
wish. O

Having some idea now cf the variety of neighbourhood systems,
we have to discuss what it is they do. As stressed before, the
tokens do not have to correspond directly to the elements; but
whefe, we ask, do the elements come from? One obvious suggestion
for determining an element is to produce a séquence of "better
and better'" neighbourhoods:

02X 22X 2

Trivially, any finite initial segment of this sequence is con-
sistent, and so each Xn is a partial approximation to the
"1imit". If D were always to be taken as finite, of course,
there would be no point in discussing limits since any such
sequence. would eventuélly be constant. The elements in the
finite case would therefore be completely represented by neigh-
bourhoods with the minimal neighbourhoods corresponding to the
total elements. But there are many reasons to go beyond the
finite (though perhaps not too far beyond).

Suppose <Y}3£ZO is another "convergent'" sequence with

239

Yn+191ﬁ1 for all indices: when do the two sequences of neigh-
bourhoods determine the same 1imit? The two sequences can

surely be different; for example, (Yq%:; could be a subsequence

0]
of (X);=0, say, Yn==X2n. Still we would want to say that the
same limit is obtained. Without being given any further structure
on the neighbourhoods, a simple answer 1is just to say that each

sequence goes "'equally deep" as the other:

for each m there is an n with Xng;Ym, and

for each n there is an m with Ymg;Xn.
This definition obviously puts sequences into equivalence
classes, and so elements could be identified with these. But
such a definition is clumsy for two reasons: it is always
tiresome to work with equivalence classes, and there is no
reason to think that simple infinite sequences are adequate for
determining elements without some rather drastic assumptions
on D. Nevertheless, the idea is suggestive; we just have to
find some construct to represent elements in a ﬁnique way and
to phrase it in a general enough manner.

Start with (X)>_,again, which "converges'" as before.
Think of all the other sequences equivalent to this one in the
sense just defined. We can define the class of all terms of all
such sequences very easily as being the family: -

x={2€0D| ch_:Z for some nl.

It is easy to prove that if we form the analogous class for

(Y}Riso , then the two families are equal if and only if the
sequences are equivalent. Thus, we seem justified in letting
x represent the limit of (X 79 _,. All we have to do now is

to remark on what sort of class x is as a subfamily of 7; .
what we abstract from the construction, however, will be just
a bit more general than taking those x that result from sequences.

DEFINITION 1.6. The (ideal) elements of a neighbourhood system
D are those subfamilies x < D where:

(1) Aex;

(ii) X, YEX always implies XNY €x; and

(iii) whenever X€x and XcY€D, then Y€ Xx.

The domain of all such elements is written as | 0}|. O

240

The idea of 1.6 1s a well-known mathematical device: the
families x satisfying (1) - (iii) are usually called filters.

" Most frequently the emphasis is put on the maximal filters, and
these would be our total élements; however, in general, the proof
that maximal filters exist 1is non-coanstructive, so for our
purposes it is better not to neglect the partial filters. When
maximal filters can be found, well and good, but we do not have
to insist on them. Note that the generality of 1.6 is achieved
by not requiring that there is a sequence of neighbourhoods
that ''generates' the filter x. (See Exercise 1.22.)

We have often said that neighbourhoods determine partial

elements by themselves; we now make this remark precise.

DEFINITION 1.7. For X€7D, the principal filter determined by
X is defined by:

+X={YeD | XcY}

The principal filters form what we shall call the finite

elements of the domain | D|. O

It is obvious that the correspondence between X and 4 X is
one-one and inclusion reversing , in the sense that

XeY iff +Yg+tX

for all X,Y€D . But, except in very special cases, there is
much more to | D| than just the finite elements. Much of our
investigation will be concerned with finding out how much more.

The finite elements are, in a certain sense, 'dense" in
D1, however, because it is also obvious from the definitions
that for each x € |D|

x =U{+x | xex}.

Thatvis,.every element is a certain type of "limit"of finite
elements. (This statement is made more precise in Exercise 1.21)

We note that we have now had several occasions to use
inclusion relationships between elements; this is an important
relationship, and we give it a special name.: '

241

DEFINITION 1.8. For x,y €D}, we say that x approximates y iff
xcy. The element that approximates all others, {A}, is called L
(read: bottom) ; it is the "least defined" element, or the
"most partial' element. Elements maximal with respect to the
approximation relation are calléd total elements. O

EXAMPLES 1.2 ~1.5 (Revisited). The examples as given were

all finite, so any explicitly given filter x is principal,

the element is finite, the minimal X€x tells us all we need

to know. In such simple situations there is essentially no
difference between elements and neighbourhoods -- except for

the reversal of the order as noted. This (necessary) rever-

sal should not, howevér, become a mafter of confusion: the
smaller the neighbourhood has become, the more it has '"converged",
and so the better defined the element has become. In the appréx-
imation relation the '"'poorer' elements are piacgd below the
"better'" with the total up at the top. This will become clearer
in diécussing "infinite" elements.

Example 1.3 will be generalized in Exercise 1.1 Let us
here generalize first 1.4. We let

A=3*

where £ ={0,1} and Z* means the set of all finite sequences of
0's and 1's, with A being the empty sequence. We write ¢ T for
the concatenation or juxtaposition of two sequences o, T € Z* .,

Define
B ={cXZ*|oc€ Z*}, where
oX={otlteX} ,

for an arbitrary set XcX*. In other words, a neighbourhood in
B consists of all extensions of a given sequence o. (Refer
back to the finite version of 1.4.) We use the letter "B" to
remind us of "binary'", and this is an example we shall refer to
many times. The proof (if it is not obvious) that B is a
neighbourhood system should be done as an exercise.

What do we find in 1Bi? Of course L= {A}€|B|. For any
x€ |B] and o€ Z* define

ox={YlocXcY some XE€x}.

242

Again there is an exercise here to show ox€|B|. In particular
ol € 1B} for all o€ Z*, and these are just the finite elements.

The minimal element of o1 is cA. Note that Ogig oyl if and

A 1
only if o, is an #nitial segment of the sequence T4+

If now x€ |IB| is any explicitly given element (that 1is,
if we know for any X€ B whether or not X€x), we have but to

work out from these definitions that
o]
= o,
n=0 _

where the anEZ* and each o, is an initial segment of the next
Opn+1® In general, in any domain, an element is uniquely
determined by “its finite approximations, and we are just making
this explicit in IBl. When we have complete knowledge of x,
then there are two cases: either the approximations o 1 become
constant from some point on (where n2=no), or not. In the first
case x is finite and equal to op Ll ; in the second case x is
infinite and the cnfill out an infinite (one-way) sequence.

The generalization of 1.5 to the infinite case where

A=N-= {0,1,2,3, «v., N, o..}

can be made in more than one way: for instance either we use
as neighbourhoods all non-empty subsets of A or just those
omitting but a finite number of integefs. And, as will become
apparent, there are other choices giving domains of quite
different characters. O

Many constructions (choices of D) lead to the '"same"
domain; "sameness'" is an important notion and it is to be
defined in terms of "isomorphism'", which in turn is to be

defined in terms of approximation preserving correspondences.

DEFINITION 1.9. Two neighbourhood systems Do and D1 determine
isomorphic domains iff there is a one-one correspondence between
12,4 and ID1I
the domains. In symbols we write UO = 01. a

‘which preserves inclusion between the elements of

243

It is certain that the property of 1.9 is necessary, but
it may not be so clear that it is sufficient. We shall in fact
prove in the next lecture that an isomorphism between domains
always maps finite elements to finite elements, so it always
results from a one-one intlusion~preserving correspondence
between neighbourhoods. This is surely asstrong as could be
hoped. This general result is not needed to see that particular

domains are isomorphic.

In some of the examples tokens corresponded to total
elements and in some to partial elements; it is not difficult
to see (ex post facto) that every domain can be presented with

tokens exactly corresponding to partial elements.

THEOREM 1.10. Given any neighbourhood system 0, define for
XeTD ‘
[X] ={xe D] | Xex}.

The subsets [X] < ID] for X€D form a neighbourhood system over
[D1 which determines a domain isomorphic to |D}.

Proof: We note first that
(1) [A] =D}
Next note that
(2) X, Yare consistent in D iff [XIn (Y] = @ ;.
and that for X, YED , | ' |
(3) [XIn[Y] =[XnY] if XnY€D,

Inasmuch as
(4) + X€[X] for all X€7, :
it easily follows that D and the family

{[X1]|xeDn}

are in a one-one, inclusion-preserving correspondence. Thus,

we can induce the desired one-one correspondence between the
elements of the two systems. O

244

The import of 1.10 is that the original tokens in A can
be replaced by the elements of [P|. This process replaces the
neighbourhood X ¢ A& by the subset [X] < ID1. As the passage
'is inclusion preserving, the domain has not really changed, only
its presentation. Though of some theoretical charm, the
theorem is not of much use since we still have to get D from
somewhere. It does emphasize, though, that the r6le of the
tokens is simply to keep the inclusions (and intersections) of
neighbourhoods sorted out. It is not¢t always true that the
tokens can be identified with the total elements.

The last theorem in this lecture is a result on closure
properties of a domain with respect to set-theoretical opera-
tions which have interesting meanings with respect to approxi-

mation.

THEOREM 1.11. If D is a neighbourhood system and x €171 for

=+

(1) [\x, €191; and

n=0

1) {Jx, €191, provided
n=0

E x € - e2Xx_ £x

C e
n n+l —

%0 1<%

Proof: The conditions of 1.6 have to be checked. For
the case of intersection, all of 1.6(i) - (iii) are quite obvious.
For the case of union, only 1.6(ii) gives pause and it requires
the proviso. If X and Y belbng to the union, then Xeixn, say,
and YExm. But, either n<m or m<n, and if k=max (n,m), then
X, Yexk . Since XkE iDi, we have XNnYex thus, XNnY belongs
to the union. This proves (ii). O

k°?

In words, the intersection is the best element that is at
the same time an approximation to all of the elements X5 the
intersection is exactly what is common to all the given ele-
ments. The union on the other hand is just what the (increas-

2435

ing sequence of the) X, approximates; the union combines
contributions from all the x, into a "better" element --

but no more than that.

In thinking about domains a rough diagram of the partial-
ordering relation < between elements is often helpful. The
picture of 1.4 is an example where the nodes represent the
elements. Any finite tree growing up from a root node would
also be an example. Indeed, any finite partially ordered set
with least element would be an example. (Here no distinction
between tokens and elements is necessary.) A lattice diagram

is also illustrated.

L
A TREE A LATTICE

L

A ROUGH PICTURE

The root node is the element L of [D|; there need be no top
node T. Approximation is represented by a passage from a lower
node to a higher node along the rising lines. The system D of
neighbourhoods is the collection of sets each of which is all

246

the nodes above a given node. For Znfinite examples, however,
care must be given to introduce 1Zm<t nodes. The first few
exercises should be provided with pictures to illustrate the

structure.

EXERCISES

EXERCISE 1.12. Let 4=N ={0,1,2,...,n,...}be the set of non-
negative integers. Use as neighbourhoods final segments:

{me€N |[m=>n}

for n€ N. Verify that this is a neighbourhood system. What
are the total elements? What are the finite elements? Draw
a picture of the approximation relation in this domain.
(Hint: there is only one limit element.)

EXERCISE 1.13. Verify all the assertions made about the
system B defined as the infinite generalization of Example 1.4.
Draw a picturé similar to that given in the text which includes
nodes for all o€ XZ*, Show the neighbourhoods, how the approx-
imation relation behaves, and where the total elements lie.
(The picture is closely related to the "binary tree', but has
to have limit nodes all along the top.)

EXERCISE 1.14, Let A=N and let D be the family of finite non-
empty subsets of A plus the set A. Show that this is a neigh-
bourhood system. What are the total elements? What are the
finite elements? Draw a picture.

EXERCISE 1.15. Construct non-isomorphic infinite domains where
all elements are finite but where there are no infinite chains

but X, ¢Xn+1 for all n.

<x > 2 of elements with an X

n n=0 n+l

247

EXERCISE 1.16. LetA = Nand let D be the family of cofinite
subsets of N . Show that IDl isisomorphic to the partially
ordered set of «ll subsets of N under inclusion . Construct

some other neighbourhood systems where D is closed under finite
intersection. What happens to the total elements in such systems?

EXERCISE 1.17. Let A=TR be the real line. Let D be the set of
non-empty open intervals with rational end points plus the set A,
Show that this is a neighbourhood system. For any real t€ R, show
that

{XeDn| tex}

is a filter. 1Is it always total? What are the total elements
of IDI? (Hint: When t is rational consider all intervals with

t as a right-hand end point.)

EXERCISE 1.18 . 'Let D be a neighbourhood system. Call a subset

C =D consistent iff every finite subset of C is consistent in:7D.
Give an example where C is a subset with more than two elements, .
every pair of neighbourhoods in C is consistent, butiC is not
consistent. Show that if C is consistent, then there is a

least filter x€ D] with Ccx. Show generally that the <inter-
section of any non-empty collection of filters is again a filter.

EXERCISE 1.19. Define a positive neighbourhood system to be a
family D where (ii) of 1.1 is replaced by

(ii') whenever X, Y€ D, then XNY#® iff XnYED.

Prove that a positive neighbourhood system is indeed a neighbour-
hood system in the sense of the earlier definition. Give an
example of a neighbourhood system that is not positive. (Hint:
(suggested by C.A.R. Hoare). Let A= NxN, in the plane. Let

D be the family of subsets X< Nx N where all but a finite
number of places the wertical sections of X are the whole of N
but at the other places the sections are finite and nonempty.

Smaller examples are of course possible.)

248

EXERCISE 1.,20. Let D be any neighbourhood system over a set A,
Let A' =D and define

D’ = {¥X | XeD}

where
¥X= {YED |YeX}.

Show that D’ is a positive neighbourhood system and that |D| and
ID’'] are isomorphic. Note that for D' finite elements and tokens

are in a one-one correspondence.

EXERCISE 1.21. Work out in greater detail the proof of 1.10.
Remark that the neighbourhood system over |D}! so constructed is
positive, théreby obtaining in a different way the same kind of
conclusion as in 1.20. - Show also that the system over [D| is
complete in the sense that every filter is fixed by a unique
member of the underlying set. (A filter is fixed by a point 1ff it
is the filter of 4ll neighbourhoods containing that point.)
Remark that a complete system is one where tokens and (partialj
elements can always be identified (under a suitable one-one
correspondence). Show also that consistency of a set {Xili<n}
of neighbourhoods in U is equivalent to saying

Nex120

i<n

EXERCISE 1.22. (For topologists). Show that the neighbourhoods
[X] for X€D make [D| into a topological space where the open
subsets Y c|P| can be characterized by the following two conditions:

(1) whenever x€U and x cy€l|D|, then y€(; and
(ii) whenever x€U, then 4X€y for some XE€ x.

Prove also that the inclusion relation on |P| can be defined
topologically as:

(iii) xcy iff for all open U cID|, if x€ y then yel.

249

Is |D| ever a Hausdorff space? Show that if (xn);=0is a

sequence of elements of |D] with x_cx for all n, then

n n+1
P
*n
n=0
is not only in [D] but is a topological limit point of the
sequence. Show that any element x is alimit point of the set

{+X|Xex}. Are there other limit points?

EXERCISE 1.23. Suppose that the neighbourhood system D 1is

countable, say,

X ..}

D = {X,, X X

0? Nq0 Kos eees X,

Suppose further that the property of consistency of finite

sequences of neighbourhoods is decidable (or "effectively

known"). Then the'following sequence is well-defined:
Yo = %o

Yn+1 = Xn+1, if this set is consistent with

Yoo Yy eoes Y 3

=Y , if not.
n

Show that {YO, Yyo eees Yo, ...} is a total element of |D].
(Hint: Show first that YO’ Y1, ooy Yn_1
In such a system show that all filters can be determined by

is consistent for all n.)

sequences.

EXERCISE 1.24. (For set theorists). Prove, using the Axiom
of Choice, or some equivalent principle, that in every domain
a partial element can always be extended to a total element.
Is this assertion equivalent to the Axiom of Choice? (Hint:
Remember to prove that the union of every (transfinite) chain

of filters is again a filter.)

230

EXERCISE 1.25. (For set theorists). Let A be any well-ordered
set (ordinal). (Even small ordinals like w.3 or QS are inter-

esting.) Let D be the family of non-empty final segments of A.

What is [D|? Are all elements finite? Is every approximation

tb a finite element finite?

EXERCISE 1.26. (For algebraists). Let A be a commutative
ring with unit. Let A be the set of finite subsets FcA. Define

I(F) ={G€A| Fc the ideal generated by G}

Prove that the sets of the form I(F) form a neighbourhood system,
and that the corresponding domain is isomorphic to the set of
ring-theoretic ideals of A partially ordered by inclusion. What -
would happen if we excluded from A all F with I(F) =1I({1}), where
1 is the unit of A?

EXERCISE 1.27. Further closure properties of domains can be
proved for bounded sets. We say X< |D| is bounded iff for
some y€ |D| we have xcy for all x€X. This y is called an
upper bound. We let |

UX=rHy€WHxEy all x€ X2

Prove that if X is bounded, then |JXis the least upper bound

for X in IDI. Prove also: if U,VE€D are neighbourhoods, then

{U,V} is consistent in D iff {+U , 4V} is bounded in ID|. (That
is, boundedness is for elements what consistency is for neigh-

bourhoods.) Prove finally with the aid of 1.18 that X< iD| is

bounded iff every finite subset of X is bounded.

291

LECTURE II

MAPPINGS BETWEEN DOMAINS

The elements of a domain are regarded as being specified
by approximations: the neighbourhoods. With the idea of
approximation as the dominant notion, therefore, it is natural
to look for a concept of mapping (transformation of domains)
that in some suitable sense preserves the spirit of the approx-
imations. In a theory of computability, where the (finite)
approximations to the elements are all we can ever know at one
time, the only mappings that can be computed are those that
proceed by approximation, somehow passing from the neighbour-
hoods of one domain over to the neighbourhcods of the other.

SupPoSe XéEDO is given - it is an approximation to certain
elements of | DOI. (More precisely 4X is the approximation im
the domain, but it is easier to speak of the neighbourhood X.)
What can be said about the approximations of the images of
these elements under the mapping we will call £? If X is not
a very sharp approximation, then not very much can be said
about the image in the other domain 10,1 . Trivially, of

course, we can say that A, is an approximation - because it

approximates everything i; its domain. Suppose, however, that
we could say more. Suppose we could say that both Y and Y'
approximate the image of X. If the mapping f is'coherent,
then it is reasonable to suppose that such a statement would
imply that Y and Y' are consistent in D,. But if this is so,
then since the two neighbourhoods are meant to cluster around
the same images, we can feel some confidence in saying that
YNY' approximates these images., In other words to specify f
we do not supply awunique image of X, but we say which of the
YGEDO approximate the (ideal) image. To make this idea work a
monotonicity condition is also needed since we are trying to
express the idea that "Zfwe give at least X as an approximate
input to f, then we can expect at least Y as output." Thus,

2952

a mapping is taken as a kind of relation between neighbourhoods.

DEFINITION 2.1. An'cqmréxﬁm&lelmqping:f:DO-+D1 between domains
is a binary relation fc? o X D1 between neighbourhoods such that

(1) A A, |
(ii) X£fY and X£fY' always imply X£f(YnY') ;
(iii) X£fY, X' <X, and YcY’ always imply X’fY. O

Cendition (i) we have already discussed; in a sense it
means '""ask me no questions and I shall tell you no lies."
In other words ''zero input can expect at least zero output."”
The other conditions are'compatible with having

f={<x,A1>|xeDO};

that is, £ might bé the least informative relation and nothing
more. But if it is more, then (ii) is, as we explained; a
consistency condition. To explain monotonicity in (iii),

suppose a mapping relationship is already known, XfY, say.

If we Zmprove the accuracy of X to X' < Xand if we degrade the
accuracy of Y to Y'2Y, then we can still assert X'fY' since this
4¥e1ationsnip,i$jiéés informative than the former relationship,
which was already known. Thus, we see that conditions (i) -

(iii) are all reasonably argued as necessary.

One indication that the conditions of 2.1 are sufficient.
for a definition is that they ‘are exactly what we need to show
that £ as a neighbourhood relafibn determines an eqﬁivalent
elementwise mapping from IDOI into ID1[. (Owing to the
equivalence, we use the same symbol f for both.)

PROPOSITION 2.2. Given neighbourhood systems‘DOand D1, an
approximable mapping f:DO-*D1 always determines a function
f: IDOI-+I 011 between domains by virtue of the formula:

(1) £(x) ={vepn, | 3Xex. X£Y}

for all xe€ IDOJ. Conversely, this function uniquely determines

253
the original relation by the equivalence:
(ii) X£fY iff Yef (4X)

for all Xe€ DO
monotone in the following sense:

and YWED1. Approximable functions are always

(iii) xg<y always implies f(x) < f(y),

for x,)IEIDOl; moreover two approximable functions f : UO-+ 01
and g: DO *-01 are identical as relations iff

(iv) £f(x) =g((x), for all XGEIDOk.

Proof: The argument that formula (i) always gives us
£(x) ElD1l when XGSIDOI can be safely left to the readef.
Note, however, that all the conditions of 2.1 are required to
show this. As for (ii), the implication from left to right
follows directly from (i) because X€ 4 X. In the other
direction Y€ £(4X) means that Z £Y holds for some Z € + X.

But from X €2 it follows that XfY, as we wished. B

To prove monotonicity, assume xcy. Now X€x and X£fY
always imply X€y and XfY. This means Y€ f(x) always implies
Y€ £f(y); - that is, £f(x) cf(y).

Finally, to check that (iv) means f=g as relations, all
that has to be remarked that this follows from formulae (i)
and (ii). O

"Note that the right-hand side of (ii) can be written:

YYef (+X),
which can be read as saying that the partial element determined
by the neighbourhood Y approximates the function value at the
element determined by X. This precise relationship of'cqurse
fits the informal discussion of mapping given earlier. Indeed
whenever x € [X] and X fY hold, then f(x)€[Y] always follows,
which is another way to construe the mapping character of f.

Some examples of mappings are now called for.

254

EXAMPLE 2.3. Let T be the neighbourhood system of the two-token

domain of Example 1.2. To avoid confusion w1thrg%%%tgggfr

domains, we will call the two total elements of ~true and

There is only one other finite element here, namely
We often use these elements as indicators of

false.
1 =undefined.

results: true indicates a positive outcome; false, a negative

outcome; and L indicates that there is not enough information

to decide the outcome totally.

Let B be the system for the binary tree as in the last
chapter. What we wish to define is an approximable mapping
f:B-T. The intuitive idea of the mapping we have in mind is
that the binary sequence is being read from left to right, and
we are counting the number of 0's seen before the first 1 is en-
countered. We then test the parity of this count; 1f it is
even, the output is true; if not, false. Using a suggestive
informal notation with three dots, some results of the function
that does the counting and testing can be written as:

£ (0000101-..-) = true
f (1101110-++) = true
f (0111011...) = false
f (0000000-.-) = L.

The last equation is necessary, because 0000000 as a partial
element cannot be counted as either even or odd since it can

have Znconsistent extensions:

0000000 L < 00000001 L
0000000 L < 00C00000C00T L,

So, as far as £ is concerned, a plain string of 0's is
indefinite. The same answer holds if the 0's go on infinitely.

To be more precise we want

f (0n1.L) true if n is even;

false if n is odd.

As a binary relation f<BxT we will have

XfY iff Ye 1l or X50n1A for some n€ Nand either n is
even and Y€ true or n is odd and Y€ false.

It should be checked that 2.1(i)-(ii) are satisfied. O

299

EXAMPLE 2.4. Let us briefly describe an approximable mapping
g: B+B. Informally, g can be said to '"read a sequence from
left to right and eliminate the first consecutive run of 1's
while copying all the other digits as read."” We will have

g (0M1K 0 x) =0n* Ty

provided k> 0. (Here 1k means a string of 1's of iength k.)
However, if 1® is the infinite sequences of 1's, then

g (1m) = 1, and
g (017 =0,

This example is instructive, since it shows.that a non-trivial
mapping can transform a total element into a partial element. O

Aside from our being able to define pérticﬁlar functions_
outright, we can combine functions in many different ways; the
idea of composition is probably the most basic scheme of combina-
tion, and there is a technical name for a fémily of structures

with mappings that can be so combined.

THEOREM 2.5. The class of neighbourhood systems and appfoximable
mappings form a category , where the identity mapping ID :0=>0
relates X, YED as follows:

(1) X 1I,Y iff XgVY.

If f£: DO4+D1 and g :D1-+Dz.are given, then the composition
g of : DO-rDz relates XGDO and ZEDZ as follows:

(ii) XgefZ iff 3YED,. XfY and YgZ.

Proof : (We may use MacLane [1971] as the standard reference
on category theory, but we require hardly more than the basic
definitions at this stage.) To check that we have a category,
we need to know that the identity and composition maps really are
maps in the category and that certain identity and associative
laws hold. Now it is obvious that I, satisfies 2.1 (i)-(iii).
Moreover if f :DO-+D1, all we have to prove is:

256

Checking one of these equations is enough. Thus, for XGEDO
and ZL—'.D1 we find

fol

D Z iff 3YeD,. XY and YEZ
0 0
iff Xf1Z.

So, £ and £ oIDO are the same mapping.

Suppose now that f :DO-+D1 and g :91->02. We have to
verify that go f is an approximable mapping. First off, there
is no trouble in seeing that Aog ofzﬁz holds. Next, suppose
that XgofZ and Xgeo £fZ" hold. Then we have XfY and Yg1Z
for some choice of YEED1. Also XfY' and Y'gZ’ hold for some
choice of Y'GED1. By 2.1 (ii) it follows that X£f(YnY').
Since YNnY'cY, we conclude (YlﬁYﬁg Z by 2.1 (iii); similarly
(YnYhgz® . Invoking 2.1 (ii) again, we obtain (YnY')g(ZnZ'),
and Xgof (ZnZ') is proved. '

Suppose finally that X'cXgoefZcZ'. Now XfY and YgZ
for some YGED1. But then X'fY holds; for a similar reason
Y gZ' holds also. Therefore, X'gofZ' is established, which
means that we have checked 2.1 (iii) for go f and have completed
the proof that go f :DO-+D1.

The verification of associativity is a pufely logical
deduction. Thus suppose that in addition to f and g we have
h: Dz->D3. If Xe DO and We 03 we find

Xho(gof) W iff 32€0,. XgofZ and ZhW

iff EiZED2 3Y€D1. XfY and YgZ and ZhW
iff SYED1 aZE‘Dz. XfY and YgZ and ZhW
iff E!YED,l. XfY and Y(heg) W

iff X (hog) o £W.,

So, as.relations, h o(gef) = (hog)eo£f. O

It may seem as though we have, in the definition of composi-
tion, written things backwards. But the reason is that when
mappings are taken as elementwise functions, then the order is
preserved iq expressions involving the usual function value notation.

We have, for example: .

237

PROPOSITION 2.6. Given £ :DO-+D1 and g :01—+02, the following
equations hold:

(1) ID (x) =x, and
0
(i1) (ge£) (x) = glf (x)),

for all:xEIDOI. |

The proof is not troublesome and is left as an exercise.
In technical language the result shows that the category defined
in Theorem 2.5 is equivalent to a ''concrete category" of sets
and functions, namely the domains and elementwise transformations
of 2.2.

Toward the end of the last lecture (see 1.9) we promised to
show that isomorphisms of domains always come from approximable
mappings, and this we now do. It means that the category contains
all the isomorphisms it should have.

THEOREM 2.7. Every isomorphism between domains results from an
approximable mapping between the neighbourhood systems. More-

over, finite elements are always transformed into finite elements.

Proof : Suppose that f: !DOI - lD1l is a one-one,. inclusion-
preserving function defined on elements, where the range of the
function is the whole of lD1I, of course. Taking the hint from
2.2, there is only one way we could define a neighbourhood
mapping; namely, we consider the relation Y€ £ (+X) for XGEDO
and YGED1. What has to be shown is that this is an approximable
mapping which determines the original function via the formula
2.2 (1).

The first part is easy; indeed, there is a general result
that monotone functions on finite elements of one domain to
arbitrary elements of another domain always determine approxi-
mable mappings (cf. Exercise 2.8). What reméins, then, is to
show that the relation re-defines the function. This comes down
to showing that for xfEiDOI

f(x) ={Yev1 | 3Xex. YEEf (+X)}.

298

Consider the right-hand side of this equation: it is a filter.
(This either can be proved directly or Exercise 2.11 can be
used.) Because f is an onto-function, we can call the right-
hand side f (x') for some X’E!DOI. But since X€ x implies
+Xex and £(+X) ¢ £ {x), the right-hand side is included in
the left-hand side. In other words f (x') «f (x). But, since

f is an isomorphism x'cx follows.

In the other direction, if X€x, then £f(+X) cf(x’) holds
by definition, so +Xex’'. This implies X€x' ; and, as X is
arbitrary, xcx' follows. So x=x', and f (x) =f(x') as desired.

Finally, consider any finite element +X€EIDOi where XEEDO.
What we have to show is that £(4X) is finite in ID11. ~ Because
f is an isomorphism, we can associate uniquely to every Y € £(4X)
-an element yY¢;+X in IDOI where f(yY) =+Y. (Just apply the
inverse of the function f.} Define

z=U{yY | Ye £(4X)}.

Because Y' cY always implies Yy g)wfand each yY%EIDO!, it 1is
easy to show z 1is a filter and hence is in lUOI also (cf.
Exercise 2.11). Because each ng;+x, then z < 4X, too. But each
Yy Sz, SO +Y=f(yY) < f(z) and hence Y€ £(z). As this holds for
all Ye £(4X), the inclusion £(4X) ¢ f(z) follows,as well as

+Xcz. Therefore, z=1+X and so X€z. But then XEyY for some
Ye £f(4X),. by definition of Z. Since +X_ng, we obtain f£(4X) ¢ tY.
But of course the opposite inclusion is also true from the choice
of Y. This means that f(4X) =4Y is finite in ID1! as claimed.

We can apply the same argument to the inverse function; and, thus,
the finite elements of IDOI and ID1I are in a one-one inclusion-
preserving correspondence under the isomorphism. O

EXERCISES

EXERCISE 2.8. With reference to the proof of 2.2 show that an
approximable mapping is uniquely determined by its elementwise
effect on finite elements. Moreover any arbitrary monotone
function on finite elements of IDOI with values in ID11 comes

from an approximable £ :DO-»D1.

259

EXERCISE 2.9. Prove that if f:?% > D1 is an approximable
mapping, then the elementwise mapping f:lDol »ID1| satisfies
the equation

£ = [JEGn | xex

for all x€ iDOI. Conversely, show that every elementwise function
satisfying this equation comes from an approximable mapping as
defined in 2.2.

EXERCISE 2.10. Carry out the proof of Proposition 2.6; and in
addition show that, if f,g :DO-+D1 are two approximable mappings,

there exists h :DO-+D1 such that

h(x) = £(x) ng(x)

for all x€ IDOI.

EXERCISE 2.11. Let (I,<) be a non-empty abstract partially
ordered set; suppose it 1s directed in the sense that whenever

i, je€1l, then i<k and j<k for some k€I. Suppose that a: I~>]7|
is such that

i<j implies a; gaj

for all i, je€I. Prove that

U{ai lie 1}

is always a filter in |D|. (Note the ways this lemma could be
used in the proof of 2.7; but be careful in defining the partially
ordered set and do not confuse < and 2.) In words we could say
that the domain of filters is closed under directed unions. Prove also
that if £:0-+D"' is an approximable mapping, then for any directed

union

£((Jtajriem = | Jtfa) 1ie
that is, approzimable mappings always preserve directed unions. If an
elementwise function preserves directed unions, must it come from

an approximable mapping? (Hint: Invoke 2.9.)

260

EXERCISE 2.12. Suppose (I,<) 1is a directed, partially ordered
set and fi: DO—>D1 is a family of approximable mappings indexed

by 1€ 1, where we assume
i<j implies fi(x)gfj (x)
for all i; j€ I and all xEElDOI. Prove that there is an approxi-

mable mapping . g : Do +D1 where
gx) = | Jt£; 0111}

for all xe€ IDOI.

EXERCISE 2.13. (For topologists.) Recall Exercise 1.22 where it
was shown that any domain (D] is a topological space. Prove from
Exercise 2.9 that the functions £ :IDO|-+ID1I determined by
approximable mappings are exactly the continuous functions between

these spaces. (Hint: To prove continuity, remark that by 2.9

£y = U{m | Ye £(+X)};

hence, the inverse image of any open set is open. In the other
direction, suppose that f: !DOI > ID1I is topologically continuous.
Argue that for all x€ IDOl and all open subsets Ug iD1| we have

f(x) €U iff 3Xex. £(4X) € U.

This holds because an open subset of IDOI is always a union of
basic open subsets of the form [X'] for XEDO and because

x=U{+X | Xex}
I

for all x €]DO)

EXERCISE 2.14. Let f: IDOI > ID1I be an isomorphism between
domains_. Let o : DO~>D1 be the one-one correspondence between
neighbourhoods provided by Theorem 2.7 where o

£(+X) = +o(X)

for all XEDO. Show that the approximable mapping determined
by £ is just the relationship o(X) < Y. In addition prove that
if X, X'e€ D, are consistent, then

e(XNnX") = e(X)no (X').

261

Remark that the isomorphisms between domains correspond exactly
to the isomorphisms between neighbourhood systems (in the sense

of one-one inclusion preserving correspondences).

EXERCISE 2.15. (For topologists). Consider the one-token system
with ’ '

¢=1{ {0}, ¢}

We can regard |¢| as having jdst two finite elements L (bottom)
and T (top), where L= T. For any system D, show that the open
subsets U of IP?| are in a one-one correspondence with the approxi-
mable mappings f: D + (¢, where the correspondence is given by the

equation
U={xe Dl | f(x)=T}.

What are the open subsets of |#1? of [Ti? of IBI?

EXERCISE 2.16. 1In the discussion of B in Chapter 1 we defined
a mapping x box for any given c€Z*, Is this (elementwise)
mapping approximable? Show in addition that the mapping
£f:B8B-T of 2.3 is uniquely determined among approximable
mappings by the equations:

f (1x) = true,
f (01x) = false, and
£ (00x) = £(x).

EXERCISE 2.17. Establish in detail that the mapping g:B-+B
of Exercise 2.4 is approximable. Is it uniquely determined by
these equations:

g(ox) = 0g(x),

g(11x) = g(1x),
g(10x) = 0x,
g(1) =1,

0r are some missing?

262

EXERCISE 2.18. What is the meaning in words of the approximable
mapping h: B+ B, where '
h{0x) 00h(x), and

h(1x) 10h(x),
for all elements x€|B|? Is h an isomorphism? Does there exist

a-map k : B+ B where

keoh = I,

and is k one-one?

EXERCISE 2.19. Generalize Definition 2.1 in an appropriate way
in order to define the concept of an approximable mapping

£ :Dox qu 02
of two variables. (Hint: f can be taken to be a certain kind of

ternary relation
ngO X 171 xUz,

where we can write

_ X, YfZ .
for the relationship among neighbourhoods.) What is the
corresponding version of Proposition 2.2 for functions of two
variables?

EXERCISE 2.20. Discuss again the example of Exercise 1.15

where the domain turns out to be the powerset (set of all sub-
sets) of N . Show how the finite elements can be taken to be

the finite subsets of N and can be identified with the tokens of
a suitable neighbourhood system P. (Hint: Define +F for finite
sets FeN .) ‘Show that both union and intersection (xUuy and
xNy) are functions on |P| that are approximable in the sense of
Exercise 2.19. (The elements of [Pl are being identified with
arbitrary sets xc N .) Show also the following transformations
approximable:

s

+

—
]

{n+1]nex}, and

{nin+1ex}.

”
1
-
[}

263

EXERCISE 2.21. The system B of 2.3 has as its total elements
only the infinite sequences. Modify the construction of B to
another neighbourhood system C which has bots the finite and
infinite sequences as total elements. (Hint: BgC.) Show that
there is an approximable map xy on elements naturally extending
ordinary juxtaposition of sequences. (Hint: Write 01001 for a
total finite sequence and 010011 for the corresponding finite
partial element. Remember to distinguish between A (the total
empty sequence) and L (the undefined sequence). The definition ‘
should work out so that if x is an infinite seQuenCe (hence, total),
then xy =x for all y. What will xy equal if x is not total?
In other words, the construction possesses a rather strong left-
to~-right bias.) '

EXERCISE 2.22. (For set theorists). We have remarked in Exercise
1.18 and in Exercise 2.11 that any domain |0], as a family of sets
(in fact, a family of subsets of the set D itself), is: closed wunder
the intersection of an arbitrary non-empty sub family and under :
the union of any directed sub family. For those familiar with the
subject matter, the example of the (proper) ideals of a commutative
ring (with unit) is also seen to be such a family. What is the
abstract situation? Let € be any family of sets with these closure
properties. It is to be shown that € is inclusion~-isomorphic to
a domain. - (Hint: Let A be the set of finite sets included in sets
in €. For F€ A, define its ''closure'" by the eqﬁation:

F- [JixeciFex).
Every Fe, and these will prove to be the "finite" elements of C.
The neighbourhood system D over A can be taken to be the sets of
the form

C(F) = {Ge€A | FeT }
for FEA. Notice that for all Xe(
X = U{‘F | FeX and FeA}.)

Check that approximable functions on these families are just those

preserving directed unions.

264
LECTURE 111

DOMAIN CONSTRUCTS

Having now seen a number of domains presented through
their neighbourhood systems,'we'need next to introduce general
constructs for forming new domains from old. There are an
unlimited number of such constructs (technically called'functors),
but we have time only to single out a few of the more important
ones. QOutstanding among all of them is the notion of product
of systems, which in our chosen category has all the expected
properties. For the time being in order to simplify notation
we assume of the underlying sets Ao_and A1 of systems DO and
D, that they are disjoint. There is no loss of generality as
D, can always be replaced by an isomorphic system disjoint from

D in the required semnse.

DEFINITION 3.1.v Let neighbourhood systems DO and 01 be
given over disjoint sets AO and A1. The product system over

AO U A1 is defined by:
DOXD1 = {XUuY| XEDO and YED1}.

For elements x€ lvoi and yEElv1I we also define:

<x,y> = {XUY|X€x and Yevy}. O

PROPOSITION 3.2. The congtruct DOX 01 always gives a neigh-
bourhood system where for elements x,x’ € |DOI and y,y'ﬁElD1l we

have
(1) <x,y> g <x,y'> iff xgcx’'and ycy’'.

~Moreover, there is a one-one correspondence between the elements
of 100 XD1I and pairs of elements of lDOl and §DTI since all
elements of 1Dy * D1I are of the form <x,y>.

Proof: Owing to the disjointness of AO and A1, we note
that for X, X'e D, and Y, Ye D, we have

&D) XU Ye X'UY'iff XX’ and YeY'.

Thus, {XUuY, X'UY'} is consistent in DO XD1 iff {X, X'} is

265

consistent in DO and {Y,Y'} is consistent in Dq. In the con-

sistent case we find
(2) (XuY) n (X" u Yf) = (XnX") u(Yyny",

and so DO X 01 is closed under cecnsistent intersection. As

AOUA1E DO x 01, it is certainly a neighbourhood system.

It is easy to check by the previous calculations that
<x,y> € ,DO)(DTI if xeziDOl and yEElvqi. The proof of 3.2(i)
follows directly from the definition and (1). ' v

Suppose z € lDOX‘D1l. Define as a temporary notation:

zy={X€D, | XUA €z}, and

z, = {YED1 | AUYEz }.

Clearly, both z4 € YDOI and z EID1K. In view of the formula

1
(3) (XUA1)Q(AOU‘{)=XUY,
we can calculate that

Z=<24,24>.
Moreover, if z = <x,y >, then

SX,Y 2y =X and SX,Y >y =Y.

The one-one correspondence required i1s thus established. O

There is more going on in the proof of 3.2 than just a one-
one correspendence between elements and pairs. The extra inform-

ation is best formalized by introducing a notation for mappings.

DEFINITION 3.3. Projecticn mappings

Py :DO x D1-+DO and Py 1Dy x 01-+D1

are defined as relations where
(XuY) py X' iff XeX' , and (XUY) p, Y' iff YegY'

hold for all X, XWEDO and Y,Y”G'D1. Given £ :Dz-*DO and
g: 02 - 01, the paired mapping

<f,g>: 02 > DO X 01

is defined as a relation where
> (XuY) iff Z£fX and Z gY

£
Z<f,g

holds for all XGDO, Y€D1, and 2602. O

266

PROPOSITION 3.4. The mappings Pgs Py and < f,g> are approx-
imable mappings, provided f and g are, and we have:

(1) poo?f,g>=fandp1o<f,g>=g.

Moreover, for zEIDO><D11, we have:
(i1) py(2) =z, and py(2) = zy,

in the notation of the proof of 3.2. Further if h :02 - ‘DO><D1
is any approximable mapping, . then

(iii) h = <py ° h, Pq° h>.
Moreover, for all wEEIDZI, we have:
(iv) <£f,g> (w) = <f(w), g(w) >,
where again on the right-hand side the notation of the proof of

3.2 1is used. O

The proof of this result is left as an exercise. Note the
consequence that there is a one-one correspondence between pairs
of approximable mappings f :02-* DD and g :Dz+ D1 and mappings
h :Dz-*DO XD1. It is clear that we generalize all this to products
Do * Dy x=om x 04

of several systems.

The product construct also neatly explains functions of
several variables. 1In Exercise 2.19 we used the informal notation

f:DOXD1+Dz
and suggested regarding f as a ternary relation
X,YfZ,.

But now with DO XD1 given an independent meaning, all we have to
do is to regard f as a binary relation with

(XUuY) £z

equivalent to the old relationship. We can also employ an element-
wise notation as in f (<x, y>) , which can more easily be written
f(x,y?). Similar remarks apply to functions of more than two

arguments.

267

We have discussed several times what it means for a
function f (x) to come from an approximable mapping. It is
interesting to ask the analogous question for functions of

several arguments.

THEOREM 3.5. An elementwise function
f :ID0 xD1I > lDzl
of two arguments comes from an approximable mapping iff for each
fixed aEEIDOI and each fixed bEElD1l the transformations
Xk f (x,b) and y b £ (a, y)
come from approximable mappings of one argument.

Proof: As. this is the first time we have had to deal with

constants in functions, a lemma is useful.

LEMMA 3.6. Given b€E|D11, the constant function
b :IDOI - ID1I
where b (x) = b for all XGEIDO|, comes from the approximable
mapping such that B
XbY, iff Y€b,

for all XGDO and YED1. O

There is no real confusion here in using "b'" both for function
and value. Returning, then, to the proof of 3.5, we see that
the reason that x b f (x, b) comes from an approximable mapping
is that the mapping in question is the composition of two approx-
imable mappings, namely f °<ID » b>. Clearly we can interchange
the rdles of 0, and 01 to get 8¢ y > f(a,y).

Conversely, assume that both these functions come from
approximable mappings no matter the choice of a and b. Clearly
the mapping to determine f is the relation from XUY to Z where

Zef (+X,+Y) = f(f(X‘UY)).

To prove that this determines f we calculate by the formula of

Exercise 2.9:

268

£0x,y) = (JErx,y) | xex)
U{U{f(+x,+\f) [Yey} | Xex?
Jgcax,4¥) | Xex and Yey)
Uttt cxun) | xunex,y>y.

And, again by 2.9, this is what was needed. O

Said more informally, a function of several arguments is
approximable in all the variables jointly if it is approximable
in each of the variables separately.

The type of argument used in 3.5 in the first half of the
proof also provides a generalization of 2.6 to functions of
several arguments. When we form a function like

flglx,z,...), h(y,x,...), k(z,w,...),...)

from given functions f, g,h, k, ...} we call the process substitution,

PROPOSITION 3.7. The functions of several arguments between
domains coming from approximable mappings are closed under

substitution.

Proof: An example will establish the method. Suppose there
are four variables involved taking values in domains provided by

systems DO ,01 ,02 ,03 . We might have a substitution like:

£lg(xg, x4)5 B {xy, x50, k(xg, x4 ,%X5)).

Here it might be that the values of the functions inside come
from quite other systems; for instance,

k :D3 x DO x 02 > 04
might be possible. By using projections

py 1 DX D%x Dyx Dy= 0.,
where i <4, we can assure that we have several functions all on
the same product; thus,

k°<P3»POsP2>IDO XD1X02XDB+-D4.

Now no matter on what domains f is defined, the following com-

position makes sense:

269

fo<go<po,p1>,ho<_p1,p2>,k.o<-p3,p0,p2>> ; |
and in fact this is the desired function. Writing it this way
makes it clear that the function comes from an approximable
mapping: we apply 3.3 (generalized, of course, to products with
several terms) to construe the parts between brackets < and >
as approximable mappings, and then by this trick the composition,

o is the ordinary composition of 2.6. O

It has to be admitted that there is a slight point overlooked
in forming products like D x D with two identical domains. This
is discussed in Exercise 3.14, invoking explicit'isomorphisms.

The construct that makes the whole theory of domains work so
smoothly is the function - space construct: it is possible to
regard functions as objects which form a domain. Look back at
Definition 2.1 and compare it with the original definition of
element in t.6. There are obvious formal similarifies, except
that filters are sets of neighbourhoods and mappings are sets of
pairs of neighbourhoods (relations). But as we saw in 1.10 |
it is possible to turn the filters into tbkensvia a simple
definition of neighbourhood. We apply the same kind of defini- -
tion to the mappings.

DEFINITION 3.8. Given neighbourhood systems D, and D, the
funetion space (DO-+ D1)is the system whose set of tokens is the
set 0f approximable mappings of Definition 2.1 and whose neigh-
bourhoods are finite non-empty intersections of sets of the form

[X,Y]={f 10y D, | X £Y},

where XGDO and YED1. O

We have been calling our mappings "apbroximéble” for a long
time now without saying exactly how they can be approximated!
Definition 3.8 supplies the missing key, because once a domain
has been defined, then the general theory gives an explicit
meaning to the word approximation. We still have to verify,
however, that the mappings do correspond to the elements of the

domain.

270

PROPOSITION 3.9. Let neighbourhoods XiEEDO and YiED1 be given
for i<n. Then the set of [X;,Y,] for i<n is consistent in
(DO-+D1) iff the following condition holds:

(1) whenever I1<{0, 1, ..., n-1} and {Xil i€ I} is consistent

in DO’ then {Yi | i€1} must be consistent in 91.
Moreover, when consistency holds, the least approximable mapping

fo belonging to the intersection of the [Xi’Yi] is defined by:
(i1) X£,Y iff [){Y. | XX, }evY

for XEDO and YEU1.

Proof : Suppose the [Xi’Yi] are consistent in (DO-+D1).
Since the function space is being defined outright as a positive

Sys;em, ConSiStency means
e - Yo 1 <
f ‘ I{[Xl, l] l 1 n }

for some £ :DO - 01. Now, with f in hand, let us check condition

(i). Suppose {Xil i€1I} is consistent. This means
X € ﬂ{[xi] i€ I}

for some x € lDOi. Suppose i €I, so x €] Xi]. Since Xi:fYi
holds, f (x) € [Yi]' This means, therefore, that

feoe [0l 1ierny,

and so {Yil i€I} is consistent.

For the converse, suppose (i) is the case. We take (1ii) as
the definition of a mapping and remark that for an arbitrary
X€D,, the set {Xi | X< Xi}'is automatically consistent in 7.
By our assumption, the set {Ying;Xi} is therefore consistent.

This means that

ﬂ{yi IXeY, }eD,.

(Keep in mind that i is restricted to those i<n, and there are
only finitely many neighbourhoods being considered here.) It
is thus. almost immediate that the relation f0 defined by (ii)
satisfies conditions of 2.1 and so is an approximable mapping

fo :DO - Di' By const?uctlon
Xi fo Yi

271

holds trivially for all i<n; therefore,

g6 (00X, Y1 1 i<n}
and the desired consistency is established.

Finally suppose that f is any mapping in the neighbourhood
under discussion; this means X, in holds for all i <n. Suppose
XfOY holds. We have for XgXi,Xin; S0

X £ ﬂ{Yingxi} cY.

Thus, XfY follows; hence, as relations, fog;f. In other words

f, 1s the minimal element of the neighbourhood. O

0

We note that, as a consequence of what we have just proved,
when the neighbourhood is consistent, then

[J{ix;,¥50 1 i<n}gix,Y]

is exactly equivalent to
n{{i ! XgXi} cY.

Note also that a single neighbourhood [XO,YO] is always consist-
ent since it contains the constant mapping k where

XkY iff Y ¢ ¥,

for all XéEDO and YWED1. Some other simple observations about
these neighbourhoods are just translations of the conditions of
Definition 2.1:
[X,YIn [X,Y"] = [X,YnY"]; and
X'"eX andYec Y’ imply [X,Y] ¢ [X’, Y'],
for all X, X' € Do and Y, Y' € 01 . We are now ready to prove
the main result about the construct.

THEOREM 3.10. Given neighbourhood systems DO and 01, the function
space system (DO - 01) is complete in the sense that every filter
in IDO - 011 is fixed by a unique approximable mapping.

Proof : Let £ :DO -~ 01 be an approximable mapping. By the
very definition of (DO - 01) it determines a filter by the definition:

272

f={Fe(0,-0,) | fEF}.

Trivially [X,Y]ef iff £e€ [X,Y] iff XfY; so this filter
uniquely determines the relation f. What we have to show is
that every filter in IDO - 01! is of this form.

Suppose<p€lvo - 011 is any filter. A relation can be de-

fined at once by
X oY iff [X,Y]€o.

In view of the remarks we made just before stating this thebrem,
there is no problem in Showing'that ® is an approximable mapping.
Since the neighbourhoods of the function space are in any case
finite intersectionsAof sets like [X,Y], those [X,Y]l€o generate
©. This means that ¢ =o. By definition %= £, so there is a one-
one correspondence between mappings and filters. (This corres-

pondence is obviously inclusion preserving, too.) O

We now know just about everything about IDO - D1l as a
domain: the elements correspond isomorphically to the approximable
mappings; the finite elements are explained completely by 3.9; and
we have seen how to calculate with neighbourhoods. The final
step is to relate the function space to other domains by appro-
priate mappings. In doing this we shall freely construe elements

of !DO - D, as approximable mappings in view of 3.10.

1

THEOREM 3.11. Given neighbourhood systems D1 and Dy there is a

uniquely determined approximable mapping
eval : (01-» DZ) XD1 - 02 ,
where for all f: D1 - 02 and all XEEID1I we have
(1) eval (£, x) = £ (x).
Proof: For F& (D,~ D,) and X€D, and Y&D, define eval
as a relatiocn by:

FuX evalyY iff XfY for all f€F.

273

Remember that neighbourhoods in the function space are sets of
approximable mappings. It is easily checked that this defini-
tion makes eval approximable. We now calculate the function

values by the formula of 2.2 (i):
eval (f, x) = {YeD, | 3F € (D, » D,) 3XEx. £€F and FuXevaly
Because, again by 2.2 (i), we have_ v
f (x) = {YEDZIEXEX. XEfY},

we can see from the definition of eval that eval (f, x)cf (X).
Suppose that Y€ £(x). Then XfY holds for scme X€x. We can

-

write fe€[X,Y] € (01 - 02) and it is clear that
A [X, Y] UX eval Y

holds by definition. Therefore, Y€ eval (f, x), and so
f{(x) < eval (f,x). O

This theorem is essential for our programme: it shows that in -
taking functions as objects the very basic operation of fofming '
the function value is an approximable mapping. In other words
we can treat the expression f(x) not just as a function of x,
as we have done from the start, but also as a function of f as
well. The result also indicates that there are useful maps
defined on domains that themselves are function spaces; we shall
meet many more of these. The next theorem provides further

examples.

THEOREM 3.12. Given neighbourhood systems DO ,01 ,02 there is

associated with every approximable mapping g': DO % 01 - 02 a
uniquely determined approximable mapping

curry (g) :DO - (D1-+ 02)
such that for x€ IDOI and yE|D1|
(1) curry (g)(x)(y) = g(x,y).
Moreover we have these functional equations:
(ii) eval o (curry (g) °Pgy> p1) =g, and

(iii) curry (eval o(h_opo, p1)) =h,

214

where the p; ¢ DO x 01 - Di are the projection mappings and
h :DO - {01 - Dz) is any approximable mapping. This provides
an isomorphism between the domains IDO XD1 > Dzl and IDO-»(D1-+02){

and so we can regard
curry :(D0 X 01 - DZ) - (DO - (D1 - ﬂz))

as itself being an approximable mapping.

Proof : Given g as indicated, we can define :>urry {(g) as a

relation and as an approximable mapping by:
X curry (g) [Y,Z] iff XuYgZ (but see Exev, 321)

for all XEDO, Y 601, 2692. This is sufficient because an
approximable mapping is intersective in the right-hand neighbour-
hood, so we know from the above exactiy what X curry(g)fiji, Zi]li< n
means for all finite intersections. The remark after 3.9 is then
helpful in checking that by this definition curry (g) satisfies the
monotonicity condition and so is indeed approximable. We now

calculate :

curry (g) (x) () {zeD,12Yey . Y curry (g) (x)Z }

= {2€D, | 3Y€ey3xXex. X curry(g)[Y,Z1}
= {ZeD,|3Y€ey3Xex. XUYgl}

= {Z€D,|3aWe<x,y>. Wgi}

g (<x,y>) = g(x,y).

This proves (i). We also see, that if we take the left-hand side
of (ii) and apply it to a pair <x,y>, it reduces to g(x,y) by
virtue of (i). Thus, the two functions in (ii) are the same.

Turning to (iii), call the left-hand side k. Using (1)

again, we find

k(x) (y)

eval o <h e p,, p,> (<x,y>)

eval (<hoep, (<x,y>, p,(<x,y>)>)]
eval (<h (x),y>)
h (x)(y).

As this is true for all y€E|D1I, then k(x) = h(x) follows. As this
is true for’all X € IDOl, then k=h follows, and (iii) is proved.

275

Taking (ii) and (iii) together, it is clear that the
domains 1003{01-»02| and !DO~+(D1-»DZ)I are in a one-one cor-
respondence. But from the very definition of curry it is clear
that ‘

curry (g) < curry (g’') iff g < g’.

Hence, curry is an isomorphism, and we can invoke 2.7 to con-
clude that it comes from an approximable mapping. O

We close this lecture with some order-theoretic properties
of function spaces that characterize inclusion and upper bounds

of functions in a "pointwise'" manner.

THEOREM 3.13. For approximable functions f,g :UO-*D1 we have
(1) fcg iff £(x) cg(x) for all x€1ID,1 .

For subsets Fc IDO->;01 | we have
(ii) F is bounded in 1D, - 011 iff {(£(x)IL€F}
is bounded in ID1I for each x€ IDOI;

and in that case for all x€ IDOI:

1iD) (Um) = Ufx) | feF}.

Proof.‘ The implication in (i) from left to right follows
because evaluation is monotone in the function as well as the
argument. The converse implication is a consequence of 2.2(ii).

For the proof of (ii) and (iii) we see that by (i) if F
is bounded, so is every set {f(x)If€F}. For the converse
direction, it is clear that (iii) defines some pointwise mapping;
we have only to prove that it is approximable. The calcula-
tion that LJF preserves directed unions (see 2.9 and 2.11) is

probably the simplest way to reach the conclusion. O

276

EXERCISES

EXERCISE 3.14. For the most part we can assume that there is
at most a countable number of tokens; thus, without loss of
generality the underlying sets Ai of given systems ﬁi could be
assumed to be subsets of Z* where E=={Q,1}. (Any denumerable
set would do.) Show that the productivo x D, could be.defined

as the system over the set O AO U1 A1 where

Dy x 0, = {0Xu1Y [X€D, and YED,].

1

In other words, the assumption of the disjointness of A, and A1

0
is unnecessary. Give, therefore, the revised definition of
<x,y> for elements, and prove that for a single system 0, there

exists an approximable mapping
diag : 0-0x7D

where diag(x) = <x,x> for all x€ |D!. Also extend the definition

to a product of n-factors
Do * Dy X0y g
which will be a system over the set
i
UiOA-
i<n *

Note that for a Z-termed product we simplify 10A1 to 1A1.

EXERCISE 3.15. Establish the usual isomorphisms:

(1) DO x D1 = 01 x DO;

(i1) _DO ><(D1 ><D2) = (DOXD1) ><D2 = DO XD1 x Dz .
How does the product of no factors fit in? Prove also:

(iJ_'.i),DO = D'O and D‘l = 0'1 imply DOXD1 E'D'Ox 0'1 .

EXERCISE 3.16.
AcZ*, Define

277

Let D be a given neighbourhood system over

A” = U 1o a

n=0

so that A” is split into infinitely many disjoint copies of A.

Let 0° be the least family of subsets of Z* where

(1) A e 0%,

and

(2) whenever X€ 7D and Y€ D™, then OXu1YeD™

Show that 7" i
isomorphism

>

a neighbourhood system over A”., Prove the

p° = DxD”

. @ .
Show, moreover, that the elements of | D | are in a one-one

- - . » . o«
correspondence with arbitrary <Znfintte sequences <xn>

n=0

of elements xnéilDl by using combinations of neighbourhoods

0X. U10X, U -+-UTOX U ---
0 1 n

where from some point on all the Xm are equal to A,

EXERCISE 3.17. Using the B and T of Example 2.3 show there is a

one-one approximable mapping

£:8 T

and another approximable mapping

such that

oo

g: T =+ B

and fog < I .

gof=1 y

B

Are B and T isomorphic? Are B and T x B isomorphic?

278

EXERCISE 3.18. Let DO and 01 be neighbourhood systems over
AO and A1, where we again assume that these are subsets of Z*,
We assume that in addition no neighbourhood is empty. Why is
this possible without loss of generality? Define the sum

system by:

D, + 0, = {{A}lu oA u1A1} U {OX!XE’DO} u‘{1Y!Yev1}.

0 0
Prove that this is a neighbourhood system over {A}UOAOU1A1.
(Throwing in {A} was not all that necessary, but note that

B=B+B ,
and this is an equality of sets not just an isomorphism of
systems.) Prove that in general there are mappings
1ni:Di—>DO+D1 and outi: DO+01"Di

where out, oini= Iy - Where does the assumption ¢¢?Di come in
i

here? How can these sums be generalized to n-terms? (Hint:

As for products use sets 1lOAi.) Draw some pictures.

EXERCISE 3.19. Suppose we are given systems and approximable
mappings
. - D' . S pr
| £ .DO D0 and g .D1 01 .
Prove there are approximable mappings

fXg:Dox 01400 x D1 and f+g:DO+D‘I ->DO + 01

such that
(1) (£xg) (x,) = <£(x), gy) >

for all x¢€ IDOI and y € 1011, and rewrite this as:
(ii). fXg=<fopO,g°p1 >, |

In addition prove that

i}

0 £,

(iv) out1 o (f+g)yo in1 g.

(iii) outy e (£+g) o in and

Do equations (iii) and (iv) uniquely determine'f-+g?

279

EXERCISE 3.20. (For category theorists). Show that the result
of 3.19 can be used to prove that + and x on the category of
domains and approximable maps are indeed functors. Show further
that X Zs the categorical product for this category.

EXERCISE 3.21. In the proofs of 3.12 in the definition of

curry (g) it is rather cavalierly assumed that the neighbourhood
1Y,Z] uniquely determines Y and Z. Show that this is true if
Z+#+ AZ . (Hint: Find explicitly the least of fe€ [Y,Z].) Show
that if Z.==A2 the biconditional stated at the start of the proof
is still valid even though Y is not uniquely determined. (Hint:
Remember that A,3 g A2

bourhoods of (01-+ Dz) is there a simple criterion for identity?

must hold.) For arbitrary pairs of neigh-

EXERCISE 3.22. Prove that there is an approximable mapping
comp: (D1 - Dz) x (Do'e 01)-» (DO - 02)

where for all g: D1 - DZ and £ :DO - D1 we have
comp (g f£) = go f.

Show this directly by writing down the neighbourhood relation
and by building the mapping up from eval and curry (on suitable
domains) using - and <,>. (Hint: Fill in maps in the following

sequence of domains:
(Dy = 01) x DO—> D1
(Dy = D) x (0 » D) x 0g) > (D » D)) x D,
(0, = 0,) x (Dg > D)) x Dy > (Dy = D)) xD,
((Dy = 0,) x(Dy » D)) x Dy = Dy

(D) > D) x 0y » D) » (05~ 1)
The maps are of course not uniquely determined, but the

shifting of brackets ought to suggest the right choice.)

280

EXERCISE 3.23. (For category theorists.) Show that the results

of 3.11 and 3.12 prove that the category of domains and approx-
imable mappings 1is a cartesian closed category. (Mac Lane [1971] pp.
95-96 may be consulted for a very brief introduction.) What

is the terminal domain in this category? What sort of functor

is (DO"D1)?

EXERCISE 3.24., Establish some more isomorphisms :
(1) (Dg = (D4 xD5)) (Py=04) x (95-7,)
(i1) (@y-0,) = (U,-7,)

(iii)'vo X (01 + Dz) = (DO x 01) + (90 X 02)
(iv) Dy + D) =D, = (D =D,) x (0~ D)

0

If some of the above are not true, perhaps at least some mapping
relationships can be established.

EXERCISE 3.25. (For topologists.) Recall from Exercises

1.21 and 2.13 on how to regard a domain |P| as a topological
space. Using 3.10 show that the family of open subsets of (D]
is isomorphié to a domain.

EXERCISE 3.26. Show that for every domain D there is an approx-

imable mapping
cond : T x D x D > 17,
called the conditional operator, satisfying

(1) cond (true, x,v) =X
(ii) cond (false, x,y) =y
(iii) cond (L, x,y) = L1 .
(Hint: Recalling that T ={{0}, {1}, {0,1}}, define cond as a

relation by

0C U 10X U 110Y cond Z iff 0€C and XgZ or
1€C and YgZ or
0,1€C and A cZ ,

281

where CET and X€0 and Y €D and where we are using the construction

of Exercise 3.14.) Find a similar operator in the domain

T x DO X 01 - DO + 01

Show also there is an appfoximable mapping
which : DO+ 01-»T

such that for all x€]DO+D |

1
cond (which(x), ino(outo(x)), in1(out1(x)))==x.

EXERCISE 3.27. (For set theorists.) Give another proof that
the family of approximable mappings £ :DO - 01 is isomorphic

to a domain by employing the general argument of Exercise 2.22.
How does this compare with the proof method of 3.9 and 3.107
Can the general remarks also be employed to show that

eval :(01-+02) x'D1»e D2

is approximable without bringing in the neighbourhoods in such
an explicit way? (Hint: Use 3.5 and the idea of Exercise
2.12.)

EXLRCISE 3.28. In the function space (00» 01) let

()Ix,, Y.11i<n)

be a (non-empty) neighbourhood. In 3.9 the minimal element of
this neighbourhood is characterized as a relation fo° ‘Show that
as an elementwise mapping it can be defined by the formula

£0x) = U 4y 1 xe [x.03,

for x€ IDOI. Try to draw a picture of IDOlAwith neighbourhoods

)

[Xi] and the corresponding values of the function fO'

LECTURE 1V
FIXED POINTS AND RECURSION

Having at this point a large supply of examples of domains
(and further constructs of new domains), we now have to consider
some other ways of defining functions - other than by explicit
compositions of the very basic functions already mentioned. One
of the most fruitful techniques 1is an infinitely Ztercted compos~
ition that is at the back of the idea of recursion . We will use
the process over and over again in these lec%ures, not only to
define new functions but alsc to define new domains. The heart
of the matter iies in the so-called '"Fixed-point Theorem'':

THEOREM 4.1. For any approximable mapping £: 0 -0 on any domain,
there exists a least element x€ |D| where

f(x) = x.

Proof : Let f% for n€ Nstand for the n- fold composition of

f with itself. That is,

£% = 1, and

fn+l = fofl
Define

x=1{XeD | Af*X, for some n€ N }.

We see X€x iff there is a finite sequence A=X
Xiin+1
holds, a sequence for an X€x can always be extended to a longer

0° X1,..., Xn =X where
holds for all i<n. Now since AfA automatically

sequence just by adding more A's on the front.

We want to prove x€ |D|. Clearly A€x;and if XY and X€ X,
then Y€ x. All that remains to be shown is the closure of x under

intersection. Note that if

UfVand U' £V’
hold and U, U' are consistent in D, then V and V’ are consistent and

283

(Unu') £ (Vav')

must hold. Generalizing this to sequences, if

A=X £ X, £ ... £ X =X, and
0 1 n
A=YOfY1I---IYn=Y
both holid (and note we have arranged the lengths of the two
sequences to be equal), then each pair Xi,Yi is consistent and we have

A= (XynYy) £ (X, nY)E o0 £(X N Y)=XnY.

This establishes the desired closure.

We also note that if X€x and XfY then Y€x. Therefore, £(x) g x and
indeed by its very construction x is the least element of |D| with

this property. (Why?) But f is monotone, so f(f(x)) e f(x);
hence, x=£f(x). By what we have already said it must be the
least such element. O

Because the element we have shown to exist in 4.1 is a
least element, it is unique . That is, we have associated with
each £ :0 -7 a special element Xe€ |0l determined by the choice
of £f. A function has therefore been defined mapping the set
[D -0l into |D|. The next result shows that this function,
or operator on functions, is in fact approximable.

THEOREM 4.2. For any domain 0, there is an approximable mapping
fix: (0 -0) »D
such that if £ : 0 -0 is any approximable mapping, then
(1) fix (£) = £ (fix (). |
Furthermore, if x€ |D|, then
(ii) f(x) € x implies fix(f) < x.

And this last property implies that fix is unique. Explicitly we
can characterize fix by the equation:

111) fix (0=] £w

n=0

for all £:D-7

284
Proof: Formula (iii) can be put in a more elementary form:
fix (£) ={X1A£f"X, for some n€ N }.

To show an elementwise mapping approximable we can use the formula

of Exercise 2.9, applied to the above as the definition of fix:
(*) fix (f) = U{fix (+F) | fe [F1},

where F ranges over the neighbourhoods of (D - D), and where

4F can be considered to be the least element of F as calculated

in 3.9.

Now from the definition of fix, it is clear that whenever
fcg, then fix (f) ¢ fix (g), because f*<cg®. (That is, fix is
obviously monotone.) Next, if f€F, then 4F is a (finite)
approximation to f; so 4Fg £ and fix (4F) ¢ fix (£f). This
means that half of equation (*) already holds by monotonicity.
All that is left is to prove the other half.

So suppose X€ fix (f) . Then, as we have already remarked,

there is a finite sequence of neighbourhoods where

= £ “o e
A XO £ X X

1 n-1 £ X, =%

Let the function-space neighbourhood be defined as

and note that since f €[F]lwe have at once consistency. But, by
3.9, +F€ﬂF% so the same sequence of X;. is sufficient to show that
Xefix (4F).

In other words, if X belongs to the left-hand side of (*), it also
belongs to the right-hand side. This completes the proof of (*).

Formula (i) is just a restatement of what we proved in 4.1.
And (ii) follows easily, because f(x) cx implies that A€ x and
whenever X€x and XfY, then Y€ x. Thus, by induction, if
Af"X, then X€x. So fix (f) cx.

Finally, if fax : (D - D) » D were any other operator satisfying
(i) and (ii), we would prove at once that
fix (£f) < fax (f) and
fax (£f) < fix (f).

That is to say, the two operators are identical. O

289

The reader may have noticed that we used recursion in the
proof of 4.1 (we had to define f for all n€ N). But 4.1 and
4.2 can be used to justify definitions by recursion on a large.
number of domains - definitions where the process of iteration
is far from being as straightforward. In discussing this point,
let us start with some basic examples.

EXAMPLE 4.3. The infinite generalization of our original example

1.2 is the system

N={{n}lneN})u (N}

The total elements are clearly in a one-one correspondence with

the integers in N . We can apply the construction of Exercise
3.16 toc obtain a domain

F=nN".
So we already know quite a bit about this domain - but it has a-
much more familiar presentation.

Let @ be the set of all finite partial functions o< N x N
(that is, finite sets of ordered pairs of integers where, if
(n,m) €¢ and (n,m’)E€¢, then m=m'). Define -

to={ved|ocy }.

Consider the neighbourhood system

-1

F'={+0! o€ ®}.

It is an easy exercise to show that F and F' are isomorphic

and that the elements of these domains correspond exactly to
the (possibly infinite) partial functionsmtg N x N, Moreover,
the total elements just correspond to the total functions

t: N >N ("function" in the ordinary, set-theoretical sense of

the word).
Another easy exercise is to show that the domains
F and (N->N)

by our definitions are NOT isomorphic; though the two domains
are closely related. We can define a mapping

286

val : FxN=>N
by the relationship
to U {n} val {m} iff (n, m) € o.
(Of course val has to relate other neighbourhoods such as:
+oU Nval N,

but these are all.) It is then simple to prove that if me |F|
is regarded as a partial function n: N » N and if for n€ N we
define fie [N| by -

fi={{n}, N},

then we have

val (m,) ﬁfﬁ), if n is defined at n

{NN}, otherwise.

(Remember that {IN} € |N| is the "undefined" element.)

This means that
curry (val): F o> (N=-N)
is a one-one function on elements. (The rather slight trouble with
(N> N) is that it has more elements than F.)
So much for the construction of F, we now wish to consider
mappings ' ‘
f:F-F
and their uses. Consider the possibility

f(n) (n)

0o, ifn=0;
n{n-1) +n-1, if n>0.

" If n were a total function, then f (m) would be total. But if =n
is partial, and if it is, say, undefined at k, then f(m) becomes
undefined at k+1. Note that f(n) is always defined at O. Note,
too, that f is an approximable mapping because it is completely
determined by what it does to finite (partial) functions. Indeed,

£(m) = | JiE@ 1ocn 3,

287

where ¢ ranges over &.

Well, we have proved that every approximable map of a domain
into itself has a (least) fixed point. What is the least fixed
point of this £? Suppose o = f(o). Then o(o) =0, and

cn+1) = f(o)(n+1)
= ¢(n) +n.
By induction, then
o(n) =3} i

i<n
and o is a total function. (Therefore, f has aunique fixed point.)
Actually, we can make the procedure more systematic by defining
as fixed points elements of (N -N) rather than F. 1In the first

A

place we have O€ |[N|, and from now on we will not distinguish
~ .

between n and n. Next we have two mappings:

sucé, pred : NN
where, as approximable mappings we have

X succ Y iff 3In€ N. n€X and n+1€Y,
X pred Y iff In€ N. n+1€X and n€Y,

for all X, YEN. This iscorrect , but what we mean in more under-

standable terms is:

succ (n) = n + 1;
pred (n) = n - 1, if n>0;
= 1, if n=20.
Here, n has been identified with i€ IN| and L={IN} € IN|. More-

over, we have a mapping
zero : NoT
which is such that

true, if n=0;

1]

zero (n)

false, if n > 0.
The structured domain

AN, O, succ, pred, zero?

288

can be called "THE domain of integers'" for our present theory..
We shall meet many other structured domains in the sequel.

Now the iterated summation function ¢ can be completely
characterized - as. a map o : N> N rather than as an element

o€ |Fl - by the following equation:

o(n) = cond (zero(n), O, o(pred(n)) + pred(n))
The only problem is that we have not defined + : NxN=+=N. (A
direct definition is left to the reader; general remarks are given

later.) But + could be any function of two variables in order to
make the point about the form of the definition of o. Remember

cond : TxNxN=>N,

as defined in Exercise 3.26. We do not put cond in as part of
the structure of N because (as should be clear from 3.26) it is

part of the structure of T.

. The above equation for ¢ is properly called a funetional
equation; it will be written as a fixed-point equation in Lecture V
when we have the notation for the A - calculus. O

EXAMPLE 4.4. The domain C of finite or infinite binary sequences

mentioned in Exercise 2.21 may be regarded as é generalization of

N. This can be made plain by saying how we wish to regard C as a
structured domain. To do this we should recall what C is as a

né{éhbourhood system. In the first place
B = {ocZ* joceZ*}
where Z ={0,1}. To form the system C we have

C=B U {{c} |l oeZ*}.

The total elements of B correspond to <nfinite binary sequences;
while the total elements of C to finite or infinite sequences.

To simplify notation let us write for o€ Z*

o= +{c} (a total element);

cl=+0ZX* (a partial element).

289

In other words we identify o with the corresponding total element

in [C].

We wish now to think of C as a structured domain seen as
a kind of generalization of N. The empty sequence A will play
the r8le of O€ |N| ; the map succ has two different analogues
for C, however. Just as for B we define for x€ |C]| and o€ Z* :

ocx={Y | oXcY some XE€ x},

where of course now X and Y range over C. It should be checked
that ot has the right meaning whether we-think of T €Z* or
T€ |Cl. The two "successor' mappings we are looking for are

X 0x and X b1x.
All the maps x > ox can be obtained as compositions of these

iterated as many times as needed.

Here are two questions which we now should ask:

What playsthe role of zero? The answer is not unique, because
in C therevare several distinctions that have to be made; in fact
we .will define three maps:

empty, zero, one: C-T

where the three maps take on truth-values to distinguish Qarious
kinds of elements in |C| as follows:

What plays the role of pred? The mapping will be called
tail, and it is characterized by:

tail (0x) = x,
tail (1x) = x, and
tail (A) = 1.

It is left to the reader to show that tail exists as an approxi-
mable mapping.

230

empty (A) = true,
empty (Ox) = fé]se,
empty (1x) = false,
zero (A) = false
zero (0x) = true

zero (1x) = false
one (A) = false
one (0x) = false
one (1x) = true

Again, it is an exercise to show these are approximable. The
structured domain is therefore

(C,A,0,1, tail, empty, zerc, one)

Note that we have changed the meaning of some of the symbols in
passing from N to C. Note too that there is a confusion between

O as an element and O as the map x b Ox. There are just too few
symbols! In any case this is only an example and not a philosophy
of 1life, so the reader can be expected not to suffer too much.

An example of a definition of anelement of |C| by a fixed-
point equation is:
a=01a.

This equation has one and only one solution in |C}, the infinite
sequence that alternates O0's and 1's. Note that a is also
characterized by:

0101a.

W
1

Another element 1is
b

010b ,

‘'which is quite different from a.

An example of amap in |C-C | has the characterization

d(A) = A
d(0x) = 00d(x), and
d(1x) = 11d(x).

We can write:

231

d(x) = cond (empty (x), A,
cond (zero(x), 00d(tail(x)), 11d(tail(x))))

As we shall see in due course, this can be regarded as a fixed-

point definition of d.

An example of a map in |CxC-C| was suggested in 2.21.

We can write:

xy= cond (empty (x), y,
cond (zero (x), O(tail(x) y), 1 (tail (x)y)))

It should be checked that this equation exactly characterizes

the intended mapping. O

The examples we have given with N and C are examples of de- i
finitions of functions byrecursioﬁ. The literal meaning of
"recursion' is "running backwards', and a look at the equations
for our examples will show that the functions are characterized
by giving their values either outright (e.g. at O or at A) or at
earlier arguments (e.g. at pred(x) or at tail(x)). The reader
should keep in mind that a recursive 'definition" is not really
a definition in the sense of eaplicit definition but rather is a
characterization; a theorem has to be proved to show that such
functions exist. Now we have a general definition of domain and
a general theorem on fixed points and a general construction of
function-space domain; THEREFORE, we know that there are solutions
to our equations PROVIDED THAT the variables range over elements
of a domain and that the other, given functions that appear in
the equations aré already known to be approximable (continuous).
This proviso is very important, and we shall remark on it time

after time.

But, as is well known, recursion also can be done over sets
like N, and we should examine now the connection between the
familiar kind of recursion and what we are doing over domains.
Of course, one simple connection is already provided by the
way we regard N as a subset of N. But there are other useful

connections that can be employed in a way that may seem more direct.

292

DEFINITION 4.5. A structured set <N,0, >, where 0€ N and
*:N » N is a unary function, is said to be a model for Peano's

Axtoms 1if the following conditions are satisfied:
(i) 0#n’, for all ne N ; '
(ii) nt=n' implies n=m, for all n,m€ N ;
(iii) whenever x< N and O€ x and x+<_:x, then x=N.

+
Here x = {n*|lnex}. O

Clause (iii) 1is recognized as the principle of Eﬁﬁ&iﬂiﬁi%%%
;Bégsgiea stated in terms of sets. We usually think cf N as
being "God given', and (i) - (iii) as known without question.
Suppose God, however, decides to withdraw His set of integers
and substitute another. We can ask: "Oh! Why did You take from
us our beloved numbers? Why must we now live with these strange
new beasts?'" God will probably reply "Trust Me!'" Perhaps we
should in view of the theoremn:

THEOREM 4.6. All models of Peano's Axioms are isomorphic.

Proof: There are several ways to give the proof, but, for
the sake of illustration, an application of the fixed-point theorem
is appropriate here. Let <IN, O,i'> be one model, and let <B4,D,#>
be another. Let N x M be the ordinary cartesian product of the

two sets and let
P (N xM)

be the powerset (set of all subsets) of N x M. As in Exercises
1.15 and 2.20, we regard this set of elements as a domain, whose
finite elements are just the finite subsets of the given set

N x M. The following mapping on uc N x M is easily proved
approximable :

u {(0,0)}uin*, n™) | (n,m)eul.

(This assertion should be checked as an exercise.) We thus let
r be the (least) fixed point:

r={0, 0} v {@*,n?) | (n,m) €1}

233

This re¢IN x M as a binary relation will turn out to be a one-one

correspondence giving the required isomorphism.

First of all we see by construction that

(1) 0rQ;
#

P . . +
(ii) nrm implies n rm .

So, if r proves to be a one-one correspondence, it will then be
the desired isomorphism. Now, the two sets shown in the equation

(,m a (@*nT) | @a,mer} = ¢

are disjoint by virtue of axiom 4.5(i). Therefore, O in N
corresponds by r to one and only one element of M, namely the
element 0. Let x €« N be the set of :all elements of N corres-
ponding by r to a unique element of M. We have just shown
0€x. Suppose n€x, and let m€ M be the unique element with
nrm. Now n+:rm# holds, so n* corresponds to at least one
element of }L{ If n rk also holds, then since (n+,‘k)=#(O,D),

the fixéd-point equation implies

+ + T #
n =ng and k-—mO

for some (no,mo)e'r. By axiom 4.5(ii), n =14, and, by uniqueness

(remember néfx),n1=m0; thus, m" is the unique correspond@nt for
n'. We have proved n'ex. Therefore, x+g X; so by 4.5(iii),
x =N holds. Otherwise said, every element in N corresponds to
a unique element of M.

Note that the roles of Nand M are completely symmetric,
and they satisfy the same axioms as structured sets. It follows,
then, that every element of M corresponds to a unique element of

N . The proof that r is a one-one correspondence is now complete.

EXERCISES

EXERCISE 4.7. Formula 4.2(iii) shows how to find the least
fixed point of f: 0D -0, Suppose on the other hand that a€ D]
is such that acf(a). Will there be a fixed point x=£(x) with

acx?

0

234

(Hint: How do we know U fn(a) € Dl ?7)
n=0

EXERCISE 4.8. Suppose £:0-> D and Sc |Vl are such that
(1) L1L€S;
(ii) x€S always implies f£(x) €S ;

(iii) whenever {xn}n=0 < S and X, S X,

<F
for all n, then nLJO anS.
Conclude that fix(£f) €S. (This could Ee called the principle of
(o}
fized-point induction.) Apply the method ,a set of the form
S={xe Dl | a(x) =b(x)},

where a, b :D >0 are approximable,and where we know a(l) =b(1),
and foa=aecf and fob=bo £f.

EXERCISE 4.9. Show that there is an approximable operator
¥:((0-D)>0D) » ((D-D)-7)

such that for ®: (D->0) -0 and £:D-7 we have
v (8) () = £(0(16).

Prove further that fix : (D->0) -0 is the least fixed point of ¥,
AN

EXERCISE 4.10. Given a domain D and an element a€ {D|, construct
a domain Da where

10,1 ={x€10l|x ca}.
Show that if f:0-0 is approximable, then f can be restricted
to an approximable map f' : Deiy £ Desy (£) where £’ (x) = £(x)
for all x€ IDﬁX(f)I.
How many fixed points does f' have in 1Dl s (f)l?

295

EXERCISE 4.11. (Suggested by G. Plotkin). We can regard
fix as assigning a fixed-point operator to each domain D.
Show that fix is uniquely determined by the following general
conditions on an assignment D> FD

(1) E, :(D-D) -D ;

(ii) Fv(f)==f(FD(f)) for all £:0-7;

(iii) whenever fo :DO-» DO and f1 :D1 - 01 are given and
h: D, ->D1 is such that h(L) =1 and ho fO = f - h, then

1
h (Fq}(fO)) =FD1(f1)‘

(Hint: Apply 4.7 to prove fix satisfies (iii). In the other
direction use 4.10.)

EXERCISE 4.12. Need an approximable f : D-D have a maxzmun fixed
point? Give an example where there are many fixed points.

EXERCISE 4.13. The proof of 4.1 uses the integers, whereas the
proof of 4.6 uses 4,1. There is a hint of circularity here! It
can be eliminated by the following steps:

(1 5& a domain U has an element a where, for £ : 0 -0 the
relation £(a) ca holds, then the least fixed point can be defined by

fix(e) = [({xe101 | £x) e x}.

Note that fix(f) ca. (Hint: Remark that by 1.17 the formula
gives a well-defined element. Call the element b. Prove that
f(b) b by showing that f(b) ¢ x whenever f(x) «x. Then note
that £(£(b)) < f(b) so that becf(b) also. Conclude b= fix(f)
as least fixed point.)

(2) Remark that this proof uses only the monotonicity property
of £: 101 -17P|. Remark, too, that (1) can always be applied to power-
set domains PA for any set A.

(3) Review the proof of 4.6 and establish by a fixed-point
method that for any structured set ¢z, z,") there is aunique function
s: IN -»Z such that

(1) s(0) = z;
(ii) s(n™) =s(n)®, for ne N.

(4) Employ (3) for the proof of 4.1 by identifying (Z,z," .

296

EXERCISE 4.14, Need amonotone functien £ :!PA ->PAalways have

a maxtmum £ixed point?

EXERCISE 4.15. (For set theorists.) Let £: | D | ->1|D]be a
monotone function on (the elements of) a domain. Show that £
has a maximal fixed point (i.e. a fixed point that cannot be ex-
tended to a larger fixed point). (Hint: By Zorn's Lemma

consider a maximal chain
Cci{xe Dl | xcf(x)},

and use 2.11 to remark that t)CeElDl.) Now argue that f has a
least fixed point.
AN

EXZRCISE 4.16., (For fixed-point nuts). Show that a monotone
function as in 4.15 has an "optimal" fixed point in the sense that it
is the greatest fixed point below all the maximal fixed points and
at the same time it is the largest fixed point consistent with all

other fixed points. Comsistency for sets of elements means having a
common upper bound. (Hint: Follow these steps: '

(1 Show that any non-empty set S of fixed points has a

largest fixed point below by using the formula

f(nS) < ﬂs

and finding the least fixed point over r}S.

(2) Letting a be the fixed point of (1) constructed from the
set of maximal fixed points, remark that a is consistent with any
other fixed point x=f(x), since x can be extended toc a maximal one.
Suppose b is consistent with all fixed points, then bgy if y
is maximal. (Why?).)

EXERCISE 4.17. (For algebraists). Suppose <S,1, > is a semi-
.group with unit (sometimes called amonoid). Remark that PS 1is
a domain. For a,b €S, what is the least x€PS such that

x={1} u {a,b}Uux-.x
where in general for x,yc S ’

Xx-y={t-u| t€x and u€y}
Need the fixed point be unique?

237

EXERCISE 4.18. In Example 4.3 there are many unproved assertions
about N and F. These should be checked. In particular, the isomor-
phism theorem of 4.6 could be proved by constructing a simple domain

M from M in the way N is constructed from N .

EXERCISE 4,19, There are many unproved assertions in Example 4.41
In particular discuss "Peano's Axioms" for {0,1}*. Show, moreover,
that one : C>T can be defined from the rest of the structure by a

fixed-point equation.

EXERCISE 4.20, For approximable f,g:D-?D prove that

fix (fog) = £(fix (g- £)).

EXERCISE 4.21. Show that the less-than-or-equal-to relation
2N x N is uniquely determined by the fixed point equation

2={(n,n) [neN} U {(n,m") |(n,m) €2}
Consider the structured set <PN, N, +> where, as before,
x" =1{n"] nex}.
What is the unique function [-] : N -» P Ngiven by 4.13(3)? Prove
that the structures < DLO{+> and <[m],1n,+> are uniquely isomorphic
for each m€ N, and connect the isomorphism with ordinary addition

of integers. Can the same be done for multiplication? (Hint:
Consider the fixed-point equation:

n-N-={0} U {n+m/me€n-N},

where n€ N is fixed.)

EXERCISE 4.22,. Suppose N is a structured set satiszing only
axioms (i) and (ii) of 4.5. Must there be a subset N g]N* that
satisfies (i), (ii), and (iii)? (Hint: Use a least fixed point
in P DJ*.) (For set theorists): How do we know from the axioms
of set theory that there exists such a set N* ?

298

EXERCISE 4.23. (Suggested by S. Eilenberg). Suppose f:0-7
is approximable on a given domain D. Suppose a_: D-D is a

sequence of approximable maps where
(1) ao(x) =1, for all x€ |D|

(ii) a ga. , in D-7, for all n€ N
n n+i

(ii1) Y a, = ID in 0-7 3

i a_, ,of= £ i1 neN.
(iv) ajpef=a yefea, for all n€ N

Prove that f has a unique fixed point. (Hint: Show that if x = f(x),
then an(x) gan(fix(f)) for all n€ Nby induction on n.)

EXERCISE 4.24. (For set theorists). Let f:A-B and g:B-A

be one-one functions {Znto,not necessarily onto !) Prove the
Schroeder - Bernstein theorem to the effect that there exists a one-
one correspondence h : A~+B. (Hint: (Suggested by A. Tarski).

By the fixed-point theorem find X< A where

X=(A-g(B)) v g(£(X))
where £(X) = the image of the set f under the function f. Define

hcAxB as a union of two restrictions:

h=f{1Xug '] (A-X).
A picture helps.)

EXERCISE 4.25. Perhaps the domains N and C are not exactly
analogbus? C was based on {0,1} as the underlying set of tokens.
Construct a system C1 based on {1}* (= finite strings of 1's)
with neighbourhoods:

c,={{1"Im>n} IneN}u{{1"} Ine N}.

What structure should be put on C, strictly analogous to that on

1
C (=Cz)? What kinds cf approximable maps relate N,C1, and Cz?

Draw some pictures.

299

LECTURE V

TYPED A - CALCULUS

In Examples 4.3 and 4.4, after suitable domains have been
constructed, functions are characterized by recursion equations
whose form of expression is - basically - a composition or substi-
tution of known functions together with the function to be defined.
This method can be made more precise and more easily usable by ex-
panding our notation for functions - particularly by inventing a
"temporary'" notation for a function as a thing in itself without
having to have special letters for functions. The device is called
A -abstraction. It is related to ordinary set abstraction (the
{x]+-+} -notation already much used in these lectures), but we
gear the approach to domains and their elements, and especially
to function spaces.

At this stage it would not be so helpful to produce a rigor-
ously formal definition of the syntax of the typed A - calculus;
we shall try to suggest what is needed by example. There .are so
many examples at hand, the less formal discussion ought to be
sufficient.

In the first place we should set aside, in the notational
store room as it were, a stock of variables

Xy VsZyWyeon .

These variables will be required in different "sizes'" or "types'.
Roughly speaking there should be an infinite number of variables
to range over the elements of each domain D. We could perhaps write

D % %

Xg s X4 5 Xy 5 ane,

but the subscripts to insure an infinity of variables and the super-
scripts to record the typing of the variables lead to a notation as

300

tiresome to write as it is to read. We simply agree that we can

have as many variables as we need and that they come in all the type
Y p Ypes,

Strictly speaking we should also introduce type symbols and
not confuse types with domains. But if the reader will simply keep
in mind that form in language has always to be kept distinct from
content, the confusion at the type level will not matter so very
much. A point at which the confusion might cause a real confusion
concerns compound types . Given DO and 01 we can form such com=-

pounds as

What has to be remembered is that a compound domain (neighbourhood
system), UO X 01 say, does not uniquely determine the 'parts"

DO and D1. (We could make it do so, but it would cost some effort.)
Of course, the symbol ”DO x D1” has well defined parts. The point
is that different ways of forming a compound domain could lead to
the same result, meaning that a domain does not let us retrace 1its
exact history of construction. Compound symbols, however, always
carry their histories around with them, since otherwise they would
not be readable. What we want, of course, are botz domain symbols
and domains, the latter being the meanings of the former. Most of
 the time we can happily pretend that it is only the domains them-

selves we have to think about.

Besides variables, we will also need certainconstants . For
instance, the symbol O (perhaps, better ON) denotes a certain
element of [N!. Similarly, in view of Theorem 4.2, for each domain
D there is a well-determined element fixD of the compound type
((0-D) > D) denoting the least fixed-point operator. We have con-
sidered any number of similar constants of a great variety of types
already (cf. 4.3 and 4.4; cond is an especially good one). We can
say that the variables and constants are atomic terms, where

""atomic" here means non-compound.

To form compound terms, there are several means: for example,
if v,...,0 is a 1list of already obtained terms (including variables

or constants), then we can form an ordered tuple

301

We have already dcne so in 3.1.- If the types of T, ..., O are
D,...,D" , respectively, then the type of the tuple is the product
domain

DX eeexD’ s

because we intend that the tuple denote an element of this domain.
(The tuple notation for funetions as 1n 3.3 is being forgotten for

the time being.)

Next suppose that t has type (00‘* 01] and o has type DO, then

the usual function-value notation

T (o)
is a compound term of type D We also use
T (00;..., n—1)
as an abbreviation of
T (<oo, cee 5 Opy >'),
where, 1f the types of Ogs +++5 Oy 2re DO; ...,Pn~1, then the typ§{

of v has to be of the form
((Dyx === xD__) » D) |
where D is the type of the compound. In this manner,with functions

applled to tuples, we have the full fac111ty of substltutlon 1nto
functions of many variables just by 1terat1ng the notation.

Having taken into account functionvalue , it remains to
provide for function definitiZon . Suppose that Xq s ...,xn_1is a
0° ""Dn—1' Suppose further”
that v is a term - no matter how complicated - of type Dn. Then

list of distinct variables of types P

we can regard T as defining a function of n - variables of type

((Dgx +eexD__,)=D).

What we have not done is to reward our regard by, as yet, providing
a quick-to-write ''name" for that function. This we now do; it is

called

AX X T,

03'}"’
where we stress that the X5 must be distinet variables and that this

n-1°

302

expression denotes the whole function. That 1s why we provide it
with a special symbol.
Here is an example of the A -notation
AX,y. X,

which is read '"lambda ex wye ... (pause) ... ex". If the types
of x and y are DO and D1, then the type of the above is

- (P xDy) = Py
Indeed, we know this function very well: it is the gfirst projection
function Py of 3.3 and the equation
Pg = AX,Yy. X
is true, as is the equation
Py = AX,Y. V.
-In the notation of 3.3, we also find the true equation
<f,g> = Aw.<f(w), g(w) >,

where on the right-hand side we are using "official™ A - notation

for a function of type

(0, = (Dgx 040D
The notation on the left is just an abbreviation and it should not
be confused with the pair (2-tuple) of type

((02 - Do)x (02 - 01)).

(Since the two domains just mentioned are isomorphic, the possible
confusion is not all that serious. On the other hand, one con-
fusion we will completely overlook is that between 1-tuples <x>

and elements x. Strictly speaking they are different, but we shall
not bother to make the distinction.)

Here are some other examples of true equations:

eval = A f, x. f(x) ' (cf. 3.11)
curry = AgAxAy. glx,y) (cf. 3.12)

The first should be immediately clear; while the second is particularly
instructive. What is being illustrated is that the A -notation can

303

be iterated . The distinction being drawn is between

k:{o,'x1, cees X kxn . T,

g 1

n-1 . T ana‘Xxo}\x

The first has type

((Dy x Dy xeeexD) =0)

while the second has‘type

(DO - (01 > (s (pn_i.»p <)) .

This is related also to the true equation

n)'

curry (AX,y.T) = AXAYy.T ,
which shows that there are operators relating to the tWQ notatibns,
The first is the multivariate form; the second is the curried form.
Here is another true equation
fix = fix (AF A£. £ (F (f))),

where the fix on the left has type ((? -»0) - D) and that on the
right type ’ ‘

((((P-D) » D) » ((0-D) - D)) »((D~D) -D))
This is the content of Exercise 4.9. (This also shows why type
superscripts are tiresome.) s :
The combination
fix (A x.1)
occurs so often, that from time to time we abbreviate it as
Ix. T,

but remember it only makes sense if x and T have the same type.
For example in 4.3 we could have written

o= 1tfAn. cond (zero(n), O, f (pred{(n)) + pred (n))
and read this as

"o is the least (recursively defined) function f whose
value at n is cond («+«)."

We ncte that in the so—called‘%odyuof the expression inside the

304

cond-part the variable f occurs again. That is just the point!
This is a recursive definition; it is made -into anezplicit defin-

ition by invoking the least fixed-point operator.

In a2 A - expression, A x,y, z.t, say, the variables x, vy, z
are being bound in t; but T may have other variables that are no-
where bound in T and these remain free variables of the whole
expression. Bound variables are dummy variables and may be re-

written by other variables; thus
Ax .t = Ay.t [y/x]

is a true equation PROVIDED the variable y does not occur in T.

In the equation the notation t[y/ x] means the result of substituting
(rewriting) the variable y for the variable x throughout the term <.
We cén also write t [o/ x] for substituting a whole term O for a

variable in the other termn.

We have already spoken of "true equations', but how do we
know that these curious equations are meaningful at all? They are,

but this is something that has to be proved.

THEOREM 5.1. Every typed A - term t defines an approximable function

of its free variables.

Proof : We argue by an induction on the complexity of T; there
will only be a few cases to consider since the "syntax'" of A - terms

is limited — even though terms can be of any length.
If t is a variable or a constant there is nothing to prove.
We already know that
X |—x and x l—k

are approximable functiomns.

Suppose T has the form
<OGs +ees O g >

Then the o; are less complex terms, and so we can assume — as our
induction hypothesis — that they define approximable functions of

the free variables. HaVing said this, we just apply the already

305

proved 3.4 to conclude (after a suitable generalization to the
multivariate case) that ‘t, which takes on tuples as values, also

defines an approximable function.

Next, suppose T has the form
g, (o4,

where we are sure that the types of all the terms match properly.
Again we can assume the o; to be .well behaved. But the values we

seek can alsc be written as
eval (co, °1)'

Since eval is approximable by 3.11, we just have to invoke an
instance of 3.7 to gain the desired conclusion.

Finally, suppose that T has the form
A X.oO.

By a judicious choice of the order of the varlables in o (1nclud1no
X), wWe can assume that o defines an approximable function

g:‘Dox...an_‘!x_‘Dn—)‘D'

where D' is the type of o, D, is the type of x, and DO, e, Dﬁ_1
are the types of the remaining free variables of o. We apply 3.12
and ‘obtain an approximable function

curry (g) :DO X oo XDn—1'*(Dn'*D")'
But, this is just exactly the functicn defined by <.

We leave as an exercise the more general case of a term T of
the form
Axo, R R

which has a string of bound variables. O

We can now say more precisely what it means to call o=71 a
"true equation". This means that, if we employ the method of the
proof of 5.1, the two terms define the same function of the free |
variables. For example,

3066

Ax.t=Ay.T [y/x]
'is true, provided y does not occur free in the term T,
since the systematic generation of the function defined by

A X . T does not depend on what the variable x Llooks ilike but only
on its position in the term tv. Some other obviously desirable rules
for generating true equations are stated in the exercises. But one

rule is so basic that we state it here in full generality.

THEOREM 5.2. For suitably typed A - terms the following equation is

true:

(AXg s wovs X 42 T)(0g, ~vvs 0p) =T L0/ X, oevs 0 4 /X 4 1.

Proof : 1t will be sufficient to carry out the proof for n=1. .
The proof proceeds by induction on the complexity of the term t. In

case T 1is aconstant k, the result reads
(Ax.k)(o) =k,
‘and this is a true equation.
In case T is avar<able (in particular, the variable x),
the result reads
Ax.x)(o) =0,

and again this is a true equation.

In case T is a tuple (say, <Ty 5Ty >) the result reads
(/\x.<ro,1:1>)(cs) = <71, [c:f/x],r1 [c/ x]>
This 1is true, because the left-hand side can be transformed by the
true equation
(A x. <1 > T4 >) (o) = <(X x. To) (9, (A.X.T1) (c) >;

and then we apply the inductive assumption for To and for 11

In case t is an application, we want (supposing the term is
T, (1,00,
(A x. T, (r1)) (cr)=1:0[o/x] (T1 lo/x]).

We can proceed as in the last case, noting that the left-hand side
equals

307

eval ((Ax.<ro,r1‘>) (o)) .

In case T is anabstract (say, Ay .TO), we want

A(Ax.kyf.ro)(o)==ky.ro [o/ x]

PROVIDED the variable y is not free in o. _For this we require

the true equation
Ax.Ay.) (o) =Ay.{(Ax.7T) (0O),

We argue for this by letting g be the function of n+2 free

variables defined by t. Then, by‘5.1, the k—-termbkz<.k)r.r
defines the function curry (curry (g)) of'n arguments. We can
call this function h for the moment. We can write . .
h(v)(o)(y) = glv, o, ¥), ‘
where v is a 1Zst of arguments. But, with an appropfiaté com-
binator inv, which applied to g inverts the order of the last
two arguments, we can write
h(v)(o) (y) = curry (inv (g))(v,y)(0o).

But, curry (inv(g)) is just the function defined: by (Ax.T). So
what we have proved as true is

(Ax.Ay.1) (o) (y)=(Ax.1) (9),

But if y is not free in a and

a (y)=8
is true, then so 1is
_ ' a =Ay . B
This completes the proof. O

We note that if T’ is the term Ax,y.T, then T' (X,y) means
the same as t. This gives a convenient way of indicating free
variables: we just write o (x,y) - where x,y are not free in
o - and this will have the same values as any term T which does
involve the extra free variables x and y. We use this notational
device in the next theorem.

308

PROPOSITION 5.3. The least fixed point of
AXx,y. <t (x,¥), G(x,y)}

is the pair with coordinates
Ix.t(x,!'y.oc (x,¥)) and

ty.o(!x. (X, ¥Y),y).

Proof + (We are assuming that x and y are not free in T and
c.) The purpose of the fixed-point search is to find the least

solution of the paZr of equations
x= T{X,y) and y=o0 (x,Y).

.In other words, we are generalizing the fixed-point equation from
one to two variables - and, of course, we could go much further
to any number of variables. To this end, let

Ye = !y.o(!x.T(x,y), y), and
Xpe = IX.T (X,7,)-
Then ,
Xe = TOX 5 Vi)
and
Yo = 0 (1% T (X,74) 5 Vs)

= 0 (Xys Vi)
This proves that <x,, y, > is one fixed-point pair.
Suppose, then, that\;xd~;yo> is the least solution. (Why doces

a least solution have to exist? Hint: Consider a suitable mapping
of type

Dy x D - voxﬁ1 ,
where DO is the type of x and D1 the type df y.) Then we know
CXg = T(xo,y0) and Yo = O(XO,yo),
and also Xy € Xy and Yo S Vx- But from
T(xy,Yq) €X%p,
it follows that

!X.'E(X,Yo) S Xg-

309

Consequently

O(!X.T(X,YO)’Y()) gc(xo>yO) EYO-

By the fixed-point definition of y,, we have y, < Yo » SO Yy =VYgys

" whence,
Xe = X T(X,¥,) = lx.'t(x,yo) S Xq-
So also x, =Xx,. We have the right formula for y,, and a similar argument gives
Xg- O

The purpose of giving the above proof was to illustrate the
use of the least fixed-point operator in proofs. We have such true
principles as:

1Tx.t(x) = ot x. T(x));
and - '

T(y) eyimplies !'x. T(x)c vy,

provided, of course, that x is not free in t. These, together with
the monotonicity of all the functions, were just the methods used in
the above proof. Here 1s another example.

PROPOSITION 5.4. Let x,y, and t(x,y) be of the same type D
and let g be of type (D -0D), then the equation

Axty.t(x,y) =lgax.t(x, g (x))

is true.

Proof : Let f be the function on the left-hand side. We

can write

f£(x) = ty.t(x,y) = ©(x, £ (x)).
Therefore

f=2Ax.71(x,{f(x)),
and it follows that

8g = tgo Ax. t(x, g(x)) « £ .
Then we have at once, by definition éf gq>

gg(x) = ©(x,gy(x)),

for any given x. But by definition of f we find

f(x) = ty.v(x,y) ¢ gy(x).

310

follows.

As this holds for all x, then fg;go

is true. O

So the equation

The last proof is instructive as it uses equations and in-

clusions between functions .
of the principle:
if
then AXx. Tt Ax.o holds.

Tco holds for all values of x,

This is another form of Theorem 3.13(i).

TABLE 5.5.
A-notation to define various combinators . We

of these equations before, and there are some

In particular we have just made use

In the displayed table we give a summary of uses of the

have mentioned some

combinators here we

have not mentioned before - their meanings, however, should be clear.

pO = XX’Y'X

Py = AX,Y.Y
pair = AXAy. <x,y>
n-tuple = kxokx1 }”Xn—1 - <Xg5,
diag = AX. <X,x>
funpair = AfAgix. <f(x), g(x) >
.n
projy = kxo D I S
inv? = AX X X
i, Xga eees Kysoveny Xy onn
eval = A f,x. £(x)
curry = AgAxAy. g(x,y)
comp = Ag,fAax. g(f(x))
const = AkAx.Xk
fix = A £t x. £(x)

A TABLE OF COMBINATORS

. X >
x1’ ? “n-1
’Xn-1 <x0,. ’Xj’ .
. X >
Xl’ > 'n-1

311

It is important to note that since we have not typed the
variables, these equations are ambiguous: they only become pre-
cise when the types are specified. It follows, therefore, that
what we find in the table are schemes for combinators; there
are actually infinitely many distinct combinators corresponding
to any one equation depending on how the variables have types
chosen for them. Clearly it is better to imagine this variety
of combinators than it is to try to notate them with type supér-
scripts.

One interest of combinators is that it is often possible to
write expressions without variables - if enough combinators are
used. This is sometimes useful, but it can become clumsy. On the
other hand , if the same combination occurs over and over, it is
sometimes useful to give it a name. This is what we do with, say,

composition Wwhere
~comp (g, f) = go £f.

On the one side we have the prefix notation, and on the other,

the more common infix notation. With either notation the variable
seen in Ax.g(£f(x)) has been got rid of. The choice between
equivalent notations ought to be based on a desire for readability.

The reader will have noted that there are some combinators
not appearing in Table 5.5. The reason is that combinators like
cond, succ, pred, zero, 0 cannot be défined in the pure A - notation
but are specific to domains like T and N; we, thus, have to régard
them as primitive. But once they are in hand, a very large number
of other functions can be defined from these combined with A -
expressions. The next theorem gives an indication of the possibil-

ities.

THEOREM 5.6. For every partial recursive function h: N - N, there
is a A-term T of type (N-N) such that the only constants occurr-

ing in T are
cond, succ, pred, zero, QO
and where if h(n) = m, then

r(n)'=fm

312

is true; and if h (n) is undefined, then
t{(n) =1

is true. The equation'r (LY =1 1is also true.

Proof :- We have only formulated the theorem for functions of
one variable - but to give the proof, it is convenient to pass
through functions of any number of (integer) variables. We shall
also have to recall the precise definition of the notion of

partial recursive function.

It is also convenient to work with (very)strict functions

k

A

These are functions such that if no;'...,nk_1EINI and n, =4 for
at least one 1<k, then

f(no, ...,nk_1) =1.

It is easy to check that compositions of strict functions are

strict.. It is also easy .to see that any partial function -

g :I€k>+ N
extends to a strict'(approXimabie) function
g NE S,

which takes the same values as g as long as g is defined; other-
wise g takes the value L. What we want to show for partial recursive

>

g is that the corresponding g is defined by a A - expression.

In the first place we have to check that primitive recursive
functions have A - definitions in this sense. We recall that
primitive'fecursive functions are generated from certaln elementary
starting functions by multi-variate composition and the scheme of
primitive recrusion. The starting functions are the constant
function with value zero and the "identity' or "projection"

. _ i
functions. For example, g(no, n,, n2)-—n1 for all Ny, Ny, N, € N

is one of the starting functions. Now we cannot just use the A-term
) A.xo, Xgs Xoe Xy

to represent g, because the function so defined is not strict.
But any function in IN]&-aNl can be cut down to a strict function

by a simple device. Consider

313

Ax. cond {(zero(x), x, x)

with x of type N. This is the strict version of the identity
function of one argument. The strict projection function of two

arguments can be defined by

Axo,x1. cond (zero(x1),x0 ’XO)*

The one of three arguments by:
KXO,JH > Xoe cond (zero(xo), cond (zero(xz),.x1,x1), cond (zero
(Xz)’ X1’X1))'
This is not done very elegantly, and the reader can find for him-

self a general solution based on perhaps a better notation for the
required compositions of functions. » :

As we remarked, strict functions are closed under substitution,
and any substitution of a batch of functions into another function
can be given by a A-term, if the various functions can themselves
be so defined. It only remains to A-define functions obtained by
primitive recursion. Thus, suppose, for the sake of argument, that

f: N->N and g: N > N

are given as total functions with f and g being A - definable.
From them, we obtain by primitive recursion h: N - N where '

h(O,m)

f(m),
h(n+1, m)

g(n,m,h(n,m))
for all n,m€ N, The A-term defining h is

tkAax,y. cond (zero(x), £ (y), g (pred(x),y, k(pred(x),y))).

Here we have had to use the fixed-point operator on a variable k

of type (N2 - N). The variables x, y are of type N and the cocnd -
construction puts the two traditional equations into two clauses

of one expression. It is easy to see that the fixed-point function
78 strict and is nothing more than h.

That completes the representation of primitive recursive
N\/\I\/\/\N\/\’\
functions. To obtain the partial recursive functions, the idea
ANV
is to use the so-called p-scheme (least number operator) and,
further,to close up under substitution. We need only treat the
u-scheme. Suppose, by way of example, f(n,m) is given as a

314

primitive recursive function. We tunen define h (generally, a

partial function) by

h(m)

the least n where f(n,m) =0.
This is often written

h(m) un. £(n,m) =0.

Supposing, as we may, f is A - definable, we introduce first
g=1gAix,y. cond (zero { £(x,y)), x, g (succ(x),y)).

Then E;=k)n g(0,y). This is easily seen to be strict. Also easy
to see is that if h{m) is defined, then g(O,m) =h(m). But, if h(m)
is not defined, it takes some argument to make sure that the least
fixed-point construction forces g(0,m) =L1. However, the argument

is not very difficult. O

What isnot said in 5.6 is that every A - term defines a
partial recursive function. This is true (with suitable control
over the constants and types in the expression), but the proof
requires a full analysis of computability properties of domain
constructions. This is the topic of Lecture VII.

_ It should be.remarked that the types of variables needed for
the proof of 5.6 never get very high. In fact, types like N, N]iand
mk -+ N) were the only ones needed (with perhaps T thrown in also).

Recursion on N was the topic of 5.6; further examples of
recursion on other domains are included in the exercises.

EXERCISES

EXERCISE 5.7. Find definitions of
Ax,y.t and o (x,y)

which use only Av with one variable and applications only to
one argument at a time. Note that use must be made of the com-
binators'po, Pys pair. Generalize the result to functions of
many variables,

315

EXERCISE 5.8. (For combinator nuts.) Table 5.5 was meant

to show how combinators could be defined in terms of A ~ expres-
sions. Can the tables be turned to show that with enough
combinators available, every A - expression can be defined by
combining combinators,using o(t) as the gg%x mode of combination?

EXERCISE 5.9. Suppose that f, g : V-0 are approximable and fog ="

g o f. Show that f and g have a least common fixed point x = £(x)=g(x}
(Hint: Refer back to Exercise 4.20) If in addition f(1) = g(4),
show that fix (£) =fix (g). In particular will fix (£) = fix(£2)?

What if we only assume fog=g2o f?

EXERCISE 5.10. Suppose Doband 01 are neighbourhood systems
over disjoint sets AO and A1. Define the smaﬁzpnchtvo ® D,
with neighbourhoods

{AO U A1} u{Xuy| XEDO\ {AO} and YED1\ {A1}}.

Show that this <s aneighbourhood system. Define (Do-ei 01) so
that I170-+_L D1I consists exactly of the strict functions. By intro-
ducing appropriate combinators, show that

(D=, (D

0 41

17 Dz)) and (V(DO®D1) -»_va)

are isomorphic.

EXERCISE 5.,11. For any domain D we may regard D% as consisting

of (bottomless) stacks of elements of D. With this image in

mind, define appropriate combinators with the obvious meanings:
head : 0° - D ;
tail : 07 - D%
push : DxD" » D%,

Using the fixed-point theorem argue that there is a combinator
diag : 00"

where for all x€ |D| we have

diag(x) = <X> -

316

(Hint: Try a recursive definition, say

diag{x) = push (x, diag(x)),

but be sure to prove all terms of diag(x) equal x.) Also intro-

duce by an appropriate recursion a combinator
map : (D » D))" xD » D°
where for elements of the suitable types:

o<

£ *® =
map (<Ln>n=o, X) <fn(x)>n 0°

EXERCISE 5.12. On any domain D introduce{as a least fixed point)

a combinator
while : (0-T) x (b-»D) Q‘(D-»D)
by the recursion
while(p,f) (x) =cond (p (x), while (p,f) (£f(x)), x).
Prove that
while (p,whiie (p,£)) = while (p,f).

Show how while could have been used to obtain the least number
operator mentioned in the proof of 5.6. Generalize the idea to

define a combinator
find : D7 x (D-T) oD

with the meaning "find the first term of the sequence (if any)
which satisfies the given precicate."

EXERCISE 5.13. Prove the existence of a one-one function
num : N x N « IN such that

num (0,0) = O ;

num (n,m+1) num(n+1,m) +1
num {(n+1,0) = num{(O,n) +1,

Draw a picture (i.e. an infinite matrix) for the function and
find a closed form for its values, if possible. Use the function

to prove the isomorphism of the domains

P N,P(N xN),P Nx P N.

317

EXERCISE 5.14. Show that there are approximable mappings
graph : (PN - PIN) - PN and
fun : PN - (PN - PN),

where we have

fun o graph Af. f, and
graph o fun o A x. Xx.
(Hint: Using the notation

[no, Dy, eeey Dy] = num(no,[n1, ,..,nk])

two such combinators can be given by formulae

fun(u) (x) = hnlano,...,nk_1€x.[n0+1,...,nk_1f1,O,m]Etﬂ

graph(f) = {[n0+1,...,nk_1+1,0,1n]|m€f({n0,...,nk4}) },

where k is variable - meaning all finite sequences are to be
considered.)

EXERCISE 5.15. (For algebraists.) We can regard <{0,1}*, A, - >
as the free semigroup on two generators 0 and 1. The powerset .
* :
P{0,1} 1is taken as a domain as in Exercise 4.17. For "words"
*
e€ {0,1} define
*
e = {A, e,ez, es, eeey en,>...}.
Show that the least fixed point of
z = {el-z U {e'}
*

in P{0,1} 1is z= e*'{é}. Show further (as suggested by David
Park) that the least solution of

Xx=a-xUb.yuc
y =b-xUa-yud
has
* * *
x=(aUb-a -b) - (cUb.a -d),
where the {-} has been dropped off {a}, {b} etc., and where
. ;
the =-notation has been extended to the whole domain, so that
* *
Z =AU z -2z,
(Hint: Apply 5.3.)

318

EXERCISE 5.16. Return to the discussion of Example 4.4 and
the construction of the domain of finite and infinite binary

sequences. Give a fixed-point definition of neg: C - C, where

1}

1 neg (x);
Oneg (x).

neg (0x)

neg (1x)
Prove that neg (neg (x)) =x for all x€ |IC]. Also define
merge : C xC > C, where for €, &€ {0,171 we have:
merge (ex,8y) =¢c &merge (xX,y).

(Note: There may be a little trouble with merge (x,y) when x
is finite and total and y 1s infinite - you have to decide what

you want in e.g. merge (A,y).) Prove that

merge (x,x) =4 (x),
in the notation of 4.4; Consider also the infinite non-periodic
sequence

t =0 merge (neg(t), tail(t)).

Prove that the nth digit of t is the sum mod 2 of the digits
of the number n written in the binary scale (a suggestion of
J. Lambek). Show also that t # uaaav where a is any finite

sequence # A, and where u is finite.

319

LECTURE VI

INTRODUCTION TO DOMAIN EQUATIONS

The major reason for introducing the theory of domains is
to have a notion of computability incorporating both finite and
infinite elements. . In our many examples already explored we
have seen how functions (functionals, operators, combinators)
can be defined on domains; owing to the property of approximab-
ility (continuity) of these functions, we have also seen how they
can be 'calculated" by finite approximation. In this lecture
further examples of domains will be constructed -- especially
domains having infinite elements, which can be introduced in a
variety of ways giving rise to interesting structural possibil-
ities. The next lecture then treats a precise notion of compu-
tability appropriate to these domains; while the last lecture
opens up new methods of domain construction.

EXAMPLE 6.1. Let D be fixed as a given domain. We are now
familiar with a useful construct like D x D whose elements are
ordered pairs <x,y> of elements x, yof D. The question is:

can this construct be iterated? The answer is obviously yes,
since D x(DxD) and (P xD) x (D xD) and so on can be formed with
elements <x,<y,z>> and <<u,v>, <x,y>> and the like. But the
real question is: «can the construct be iterated Zndefinitely?
AND can the results be collected together into a s<ingle domain?
The answer is yes, but it requires a bit of work to get itvright.
The method to be introduced will be open to many variations, so
more than one answer is possible, giving non-isomorphic domains.

In order to collect all the iterates into one large domain
we give ourselves first a very big domain inside of which the
desired family of neighbourhoods will be found. There are many
ways to make this choice, and we are fixing on one that will
keep the notation simple. We have often used binary sequences
for examples and constructions, but for this example let us use

320

ternary sequences. Let Z=1{0,1,2} and let Z* be all finite
- sequences from this three-letter alphabet. We will select
subsets of £* for our neighbourhoods. As £* is countably
~infinite, it is without much loss of generality to assume
that D is a neighbourhood system over A where we take AcZ*,
Also without loss of generality we can assume P €D. (Why?)

We wish to find another set I'cZ* to be the set of tokens for
the new domain. After we find it, we will still have to say

just which XgT are appropriate for the structure we want.

The totality {X | X <Z*} is, as a powerset, isomorphic
to the set of elements of a domain: a point we have remarked
several times. So, by the Fixed-Point Theorem we know there
is a set 'cZ* where

r=0A y 1T y 2T,
In fact '={1,2}* 04, because we can say:

{1,2¥*={A} v 1{1,2}* v 2{1,2}* .

The domain we are looking for will be found as a domain D§

over I'. The reason for splitting I' up, as shown in the equa-
tion above, is to ensure that if X,YéED§ are two neighbourhoods
in the system Dg,,then 17X U 2Y has a chance of being also in
D§ because

1X U 2Y T,

Thié will make D§

§
x D§ isomorphic to a part of D°. If we make
D also isomorphic to a part of D§, then all the iterated products

will be contained in D°.

What is a neighbourhood system? Just a set of sets. But
PPZ* is a domain (as a powerset) and because 'cZ*, we find

pie ppz+

as an element. But elements of domains can often be defined by
fixed~point equations. Indeed we will introduce P~ this way:

2% = {I'} u {0X IX€D} U {1XU2Y | X,YeD }.

The reader should stop to think why D§ can be immediately seen

to exist by writing such an equation. Of course another way

to describe D§ is to say it is the least family of sets containing
(i) the set I'y, (ii) the sets 0X for X in the given system D, and
(iii) sets 1 XU 2Y whenever it already contains X and Y (closure

321

under a set-forming oOperation).. By saying '"least', we mean
{(iv) nothing else belongs to D§ except aSallowed by (i)- (11*),
this makes the truth of the equation for D clear. So D’exists
as a family of sets, but what good is 1t?

By our construction of I', all the sets we put into D§
are subsets of T (why?), so D§ has a chance of being a system
over I' if we can check the closure under intersection. So
suppose Z< XN Y where Z,X YED_“; we want to show XnYE D§ We
argue by induction on the number of steps required to put K and
Y into D by (1)-(iii). There are several cases.

If X=T or Y=T, there is nothing to prove, because both
sets are subsets of I'. We note that ¢€£D , because (i)-(iii)
cannot introduce ¢ as a member of D§. So, if X =0A for AeD,
then Y must have this form also (if it is not I'), because

0OAN(1BU2C) = @ .

(That is, if Y had the form (iii), then Z =9 would be a-consequence,
which is impossible.) Thus, if X=0A for A€7D, then Y =0B for some
Be D. But by the same reasoning Z = 0C for some C€ D also. But '
the relationship 0C<0ANO0Bis equivalent to CcAnB. We see,
therefore, that AnB€?, and so

XnY=0ANn0B= 0(ANB)
must belong to D§.
The final case has X,Y,Z all of the form (iii):
X=1A, V24, ,
Y

1B, U2B, , and

n

Z 1C11J2C2

We can think of the A, and B, put into 9% carlier and the inter-
section result as being already established for them. But the
relationship Z<XNY is equivalent to CiSAin Bi for i=1,2.
Therefore AirWBiézvg, and so does

322

We have now seen that p® is a neighbourhood system, but
why was it constructed that way? -The reason is simply this
isomorphism (or domain equation):

pS=p+0ixpdy ,

as can be seen by reference to the equation for p° and the

definitions of + and x. What are the elements of 2%? There

is always
L={T}.
Next if x€ {D| we define
x> = {Thu{oxIxex}.
That gives an isomorphic injection
Ax.xg: D-’Dg.
Then for x, Y€ |U§| we can define
<x,y> = {T}u{1Xu2Y|X€x and YEYy}.
We.have another isomorphic injection
§
AX,Y.<x,y> :D§ XD“-+D§.
Indeed by looking at the neighbourhood definition of D§ we con-
clude that the finite elements of D§ are exactly those that are
either of the form (i) L, or (ii) a§, where a is finite in |D|
or (iii) <a,b>, where a and b are previously obtained finite
elements of |D§I.

Suppose a,..., £ are finite in |D|. We can picture the
element
§

, <<b®, B>, a¥s>, <ef

u=<<a £35>

]

§

in |P° | as a tree:

323

Note that the tree has binary branching with the elements of
ID| at the ends of the branches. Any such tree could be given
a notation as an element of ngl. The finite elements of

ID§I correspond exactly to such finite trees.

What of the infinite elements of ID§l? Are there infin-~
ite trees? Let a,be€ ID§| be any elements of ID§I. Since
pairing is an approximable mapping, we can solve the fixed-

point equation
v =<a,<b,v>>.

In pictures we can diagram v roughly as:

The word is "'roughly" here, since if a or b were not in the |[D{
part of |D§|, then in the diagram the letters '"a'" .and "b" should

be replaced by the corresponding tree diagrams for a and b.

Suppose that a and b are finite. Then we can easily see
that the infinite tree v is the 1limit of the following sequence

of finite trees:

=_L’

V41 =<a,<b, Vn>> , and

@
U

n=0

324

The reader should think how to explain from tree diagrams the

approximation relation'vnﬁgv and more general such relationships.

We could call D§ a tree algebra over U. There may be

others. A general one is a structure of the form
<E in, pair>,

where
in: 0> E, and
pair tExE -E,

The algebra

§ §

<P7, Ax.X", AX,y. <x,y>> ,

however, is a very special one: it is "minimal" among all tree
algebras over D in a sense-we shall have to make precise.

To do this think of how E and D® can differ. In view of
the isomorphism that 0% satisfies the injection of D and the
pairing are cne-one, so no "information" is lost by these
mappings. The same may not at all be true of £, but it is
reasonable to think that at least we can define an approximable

mapping g : 0% > E where

(1 g (L) =1,

(2) g (x*)=in(x), for xe (D], and
(3)
By what we said earlier, g will be uniquely determined by (1)-(3),
because these equations tell us exactly how to calculate g on all

(<x,y>) = pair(g(x), g(y)), for x,ye [D°].

0Q

finite elements of iDgl. An approximable mapping is always
determined by its action on the finite elements. But why does

g exist?

It would not be too hard to give an inductive construction
of g as a neighbourhood relation, but a fixed-point equation is
easier to write down for the same purpose. We need, though,
to have the inverse ("predecessor") functions:

§

out: D=7

proji: D§-+D§, for i=0,1,
where
out(x§] =x ,
proj0(<x,y>J =x, and
proj, (<x,y>) =§u
We also need
atom :D§-+T,

where
atom(xg) = true, and

atom(<x,y>) = false .

We can then write

g(x) =cond (atom(x) , in (out(x)) , pair(g(projy (x)}, g(proj, (xJ)))

This g exists by fixed-point theory, and it“satisfies'(l)7(3)
by what we know about the stfucture of ID§I. As we said, g is
unique because the values on finite elements are fixed.

In algebraic languagé g is a homomorphism of tree alge-
bras; and D§ is called an <nitial algebra, because for any tree
algebra E there is a unique homomorphism g :D§-+E. We note at
once that any two initial algebras are isomorphic. For if D* were
another, there would exist homomorphisms in both directions
between D§ and D*. But the compositions of homomorphisms are
again homomorphisms, and in the case of D§ if we go from D§
D* and back to D§, the result must be the identity. The reason
is that the identity can be the only homomorphism of an initial
algebra into itself. We thus have a precise meaning of the
minimal character of U§. But note it still took a construction
to show that the domain D§ exists. O

326

EXAMPLE 6.2. Our staple examples B and C satisfy "domain equa-
tions" in the form of isomorphisms as we have previously seen.
Indeed

B=B+8, and
C={{A}}+C+C ,

where if we liked we could construct both systems over {0,1}*

and have
B={{0,1}*}u{0XIX€B}U {1X]| X8}, and
C={{0,1}*u {{A}}u{oXiXeC} u{1XIXecC}.

We leave to the exercises the explanations of what kinds of
algebras B and C are and why they are initial. Here we want to

ropose a simple, yet interesting generalization of B.
Consider this domain equation :
A=Al 4 AR

where A" stands for the n-fold cartesian power of A. We can,
with the aid of some encoding solve this equation as a neigh-
bourhood system over {0,1}* as follows:

- A={{0,1}*}u U { iU13-0XJ. Y xjeA all j<n} .
i=0,1 j<n
For instance, if n=3, then a typical neighbourhood in A is
something like

OOXOLJO1OX lJO11OX2 ,

1 .
where XO,X1,X2€EA. The first '0' could also be a '"1' in front
of each of the terms.

In words, an element of A (other than 1) is an n-tuple of
elements of A: but there are two separate copies of these, the
left one and the right one. We can write for a€ |A]

a.=:<ao,a1,...,an_1>,

where + is chosen if a is on the right, and — if on the left.
As a tree diagram a might look like this for n=3:

327

ete. ete.

That is, a is an infinite ternary tree with + or — labels at
each node. If each node (subtree) is truly infinite, the edement
is total; if L is ever encountered, it is only partial; if every
branch ends with L, the tree is a finite element of fAI.

What can be done with such trees? Let ce {0,1,...,n-1}*
be a finite sequence of '"digits'" each less than n. We let
Z={0,1,...,n=-1}. We can define for a€ |A| the operation ¢ —>av
by recursion on o:

aA=a, and
aio= (ai) o.

The ao are just the subtrees of a with o as a selector. We also
have a map

pos : A>T
where

pos(+<ao,a1,...,an_1>) true, and

pOS(—<aO,a1 g e e ,an_1>) =false.

We say that a (total) tree a is eventually periodic 1ff the set
{aoclo€eZ*} is finite. The result is that the 'language”

L, = {c€e Z*| pos (ac) = true}

corresponding to an eventuaily periodic tree is always a regular
event of automata theory, and every such language has this form.
In fact, a just represents the initial state of an automaton,
and ao represents the state after '"reading'" a tape o. O

328

In order to formulate more generally the idea of a domain
equation and initial algebra, we must introduce a small amount of
the terminology of category theory. To be as specific as possible,
think of systems D over sets AcXZ* with £={0,1}, say. They form
quite an interesting category with respect to the approximable
maps £ :0-D’. Recall that to be a category of "domains'" and
"maps' all that is required is an assocociative composition go £
of maps with identity maps I: 0D -7 for each domain of the category.
And this we certainly have for the systems indicated. And
there are many other categories waiting around: for instance,
restrict systems to those where'¢6£v. This is not much of a
restriction, as every system 1s 'isomorphic to one like this.

Or restrict the maps to being the strict maps f: D -0’ where
f(LD) =Ll5/. This is an essentially different, though related
category. We shall find many others.

What examples 6.1 and 6.2 suggest is the notion of a
construct which makes new domains out of old. For example,
with 7D fixed, 6.1 suggests for any domain X over I'cX* a domain

T(X)=D+(Xx X).
More specifically (converting from Z = {0,1,2} to Z={0,1})we
could write
T(X) ={T’} u {0XIX€D} U {10XU 11YIX,Y€E X},

where we have I'" =04AuU10TU11I'. (By the way, here we definitely
want to assume P €D and P&X and to get € T(X).) This construct
is an example of a funetor, a notion that can be defined ab-

stractly on any category.

DEFINITION 6.3. A functor on a category (into itself) associates
with every domain X in the category another domain T(X)and to
every map

f: XY

another map

T(£) : T(X) - T(Y)

329

in such a way that identity maps and compositions are preserved:
T(IX) = IT(X)’and
(gof)=T(g) « T(f),

whenever £f: X-»Y and g:VY-27. O

In the example from 6.1 we have not checked how the special
T is a functor. The hint is that whenever f£: X-Y, then there

is a map

fxf: XxX-YxYVy

But there is also a map

I +ExEf:0+ (XxX) =D+ (¥YxY)

D .
and this suggests the definition of T(f). The details are left
to the exercises. Note that the map T(f) just suggested is al-
ways strict, so T is a functor also for the category of strict

maps.

One good reason for a little of the category-theoretic
language is that the next definition becomes very neat indeed.

DEFINITION 6.4. A T-algebra is a domain £ in the category to-
gether with a map '

"k T(E)-E.

If m: T(F) »F is another T-algebra, then a homomorphism is a map
h:E>F in the category such that the diagram
k

T(E) —> E
|

"o | |

m
T(F) —> F

commutes; that is, the equation
hek = mo T(h)

holds. O

330

In our example from 6.1 a T-algebra is astrict map

k:D+ (ExE)->E . \
But such strict maps are in a one-one correspondence with pairs

of (not necessarily strict) maps
n:0VP-E and p: EXE-E .

And the structure <E,n,p> is what we called a tree algebra.
Definition 6.4 just makes this abstract. The reader should also
work out the details showing that 6.4's definition of homomor-

phism is just what we ought to expect.

Note that the T-algebras and homomorphisms form a cate-
gory. (Why?) The following definition is so abstract that it

could be given for any category.

DEFINITION 6.5. A T-algebra is <nitial if and only if there is
a unique homomorphism from it into any other T-algebra. O

The word '""other'" here is not meant to imply "distinct'.
For an initial algebra there is one and only one homomorphism
into itself: the identity map. As we already indicated in 6.1
it is a general fact that the next proposition holds.

PROPOSITION 6.6. Any two initial T-algebras are uniquely iso-

morphic. O

Slightly more intereSting is the behaviour of T on initial

algebras.

PROPOSITION 6.7. If i:T(D)-D is an initial T-algebra, then so
is T(i) : T2(D) > T(D) and i is the isomorphism from T(D) to D.

Proof: Clearly since T is a functor, the map T(i) has
the right mapping character to make T(D) a T-algebra. Since

- D 1s initial, we have a commuting diagram :

331

T(D) 1 > D

T(3) j

5 \' T(i) \"2
T2 (D) >T(D)

But we also have the trivial diagram:

5 T(1)
T (D) >T(D)
T(1) i
v i v
T(D > D

It follows thét iej is a homomorphism, so
ioj = iD'
But then because T is a functor we find:
T(i) « T(j) = IT(D),

and, since j is a homomorphism, we have

Joi = Ipcpy,
This shows that i is an isomorphism. O
From 6.7 we see that if we are going to have initial alge-
bras at all we have to satisfy the domain eQuation
D=T (D).

But generally that is not enough to assure that D is -initial.
There is a condition that our functors satisfy, however, which
guarantees the existence of homomorphisms.

DEFINITION 6.8. On the category of domains and strict approxi-
mable maps a functor T is continuous on maps if for any systems

D and £ the induced mapping
C AL T(£) : (Do E) » (T(D) », T(E))

is approximable.

332

THEOREM 6.9. If the functor T is continuous on maps and 1if
D=T(D), so in particular D is a T-algebra, then for any T-
algebra k: T(E) »E there is a homomorphism h: D~ E.

Proof: Let 1:T(D)->7 make D a T-algebra, where
j:D - T(D) is the inverse so that i is an isomorphism of domains.
Suppose that k: T(E) - E is any T-algebra. A homomorphism
h:?D->E would satisfy

hoi=ko T(h).
Rewrite this equation as

h=koT(h) 3.

In the domain of strict maps (P -E) this is a fixed-point
equation for an approximable map

Ah. ko T(h) o j

by our assumption on T. Thus, the desired homomorphism exists. O

The final guestion we have to answer 1s why in our cate-
gory the minimal D exist. The reason is that the functors T
that we have in mind possess further continuity properties on
domains. This is conveniently expressed in terms of a notion
of "subdomain".

DEFINITION 6.10. For two neighbourhood systems U and E we
write

DJIE

to mean that these are neighbourhood systems over the same set
of tokens A and not only is D< & but whenever X, YED and
XnYe€E, then XNnYeD., O

For the subdomain relation D <E to hold, D has to be a
smaller family of neighbourhoods, but the notion of consistency
in D also has to be the same as in E. Note that if DO < E
and D1 <1 E then

333

D, 4D, iff D, <D,

It is also easy to prove that the union of a directed family
of subdomains of £ is again a subdomain. As a consequence of
this remark we have:

PROPOSITION 6.11. For a given neighbourhood system £, the set
of subsystems

{DIDQE}
forms a domain in its own right. O

The subdomain relationship implies a mapping relationship
between the domains.

PROPOSITION 6.12. If D<E, then there exists a projection pair
of approximable mappings: '

i:?P->E and j:E-D

where j o i-= ID and i oj < IE’ which are determined as element=-
wise functions by these equations:

i(x) ={ye€et|3xXex.XcY}, and
ily)=yno,
for all x€ 1P| and ye€ IE]. O

The proof is left for the exercises.

DEFINITION 6.13. A functor T is monotone on domains iff whenever
D 4E, then not only do we have T(D) <T(E) but the projection pair
i, jof 6.12 is mapped to the same kind of projection pair T(i),
T(j). A monotone functor is continuous on domains 1ff whenever

E is a domain, then the mapping

AD. T (D) : {DID<E} » {D' | D' AT(E)}

is approximable. O

334

We can now state an existence theorem that covers in

fairly wide generality the examples of this lecture.

THEOREM 6.14, If the functor T is continuous on maps and
monotone and continuous on domains, and if there is a set T
such that

{T} < T ({T'hH,
then there exists an initial T-algebra.
Proof: We proceed as in the proof of the fixed-point
theorem by iterating the functor. The assumption about T
means that, as a neighbourhood system, T({I'}) is a system over

the same set I'. Thus, if we iterate T to form Tn({P}), all
these systems are over I' and indeed

™rh am™ iy

for all n. We can thus introduce

o= Ururn,
n=0

and it is easy to check that D is a system over I' and
T™({T}) <D
holds for all n. But then we have for all n:
™ ({ry <™y < 1),

which implies < T (D). But T is continuous on domains, so

T(U ™({T}))
n=0

T(D)

- U ™oy
n=0

I
Ae)

335

Thus, not only is D a T-algebra, but the isomorphism we get

for D and T(D) is just the identity mapping. We know by 6.9
that homomorphisms exist; what remains to show is that homomor-
phism from U are unique. As in the examples, we will show in
effect they are determined uniquely on the finite elements of 7.

Since each TP({I'}) <iD, there are projection mappings

i tT({T}) > D and j_:D - T} .

Define o, D=0 by pn==in ojn. Projection pairs are always
pairs of strict mappings (Why?), and so are in the category.
By assumption and 6.13, the functor T preserves these maps, so
we have

T(p) =T(i) o TG) =i .1 °Inaq =Ppeg
As a neighbourhood relation p, can be characterized by :
XpnY iff 3ZeTR({T}H). XcZcY.

n+1l and

nL=Jo °n = 1o

Now suppose k: T(E) »E is any T-algebra and h:D-E

We thus see that PLEP

is a homomorphism. The mapping will satisfy the fixed-point
equation ‘
h = ko T(h),
where no other mappingsneed be written in because 0 =T(D) and so
: T(h) : 0> T (E) .

We wish to show that h really is the least fixed point of this
equation.

Define hh.=h ° P, :DP->E. For n=0, the map Py is the
trivial map where po(x) =Ly for all x€ ID|. But h must be
strict, so ho(x)=.LE for all x€ |P]; that is, h0 is the 1least
~element of IDaLE{. Now calculate

336

1}

ko T(h) = ke T(h) o T(o,)

h °pn+l

- hn+1

This shows that the union of the hn is the least fixed point of
Ah.koT(h). But

U h, = Uh°on

n=0 =0

=]

holy=h,

so the given h is in fact the least fixed point. The homomor-
phism is uniquely determined, and P is the initial T-algebra. O

Having the existence of initial T-algebras, we can prove
one more result that shows just how minimal they are. We need
a lemma about projection pairs, first, that shows where sub-
domains fit it. We write DJE as short for D=0’ for some
D" <9E in the following. The lemma gives a converse to 6.12.

LEMMA 6.15. For two neighbourhood systems D and E, if there
exist a projection pair

i:D->E and j:E-D

with jei=1, and iojcl., then DJE

Proof. What we want to show is that i maps finite ele-
ments to finite elements, and that the desired P’ is the image
of D in E. '

Suppose X< 0. We can write:

10 = (Jirivei (),

Applying j to both sides we have:

337

$X = jei (4X) = U{»j(+Y) | YEi(+X) }.

But then, since X€+ X, we find X€j (4Y) for some YE i (+X).
This implies

+Xcj(4Y); and so i(+X)giej (#4Y)ct Y.

Since +Yci (#+ X)in any case, we conclude i (4 X) =4Y. This
proves finite elements are mapped to finite elements.

What of ‘A; that is, what is i (+ A)? We find, supposing

E to be a neighbourhood system over a set A’, that since

+Acj(+A"), then i (4A)c+ A’ and so i (+4A)=4+A", This means
that A corresponds to A’, So we have established that D is in an
inclusion preserving one-one correspondence with a subset D’ of E
where A’ €0’, But it remains to show that D’ is a neighbcurho'od‘
system and that D’ < E holds. All we really have to ‘show is that
D’ is closed under intersection whenever the intersection belongs

to E.

Suppose Y’, Z' €D’ and Y'NZ'€E. Let X"=Y'nZ’'. We have,
for suitable Y, Z €7,
i(+Y)=+4Y’, and so +Y=3j(+4Y’); and
i(42)=47Z", and so +Z=3(+2").
But 4Y" <4X’ and j(+Y')<cj(+X"); thus YEj(+X'). For
similar reasons Z€3j (+X’). But then X=YNnZej(+X'), and

therefore YNZ€ETD. (The element j{(+X’) must be a filter.)

Notice, however, that

+Yc+X, and so +Y ' ci (+X); and

+Z<c4+X, and so +Z'ci (+X).
It follows that Y'nZ’= X'"€i(4X). On the other hand we already
knew X€j (+X’), which implies i(+ X) <+X’. We may thus con-
clude that i(4+X) = +X". 1In other words X'€0D’. O

338

THEOREM 6.16. If on the category of domains and strict approxi-
mable maps the functor T is continuous on maps, and if ? is an
initial T-algebra, then for any system E=T(E) we have DE.

Proof: There is a homomorphism h: D-E. By 6.9 there is
a homomorphism g: E-»D. Now geh:T =0 1is also a homomorphism,
so goll=ID because D is initial. In view of 6.15, all we have

to prove now is that ho ggIE.

Let the maps i: T(P)-D and j : D - T(D) give the isomor-
phism for ¥, and let u: T(E) >E and v: E-T(E) do the same for
E. By the proof of 6.9 we know

g=10oT(g) ev and h=ueT(h) oj

and each of these maps 1is the least fixed point of iis
respective equation. Let

8o~ Lgsp and hy= 1y ¢

and define by recursion

gn+i= io'T(gn) o v and hﬁ+1=11o'T(hn) °j.

By the fixed-point calculation

g = QO g, and h= U h_.

n=0

Now we see that

hOogO = J‘E-»E’

and for each n that
h =uoT(hn)oJoloT(gn)oV

=uoT(h) oT(g)~V

n+l ° &n+1

=uoT(hnogn)ov.
But this means that
hogs= |)y, -g)
n=0
is the least fixed point for the equation

k = uoT(k) ov,

But I is one of the fixed points; whence ho gSEIE must follow. O

339

EXERCISES

EXERCISE 6.17. What are the algebras for which C is initial?
If A of 6.2 is a generalization of B, what is the corresponding
generalization of C? Prove that it exists and explain what are
the algebras involved.

EXERCISE 6.18. With reference back to Exercise 3.16 discuss the
construction of D as an initial algebra and as a solution to

the domain equation
=D x0" .

(I do not know whether all solutions must be of the form Dm><E.)

EXERCISE 6.19. For the sake of uniformity restrict attention to
systems U on sets Ac {0,1}*, where A€ A and ¢4 D, and to the
category of strict maps. Define sum and product by:

= ‘ . ’ !
DO+D1 {{A}UOAOUO,A,]}U{OX!XGDO}UJYIYEDj},
Doxv1={{A}uoxu1_leevo and YED1}.

Are these correct up to isomorphism? Now generate all con-
structs T(X) formed by the constants (that is, T(X) =0 for a
fixed D), by the identity (T (X) =X), and by sums and products
(TO(X)-+T1(X), etc.) Show that these are all functors, contin-
uous on maps, and monotone and continucus on domains.

EXERCISE 6.20. For any system D let tok(D) be the underlying
set of tokens, so that D is a system over tok (D). For the
category of Exercise 6.19 show that the function

AT. tok(T ({T}H))

is continuous on the domain {F = {0,1}*|A€Tl}, where T is any
of the functors generated in 6.19. Conclude that there must

exist a set

I' = tok(T({T'})),
so that {T'}<T({T'}), and so 6.14 applies.

340

EXERCISE 6.21. Do the same as 6.19 and 6.20 when the functors
are also allowed to be generated by the operations:

= . \ - N 7. E 1
0,@ 7, {{ATUOA U1A, T U {ox]xevo\ {a1ru {1Y]Y DALY,

D,@ 0, ={{A}uoa,u1A,} U {{A}UOXU1Y|XED N\ {A]} and YED N\ {A }}.

Generalize all of +, x, ®, ® to combinations of several terms,

not just the binary sums and products.

EXERCISE 6.22. 'Comment on these domain equations:
N={{0},{0,A}} @ N,
M= {{A}} + M,

N*=N @ (NeN*).

EXERCISE 6.23. Construe the initial solution to
Exp=N &((Exp x Exp) + (Exp x Exp))

~as a "syntactical domain' of expressions generated from infin-
itely many ''variables' by means of two binary "operation symbols'.
Given an algebra D with two operations

u:0x0=-0 and v:D0xD=->0D ,
show how any strict map s : N- 0 determines a unique map
val(s) : Exp->7D

that can be regarded as the "evaluation of an expression".

EXERCISE 6.24. Show that there must exist domains satisfying:
D=D + (DxE), and

E=D+E,
by using a double fixed-point method. First decide what the
underlying set of tokéns should be, and then define D and E
by simultaneous fixed points. (Syntactical domains as in 6.23
may very well require several simultaneous equations.)

341

EXERCISE 6.25. For a prcjection pair g:V-E and h: E-7D
show that for x€ |D] and y€ |E] we have:

g(x) ey iff xch(y).
Thus, conclude that:

h(y) = LJ{XGIDllg(x)gy}, and

gx) = [iye 1El[xehn)},
for all x€ |D| and y€ |El. So each of the functions determines
the other. In the first equation check that the set on the
right is directed, anhd in the second equation that the set on
the right is non empty. rove also that g maps consistent sets
to consistent sets and preserves LJ {not just directed unions).

EXERCISE 6.26, For systems D as in 6.19 define
D, ={{A}U 0A} U {OXIX€D}

Describe the comstruct in terms of elements. Is this a suitable

functor? Prove that

What is

EXERCISE 6.27. Which of the following relationships are true:
(DeE) d(DxE) ; DIDXE ;
(D®E) A (D+E) ; DIDSE

~

(vn;)g(vaa;vsv®5?

EXERCISE 6.28. (Suggested by G. Plotkin). Show that if and
are finite systems and

DIEQD ,

then D=E. Need the same be true of infinite systems?

342

EXERCISE 6.29. Generalize + and x to infinitary operations on
domains:

and
0 n

N o~18
(=}
oo
t —18
4=
<3
o}

Would a similar generalization be possible for @ and ® ?

343

LECTURE VII

COMPUTABILITY IN EFFECTIVELY GIVEN DOMAINS

For the domain N the strict functions from N into N, the
strict maps f : N-» N,correspond exactly to the partial functions
g: N >N (as we wrote in 5.6 we had f=g). For such functions
there is a standard theory of computability: g is called comput-
[able if it can be defined as a partial recursive function with
its 'program"” = written down in a certain standard form. The
non-strict maps h: N- N are all constant, and so are intuitively
computable; so we know all about computable maps in IN-N| in
general. The question is: what are the computable maps on
(elements of) other domains? '

The answer will of course depend on how the domain is presented
to us. Even with N, there are continuummany isomorphisms mw:N=N
of N onto itself, not all of.which can be computable. That is, if
we permute N and, so to speak, present the integers in a differ=nt
order, then a well-behaved computable function f : N->N may well

be transformed into a non-computable function,
mefo N,

(Hint: Consider the characteristic function e of the eveh‘numbers.
Take f=¢ and let m be very horrid.) The reason we imagined we
knew which were the computable £ : N- N is that N is always thought
of in a standard presentation. We must thus define "in general"”

a concept of an effectively given domain , that is to say, one with a
sufficiently computable presentation to represent the additional

knowledge about the domain.

The main idea will be that the finite elements of |D|should
be regarded as the ones initially known. Abstractly, to know a
finite element is to know how it is related to other finite elements.

344

Of course, this will mean that we will allow at most a countable
infinity of finite elements - but this restriction well accords
with intuition. To make precise the terminology "related to"

it proves most convenient to go back to the heighbourhoods (in
any case they are in a one-one correspondence with the finite

elements).

DEFINITION 7.1. A neighbourhood system D has a computable

presentation provided we can write
P = {X_|neEN},

n
where the following two relations

(1) anlxm = Xk > and

(ii) 3keN. ngzxn and ngxm

are recursively decidable (in integer indices n, m, k and in
n, m, respectively). O

More strictly the sequence,

<Xn>n=0’

is the presentation. Even more strictly, when it is required to
cope with infinitely many domains at a time; it would be neces-
sary to give the actual GYdel numbers of the recursive relations
(1) and (ii) (rather than just saying there exists some way of

showing them to be recursively decidable).

The intuitive idea of 7.1 is that the system is effectively
given if you know how to do elementary 'calculations'" with neigh-
bourhoods. The basic calculations are the forming of inter-
sections. The neighbourhoods have to be laid out in a systematic
way; and, if we are asked for an intersection of two given
neighbourhoods, we have to be able to locate it in the standard
sequence. Relation (ii) is the consistency condition ,which is the
necessary and sufficient condition for the intersection to exist
in . When (ii) is true, therefore, we have only to try k=0,1,2,

until we discover that we have found the intersection. We are

345

assuming that these basic decisions can be carried out in
"finite time'". Note that the obvious biconditional,
Xngxm iff Xnnxm = X,
assures us that the inclusion relation between neighbourhoods is
itself decidable in terms of the indices. So in (ii) Zf k exists,
then it (or the first one) can indeed be found in finite time.
The rub is that if it does not exist, no finite number of inclusion
checks will détermine that fact. " That is why we have to assume
that (ii) is always decidable. The information contained in
(ii) is a fundamental part of the neighbourhood structure. (An
axiomatic characterization of neighbourhood structures is
given in Exercise 7.12, which may make clearer what we are

assuming and what a presentation is.)

DEFINITION 7.2. Given two recursively presented domains,
D={X |n€N} and E={Y [me€ N},

an approximable mapping f:D-E is said to be compuuﬂﬂerbiff the:
relation ’ o

Xn:me

is recursively enumerable in n and m. O

The question to.ask first is. why "recursively enumerable"
rather than "recursive" (=''recursively decidable")? The answer
will become clear when we let D degenerate to the one - element
domain, DU ={A}. Then what we are considering is merely a single
element

y=f ({A}) € |E].

Therefore, 7.2 incorporates the notion of acomputable element of a
domain. And the condition reduces to the statement that the
filter y€ |El is such that the set

{meN|Y €y}

is a recursively enumerable set of integers. The point is that
the elements of |E| are finite or infinite. If y were finite,
the set of indices above would indeed be recursive in view of

346

our assumptions on E. But an infinite element can in general
only be approximated '"a little at a time". We cannot expect to
know the whole story of its approximations in a flash. What it
means to be recursively enumerable 1s that there is a primitive
recursive function (hence, atotal function), r: N - N, such
that '

y={Yr(i)l iEN}.

That is to say, all the approximations to y can eventually be
listed. In the case of the mapping f we could write

f={(XS(i), Yr(i))!1E]N}s

for a suitable pair of primitive recursive functions s and r.

Definitions 7.1 and 7.2 may very well irritate the person
hearing them for the first time: instead of explaining com-
putability in direct terms, the whole question 1s thrown into
the lap of recursion theory! There are several answers. 'You
have to start somewhere" is one thing I always say. Recursion
on the integers is a well-understood theory, and we shall not
need the refined parts of the development, fortunately. In any
case, our definitions apply to many domains of quite different
structure, not just to the domain N. And the next step we shall
take is to show how to build up computable functions (and also
effectively given domains) from simpler ones. Thus, often it
will not be necessary to go back to the seemingly over-precise
definitions involving the indices but to appeal to some broad
general principles.

PROPOSITION 7.3. The identity map on an effectively given domain
is computable; the composition of computable mappings on effect-
ively given domains is again computable. O

The proofs for 7.3 are so trivial they are hardly worth an
exercise. Note the immediate and useful consequence: if
f:D->E is computabie and x€ [D]| is computable, then f(x) € I'El
is also computable. The next result is, however, worth working
out even though it is quite easy.

347

THEOREM 7.4. If DO and 01 are effectively given, then so are
(DOT+D1) and (DOXD1)'

Moreover the combinators ini and out.1 and projg are all com-
putable; further if f and g are computable maps, then so are

f+g and £xg.
Proof: Let the computable presentations be given as:
oyl
0, =1{X In€N}.

We can assume that the sets of tokens AO and A1 are disjoint
and ¢€£Di. Then the construction of the sum is just

DO-+D1= {AO}JA1}UDO UD1.
As an enumeration we define for n€ N

z =x% ; z =x! .

Zy= BguA 2n+1 ~ “p 2n+2 n

0o~ 1

We leave as an exercise the check of 7.1(i)-(ii).

For the product we want:

= x9 ¢! .
DgxDy = X UX) | n,me€ N}

What we then need are recursive functions p: N->N, q: N >N,

and r: N x N ->1N‘ where for m, n, k€ Nwe have:
p(r(n,m)) =n and q(r(n, m)) =m, and v(p(k), q(k)) = k.

Thus r is a '"one-one pairing function'; there are many ways
to find such functions (see Exercise 5.13). We can then define
for ke N:

0 1
W, =X u X .
| kT) Yt
Again we leave as an exercise the check that this provides a com-
putable presentation of DO XD1.

As for the combinators, the neighbourhood relations have

to be worked out in terms of the indices. For example

X" in, Z_ iff either m=0 or for some k
n 0 "m
m=2k+1 and XO c Xo .
n — “k
.2 o1 . 1 1
Wk proj; Xm iff Xq(k) < Xm .

The reader needs to check that these are recursively enumerable

348

relations in the indices. For this purpose it may be conveni-
ent to recall some closure properties of these relations:
taking conjunctions, disjunctions, substituting recursive

functions, applying an existential quantifier to the front. O

Products give us a way of providing an immediate meaning
to the notion of a computable function of several variables.
Note that the proof of 3.7 is "effective and shows that
substitution of computable functions of several variables
into each other always gives computable functions. We turn

next to the function spaces.

THEOREM 7.5. If DO and D1 are effectively given, then so is
(Do - 01). The combinators eval and curry are computable,
provided all the domains involved are effectively given. The
computable elements f€ IDO-*D1} are exactly the computable maps
f: DO - 01.

Proof : The proofs of 3.9, 3.11, and 3.12 were set up with
this theorem in mind. If

Dy={Xplne N} and D, ={Y [me N}

are two effectively given neighbourhood systems, then the
neighbourhoods of (DO - ﬂ1), by Definition 3.8, are non-empty

intersections like

ﬂ X o Yy 1

i<q
where <Ny, Ny, ...,nq_1> and <My, My, ""mq—1 > are two finite
sequences of integers determining the choice of the function-space
~neighbourhood. In 3.9(i) the test for nonemptiness is given.
Assuming thg decidability of relations in DO and 01, one remarks
‘that the consistency of finite sequences of neighbourhoods is also
decidable. (Hint: Test the first two; then form their inter-
section. Next test the third given neighbourhood against this
one set; if consistent, form the intersection,and carry on.)
By 3.9(i) at most 2.29 such sequential checks must be carried out
to determine whether the function-space neighbourhood is non empty.

349

It may not be fun, but the checks can be carried out in finite
time. Owing to this decidability, we can therefore enumerate in
a systematic way all the pairs of finite sequences <n0,...s and
<My, oo > that determine neighucurhoods: that is the way that
(DO«+D1) obtains its enumeration.

Concerning the decidability of the required relations on
(DO->D1), we remark first off that consistency is more of the
same: to test two finite intersections against each other, just
form one big intersection and test it for non-emptiness as
before. Secondly, the testing for intersection comes down in
the end to testing one typical intersection of [X, Y] - neigh-
bourhoods for equality with another. But equality amounts to
two inclusions; inclusion in an intersection ambuntS'to inclusion
in,eéch term. Therefore, what we need to do is to check a finite
number of statements of the form: 4

n[X » Y lelX,, Yel.
i<q M0 k> %

As we pointed out after the proof of 3.9, this inclusion is

equivalent to ’

{y IX c X le Yy
f\ m; k n, -

By decidability in DO, we can effectively find the n; that are
needed. Then in 01 we form the intersection of the correspond-
ing Ym.' Finally, we check the inclusion. Again, one check in
(DO-*Di) requires a whole sequence of checks in»Doand in 01, but
the process is finite. So we-have argued that (DO—>D1) is
effectively given.

In showing that the combinators are computable, we refer
first to the proof of 3.11. The typical pair of neighbourhoods
possibly belonging to eval is

r][X ,» Y_ JuX, eval Yp.
i<q ny ny k

As we needed not to be so specific, we expressed the holding of
this relationship in terms of all the functions in the function-

330

space neighbourhood. But we know that the neighbourhood, by
3.9(ii), has a minimal element; it is then sufficient to test
for the holding of ka()YL at this minimal function fo. But
this test, we have already seen, is decidable. So the pairs in
eval actually form a recursive set, not just a recursively enum-~

erable set; thus, eval is a computable function.

The case of curry involves three domains and is a bit more
messy. But again, if the required neighbourhoods are written out
in full, it will be seen that curry,too,is computable. We leave
this minor struggle to the exercises. '

The final statement is an easy consequence of the fundamental
connection between approximable f : Do - 01 as relations and as
elements . Recall, as in the proof of 3.10, that we have

felX,Y] iff XfY,

for all Xe DO and Y€D1. Therefore,

fE,lrjq [Xni, Ymi] iff vi<q. Xnimei.
It follows that if f is recursively enumerable as a set of pairs,
then, by forming all the non-empty intersections (as shown), we
get an enumeration of all the neighbourhoods to which f belongs;
and this is the same as the filter corresponding to f as an
element of the function space. The converse direction is clear. O

We have nearly all our favourite combinators computable,
but perhaps the most important one - since it is the key to
recursive definitions - is the fixed-point combinator. It is
not left out. ‘

‘THEOREM 7.6. For any effectively given domain D, the combinator
“fix: (D->0) > D is computable.

Proof : Referring back to the proof of Theorem 4.2 and
thinking of
D= (Xrlhle N}

as effectively given, fix as a relation comes down to

351

[Xn X] fix X, iff for some finite sequence
]_<q i i A=Xk,...,Xk =XI
0 s} :
we have, for each j<p,

N {xmilxkj S X te xkj+1
Inside the "for some finite sequence'" all the checks are decidable
by assumption on D. But the existential quantification of a
decidable predicate always gives a recursively enumerable predicate.
(And, as there is no implied bound on the size of the finite ‘sequence
we are looking for, this really Zs an enumerable set and not

generally a recursive set.) O

The major consequence of what we have done up to this point -
concerns typed A-calculus. Any expression involving only effect-
ively given types and, perhaps, some basic computable constants using
~only the A, ! -notation defines a computable function of its free
"~ variables. 'And such functions applied to computable argunlents
_give computable values. And such functions have computable least
fixed points. Etc., etc. Inadefinite sense then we have in the
"metalanguage', as people say, a QUite precise and fully mathemat—
ical programming language for defining computable operators. It is -
not a machine implemented language,but it is a mathematically '
well-defined and easy-to-use language. And when we combine the
usual type-definition facility together with domain equations, we
have an especially powerful language.

PROPOSITION 7.7. For any effectively given domain D, the domain
9% is also effectively given, and all the combinators of
Example 6.1 prove to be computable.

Proof: This proof is essentially an exercise, but it is use-
ful to have an easy-to-grasp example. Indeed, to make things
easy to reason about, we can assume that D is a system over A=N,
and that in the presentation where

D={X [neN},
the relation k€X is recursive in k and n. (It is worth thinking
why this is so.) Of course, a lot of other things are recursive
also.

352

Now what kind of a system is D§?

The construction of

6.1 made it a system over a certain set of strings I'. For

the sake of checking various assertions about computability,

we are transposing éverything back to N. (These are all denum-
erable sets in any case.) The set I' is divided into three equally
big parts, and we can do the same for N. Let us write for any

m, k€N and subset XeN: mX+k={m.n+k| neX}.

Then by splitting the integers modulo 3 we have:
N =3NU@BN+ 1) U (3N+2),

and this equation is quite analogous to that for I'. We then
propose this definition for D§

D§=‘{N}U'{BXIXED‘}U‘{‘(‘3X+1) u (3Y+2)lX,YeD§},

§

but this does not make the enumeration of D° all that obvious.

This is one way to do it:
= . \' = 3X 5 \ = .

Here p and q are the inverse of the pairing functions mentioned

+1) U (3V

in 7.4 They must be.chosen so that '"(n)<n and q(n) <n for

all n€ N. Thus, in calculating Vk where k= 2n+2 we will be
. v

using p(n) . :

than k. This observation is required so that mEEVk is going to

and Vq(n) where both subscripts are strictly less

be a recursive relation. What we claim is that

§

D ='{Vk’| keN}.

It should be clear that everything on the right.belongs to Dg.

What needs an inductive argument is that everything in D§ is
eventually of the form Vk' But this should be fairly obvious
owing to the properties of r: N x N ++ N,

The reader also has to check that 7.=(i)-(ii) hold for
the Vk' The idea is that any such check is either (1) trivial, or

(2) something alréady assumed about 0 and the Xn, or (3) can

be thrown back to some sets Vm with strictly smaller subscripts.
Therefore, the checks will give an answer in finite time accord-
ing to an effective reduction.

Next for the combinators, we have to translate neighbour-
hood relations into relations among integer indices. A selection
of examples must suffice.

§ .
Xn(xx.x) Vi iff v c Vk

2n+1

353

Vm projo Vk iff k=0 or anEN.>m=2n+2 and Vv (<V

p(n) k*

The reader should write out other cases. 0O

EXAMPLE 7.8. We have often made reference to the powerset PN
as a domain and we should check here that it is effectively
given. One easy way to see this is to note

PN=IT|.

Theé (slight) trouble with P N is that we usually think of it
in terms of elements rather than ‘neighbourhoods. Going back to
Exercise 1.16, we can argue that the neighbourhoods of PN are
ordered not like the finite sets of .integers but in the partial
ordering converse to that. But this is of no trouble, since
all will be decidable. What we need first is an enumeration
of all finite sets of integers. We can do this by:

E_={k13i,j.i< 2% and n=1+25+;.251 3,

The idea is that k€ En means that the exponent k does occur in
the binary expansion of n as a sum of powers of 2. All finite
subsets of N are of the form En. We then find that as a
neighbourhood system ‘

(PN) =’{1\1\En Ine N},

As the relationship EnUEm=Ek is recursive, there is no trouble
in proving that this is a computable presentation. In this
system, of course, any two neighbourhoods are consistent. Various
combinators on PN are suggested in Exercise 7.23. O

This construct is known as the Smyth Power Domain. It is defined
for any neighbourhood system D and results in a new system we
shall call here P 0. The elements of P D behave rather like
sets of elements of D, but since our elements can be either partial
or total, there are certain dangers to pushing the analogy too
far. For some purposes a rival construct called the Plotkin Power
Domain is better, but it leads outside the category of neighbourhood

systems as defined in these lectures. Do not confuse PN with
PD.

354

DEFINITION 7.9.. Let D be any neighbourhood system and define

Po={J+ x)|v i<n. X; €0}
i<n

We recall that for any X€7
+X= {YED|Y =X}.
The finite unions in P D can be émpty (i.e. if n=0). O
Formally, the system P D is just more or less the closure of
D under finite unions; however, this would not be an isomorphism-
jnvariant construct unless D is "prepared". The preparation
consists of replacing P by the isomorphic domain
o¥ = {+ X|xe€D}.
(In this connection refer back to Exercise 1.20.) We remark that
+XnyY+ @ iff {X,Y} is consistent in D,
‘and in that case

$XN+Y =+ (X nY).

PROPOSITION 7.10.The power domain P D is a neighbourhood system
if D is, and it is effectively given if D is.

Proof : The system ot is a neighbourhood system as we just
remarked; indeed it is a positive neighbourhood system. It is
easy to prove that the closure of any positive system under finite
unions is a neighbourhood system, because the resulting family of
sets is closed under all finite intersections. (If we left out
the empty union, the result would be a positive.system.) The
proof is obvious since intersection of sets distributes over
finite union. So P D is a neighbourhood systen.

For the second half of the proposition, we just have to
constructivizethe previous argument. Thus, if
D =.{Xn|n€EN},

then the elements of IP-¥ can be written as:

U ex o,

i<q 1

395

and hence are indexed by the finite sequences Mgy eee, nq 1>
of integers. Now one of the standard devices of recursion theory
is to put the finite sequences of integers into a recursive one-
.one correspondence with the integers themselves. This is the
start of the recursive presentation of P D, since it méans we

can list effectively all the required neighbourhoods.

Next consider an intersection

Uox oo U oex,)" U+, X))

i<q i j<r i<q b
j<r
Some of the terms which are @ have to be thrown out - but this
requires only a finite number of decisions all computable by
assumption. Now we have to rewrite '

but the flndlng of kj ij is also computable. Finally, we have to
re-order the doubly indexed sequence into a singly indexed sequemnce
of length q.r, but this is easily seen to be computable also.

Therefore, intersections can be "calculated".

It remains to be shown that equality between neighbourhoods
in IPD is decidable. The question really comes down to deciding

c LJ+X .

i<q i

something like:

Now since Xk€~+Xk, we find that the above is just equivalent to:
Eii<q..)(k c Xn.

i

By our assumptions on ¥, this is decidable. (It is this part of

the argument that required the passage to p¥. It does not seem

to be generally true that the closure under finite unions of

an effectively given system is again effectively given.) O

One of the main reasons that P D is like a power domain is
the possibility of forming "finite sets".

356

DEFINITION 7.11. For elements x y X € |D| we define

0? " n-1

{xg) vvorx 43={26PD|3X €x ... IX _€x _, ign(+xi) cZ}.

(Note, we could also write Vi« n.XiEZ). o

PROPOSITION 7.12. The mapping

. n__’
AX {xo,...,xn_1}. S)

S TRERE
is - approximable and is computable if D is effectively given.

X .
n-1

Moreover, the map'kx. {x} shows that D4dP 7D, and we also have
the law:

{x,, ..5,xn_1} ={x;} n-.-n {x _}
as an intersection. of filters.

Proof : The second part shows that everything reduces to
Ax. {x}. We see that ‘

Xy (xx. {x}')U (+X,) iff 3i<q. Xk‘gx .
l.<q 1 .) 1

Thus, Ax. {x} is an approximable mapping and is computable in the

effectively given case.

The proof of the law can be reduced to the special case

{x}n {y} = {x,y}

for the sake of illustration. In terms of finite elements of the

two domains P and P D we find

{+x}

14X,

and so,

X3 n {4YY = 44X N0 44Y
=4+(IXU +Y)
={+X,+Y}.

An equation between approximable functions that checks for finite

elements also holds for all elements.

Finally, we note that

p=pt q oD

357

and that the isomcrphism involved is just AX. {x3} by what we

saw on the finite elements. O

Further combinators on the power domain are given in the

exercises.

EXERCISES

EXERCISE 7.13. Show that an effectively given domain can always

be identified with a relation
INCL (n,m)
on integers, where the two derived relations
CONS (n,m) iff 3k. INCL (k,n) and INCL (k,m);
MEET (n,m,k) iff vj [INCL.(j,k) iff INCL (j,n) and INCL (j,m)]

are both recursively decidable, and where the following axioms
hold:

(1) vn. INCL (n,n) ;
(ii1) vn,m,k. INCL (n,m) and INCL (m,k) imply INCL (n,k) ;
(iii) 3m vn. INCL (n,m)
(iv) va,m. CIONS (n,m) implies 3k. MEET (n,m,k).
(Hinp: Consider the neighbourhood system
D={{meN|INCL (m,n)} | n€ N}.

Is this essentially any effectively given system?)

EXERCISE 7.14. (For recursive-function theorists.) Prove the
statements after definition 7.2 about the existence of primitive
recursive functions for showing things recursively enumerable.
(Recall that a non-empty set is r.e. iff it is the range of a
primitive recursive function.) Show also that every computable
element y <€ |E| can be written

y= Uty lieny,

where t: N - N 1is primitive recursive and where we may assume

358

Yeien) € Ye(i)

for all 1€ N .

EXERCISE 7.15. Finish the proof of 7.4 and establish similar
results for the constructs (DO<QD1), (006901) and 0°. Take

into account the varicus appropriate combinators.

EXERCISE 7.16. Let DO= {Xllh1e N}, D1= {Yxnhne N} and
02= {2z k}k,EEQ} be three effectively given domains. Complete
the proof of 7.5 by writing out curry as a relation between
neighbourhoods. Is it a recursive set or only a recursively

enumerable set?

EXERCISE 7.17. >Complete the proof of 7.7 for showing
thét D§ is effectivély given if D is. Include all the combina-
tors of 6.2. Prove also that if E is effectively given and
u:D~+E and v: ExE~E
are computable, then the unique strict mapping
g: D§-+E s

where, for x€ |D| and y, z€ |E],

g (in (x)) =u (g(x)), and

g (pair (y,z)) = v (g(y), g (2)),

is a computable mapping.

EXERCISE 7.18. Two effectively given systems D and £ are
" effectively isomorphic 1iff ... (complete the sentence!). Show
that if D is effectively given then the isomorphism

x o

D = (D)

is effective.

339

EXERCISE 7.19. Prove that D |— P D is a functor by defining for

each f£: 0D -E a mapping
Pf:P0?D > PE

by the formula

Un(i P f U+Y

iff vi<n3j<m. X.£fY.
i<n j<m 1)

j
Be sure to check that P f£f is approximable and that P preserves

identity maps and composition. If f is computable is P £? Is
there a combinator Af.¥ £? What 1is

P f({x,yD= 22

EXERCISE 7.20. Show that there is a combinator
union : P (PD)->P7D

where for suitable neighbourhoods

U +(U +X'.v) union U Y, iff vi<nvj<m. 3k<q.X..cY, .
. . ij > k 1 ij K
i<n j<my k<q

Is union computable if DU is effectively given? What is

union ({{x}, {y,z3}}) = 7?2
Are P (PP D) and PP D generally isomorphic??

EXERCISE 7.21. 1Is there a non-trivial combinator of typé
]P(D—»E)—»(lPDe]PE)?

Are there in general any isomorphismsbetween the systems
(D » PE), P(DxE), PDx P E 2?7

Is there a non-trivial combinator of type
P(D x E) x P(E xF) P (D x F) 2?7

Is there any connection between

PN and PN 2777

360

- *
EXERCISE 7.22. (For algebraists.) Let Z={0,1} be the free
semigroup. A new domain is constructed by defining a family

of sets by the least fixed point theorem as follows
S={S}u{{c} |o€ B}U{XY|X,YE S}U
{XNY|X,Y€ES and XnY=#@?.
Here we write:

XY= {ot|oc €X and t€Y}.
Prove that S is an effectively given, positive neighbourhood
system. (Hint: The sets in S are each "regular events' in the
terminology of automata theory, and we have a decision method
for the set -algebra of regular events.) Define multiplication

on ISl'by
xy={2€8[3Xex3Y¥Yey. XYcil},"
and show |S| becomes a semigroup with I embedded into |S| by
the homomorphism o |—» {X€S|o€X}. Investigate some infinite
words in S, say those definéd by least fixed points such as:
- s “ “
=00 and o =0o0.
Are these equations true:
66 =0, 600=0, 61061T=0T,
and 81 01 06707 =0101 ¢

EXERCISE 7.23. Complete the discussion of PN of
Example 7.8. Show that the combinators fun and graph of

Exercise 5.14 are computéble. Also do the same for
AX,y.xNy, Ax,y.xUy, and AX,y.x+y,
where for x, y€ PN we define
x+y={n+m | n€ x and m€ y}.

What are the computable elements of PN ?

361

EXERCISE 7.24. (Suggested by the LUCID language of Ashcroft
and Wadge: SIAM Jour. Comp. vol. 5 (1976).) Define a set I' by

D= |J)y <myu o
i=0
Define a system
L={T}u{{i} x X | i€ N and X€L}.
Show that L is effectively given. Show that the elements of 1L
can be identified with the finite and infinite sequences of
natural numbers. What is the connection between B and L?
Show that the combinators of LUCID can be construed as computable

mappings of'type
(L>T) - (L-T)
or of type
(L->T) x (L->T7) =» (L-T)

Conclude that programs in LUCID define computable maps.

362

LECTURE VIII

RETRACTS OF THE UNIVERSAL DCMAIN

In order to be able to have a fully flexible method of solving
domain equations and to be able to see why the domains obtained
are effectively given, we shall embed all the desired domains in
one "largest'" domain. This universal domain will be easily shown
to be effectively given, and the mappings needed to extract the
other domains will be found to be computable. In order to be
able to carry out this programme, we investigate first how certain
subdomains correspond to mappings - the so-called retracts . An
advantage of this analysis is that all the necessary definitions
can be written out in A - calculus notation, thus demonstrating the

power of our mathematical programming language.

DEFINITION 8.1. A retraction of a given domain E is an approximable

mapping a : E-» £ such that a-°¢a=a. [O

PROPOSITION 8.2. If P9 E and if a: E->E is defined by
XaZl iff 3 Y €D, XcYecZ
for all X,Z€ E, then a is a retraction and (D] is isomorphic to the

fixed-point set of a, the st {y€ 1El]| a (y) =y}, under inclusion.

Proof': That a is an approximable mapping is a direct consequence
of Definition 6.10. Indeed, in the notation of Proposition 6.12, we

have
a=ioj,

and this is another proof that a is approximable. This remark is
also convenient, since we know from 6.10

jeis= ID .
Therefore, we find:
@eca =10jeioej =10j = a;

and so a is a retraction.

We can also employ i and j to give the isomorphism on |D]J.
If x€IDl, then i (x)€ |E| and we calculate:

363

a(i(x))=1e¢jei(x)=1(x).

Thus, i(x) belongs to the fixed-point set of a. In the other
direction, if a(y) =y, then i(j (y)) =y. But j(y)e€1D{, so i
maps |D] one-one and onto the fixed-point set of a. As i and

j are monotone, the map is an isomorphism with respect to <. O

Not every retraction comes from a relationship like D < E;

in fact, we can see from the definition of a above that ag;IE.

But, as is indicated in Exercise 8.11 , even this condition is
not sufficient to characterize. the kind of retractions provided
by 8.2. .The characterization is as follows.

DEFINITION 8.3. A retraction a: E-E is called a projection
provided
figIE 5

it is finitary iff its fixed-point set is isomorphic to a domain.[

EXAMPLES 8.4, 1If a system D over A is not trivial, then the
two element system 0 = {{0}, {0,1}} comes from a retraction

on D. Specifically, define a combinator

check : D0

by the relation

X check Y iff either Y={0,1} or X#A.

We see check(x) =1, iff x=1 We leave to the reader the

0 D
definition of a combinator:

fade : 0xD->1D ,
where we have for t€ |0l and x€ |D}:
fade(t,x) ='LD’ if t=.Lo 5
=x, if not.
Now, take any u€ 10| with u# 1, and define

a(x) = fade (check(x),u).

Then a is a retraction (not a projection in general) and the
range of a is isomorphic to 0.

364

Another way of using these combinators is to find
(D'fLE) as a retraction of (PD-E). Specifically, define a

combinator .

strict: (D-E)->(D->E)
by the equation

strict(£) = Ax. fade (check(x), £(x)),
where this time ' ’

fade : 0 xE=E

The range of strict consists exactly of the strict functions
and this time strict is a projection whose range is -indeed

a domain.

Similarly, we can find a projection on U x E with a range
isomorphic to D®E by the combinator such that:

smash(x,y) = fade (check(x),fade (check(y),<x,y>)),

for x€ Dl and y€ 1El. U

THEOREM 8.5. For an approximable mapping a : E-E the following
are equivalent:

(1) a is a finitary projection;

(i1) a(x)={Y€E|3X€x. XaXcY}, for all x€ |E]|.

Proof : Suppose a satisfies (ii) first. Inasmuch as
X€x and XcY always imply Yex,

for all x€ |El, we see a(x) =x must always hold. Moreover, it
is obvious that

X€x and XaX always imply X€ a(x);

therefore, a(x) ca (a (x)) for all x€ [E|. This shows that a

365

is indeed a projection.

Let D={X€E| XaX}, then it is easy to check that D 4 E
and that a is determined from U exactly as in 8.2; thus, the

fixed-point set of a is isomorphic to a domain, by what we have
already proved. So we have shown (ii) implies (1i).

In the converse direction, assume that a is a finitary
projection. And let the system D be isomorphic to the fixed
point set of a. We have the situation of Theorem 6.15 There
is a projection pair,

i:D~E and j: E~D,
where the connection with a gives:
» jeis= ID andi.oj=a_gIE.
By 6.150=0D"' <4E and we want to identify D' in terms of a as
follows:
D' = {X€E|X aX}.

Now from a reading of the proof of 6.15 the neighbourhoods of
D' are just those corresponding to the finite elements of D.
But any such element is a fixed point of a. We have

Xe€?D' implies a(+X) =+ X implies X a X.

Conversely, if Xa X holds, then 4+Xca (4+X). But a is a projec-
tion, so +Xis a fixed point. But i(j (#+X)) =+X means j(4X)

is a finite element of {D|. So X€D', and we have D' identified
as desired.

Finally, if we calculate a=1i.j by the formulae of 6.12
(with D' for D, of course), we obtain our formula (ii). O

The criterion for being a finitary projection just obtained
provides us with a very interesting new combinator.

THEOREM 8.6. For any domain E define
sub : (E~E) » (E->E)
by the formula

X sub (£f) Z iff aYeE. XcYfYcZ,

366

for all X, Z€Eand all £: E-E. Then the range of sub consists
exactly of the finitary projections on E, and moreover sub itself
is a finitary projection on (E-E). If £ is effectively given,
then sub is computable.

Proof : It is trivial to check that sub(f) is always approx-
imable. Also, it is obvious from the definition that the corre-
spondence

f = sub(D)

preserves directed unions of f's. Thus, sub is itself approximable.
We note that

XY £fY<cZ always implies Xf‘Z;
hence, sub(f) e f holds. Also
Y £Y always implies Y sub (£) Y,

hence, sub(f) ¢ sub (sub(f)) holds.This shows sub to be a projec-
tion on (E~-E). The effectiveness of the definition makes it ‘
also clear that sub is computable when E has a computable present-
ation. '

Since, sub i1s.a projection, its range is the same as its
fixed-point set. If

sub(a) = a,

then there is no problem in checking that a satisfies 8.5(ii)
and conversely . So the range of sub picks out exactly the finitary
projections in view of 8.5.

Finally, to prove that sub is a finitary projection of
(E->E), we invoke 6.11and remark that, in view of 8.2, the fixed
point set (range) of sub is in a one-one inclusion-preserving
correspondence with the domain {D | D < E}. O

These results have almost completely translated the theory of
< - subdomains into A -~ calculus vzZa the sub-combinator. One last
step will complete the passage, and then we shall be able to

return to solving domain equations.

367

DEFINITION 8.7. Let Q be the set of rational numbers, and let
[0,1) = {qeqQ | 0<qg<1},

and similarly for [r,s) for any r<s in Q. The neighbourhood
system U over [0,1) is the set of all non-empty unions of inter-

vals of rational intervals [r,s) with 0< r<s <1. O

A picture of a typical element of U could be drawn like this:

Note that any union can be taken asa disjoint union of the form

U Cras Ta549)

i<n

where O<r0 <:r1 <1‘2 < ese < r2n<r2n+1<

intervals or abutting intervals can always be combined into one

1; (Hint: Any overlapping

long interval.) It is a most elementary exercise to show that, by
virtue of this representation, the system U has a computable
presentation. (Some isomorphic versions of U - equally effective
- are recorded in the exercises.) Note that (has no minimal
neighbourhoods: every set in U can be written as the union of two
disjoint sets in U. (Hint: Use the density of the ordering of
Q.) The significance of U can now be explained. '

THEOREM 8.8. The system U is universal in the sense that, for
every countable neighbourhood system D, we have

D gu.

Moreoyer;'if D is effectively given, then the projectidn pair
making the embedding can be taken as computable. Indeed there is
a correspondence between effectively presented domains and the
computable, finitafy projections of U.

Proof: As D is countable, we can assume that

D={an n€N},.

368

where D is a system over a set A (say, XO= A). We shall do the
effective and general cases together, where for the latter all
remarks on recursiveness are just left out. So, if we want D
effectively given, the above enumeration should be taken as the

computable presentation.

Without loss of generality we can assume DEEU+, since other-
wise we would just replace 0 by A The advantage of this pre-

paration is that unions in oY keep things rather separate (as we

noticed in constructing P D). In particular, we can be sure of
this equivalence:
() X, < q(X, iff 3i<k. X, eX, -
i< i i

This property, for example, fails for the system U as presented
in Definition 8.7. However, that observation is of no moment,
because we are employing the assumption with respect to D not U.

The reason for the assumption is this: for &€ {+,-} define
for XeD:

&6X=X if 6=+ ;
=A\ X if &=~
(A similar notation will be used for YEU.) Then for &€ {+,-}"

the sets of the form

ﬂ 51 Xi (= XG’ for short)

i<n
form a partition of 4 into (at most) 2 parts. The reason for
assumption (®) is that we can effectively decide for each
&€ {+,—}n whether one of these intersections is empty or not.
(Why? - assuming that D is effectively given, of course). If
for some reason we had not wanted to pass to D¢, we could have
made this stronger assumption of decidability on the (positive)
system D. (U, for example, sdtisfies it.)

Suppose, corresponding to XO,'X1, cees Xn—1’ we have selected

Yoo Yq5 =ve» Y 4, €U so that, for all &€ {+,-17,

(=) naixi=¢ iff ﬂai Y.= 9.

i<n i<n

369

We wish to show - effectively - how to choose Yn corresponding
to Xn, so that (®) holds with n+1 replacing n. Proceeding in-
ductively, we obtain a recursive enumeration of sets YnfEU so
that

D={Y_IneN}g U.
ot

Clearly the isomorphism (matching Xi'to Yi) will be computable
and the projection is computable. (It will then remain only to
consider the arbitrary finitary computable projection to complete
the proof of the theorem.)

So, consider Xn; for each 8€ {+,-M there are four cases:

Xanxn:- ¢, Xén-Xn= Q)’

XaﬂXn¢¢,‘ Xaﬂ-Xn = ¢ .

Corresponding to X6 is a similar intersection Yé' If X5 were P,
then Y5 would be also. If not, Yég;[0,1) is a union of rational
intervals that can be written down explicitly.” (Why?) In our.

four cases on X, the first implies the fourth. (Why?) Thus? we

need only make some choices in these circumstances:
Xaan=¢ : choose 16,n=® :

Xén—xn=¢ : choose I Y

&,n &’
otherwise : choose I&,nEYé’ with §Z>¢I(5',
All these cases are decidable by assumption on P, and the effective

n#Y(S.

choice of (unions of) intervals is effective by construction of U.

Now set

Y = 1. 9
‘ 5EQ{+,—}H &,n

The set Yn}EU, it can be found effectively, and (®) is obviously
satisfied for n+1 '

Finally, suppose that a is a computable, finitary projection
of U. As we have seen in the prypf of 8.5, the domain correspond-
ing to the range of a is isomorphic to the neighbourhood system

{yelujyvyay} qtu,

370

Clearly, if a as a set of ordered pairs of neighbourhoods is
recursively enumerable, then the above set is also recursively
enumerable (because equality between neighbourhoods is decidable).
It follows easily that the subsystem is effectively given as a

neighbourhocod system in its own right. O

We have now proved that U is a nice and big domain that is .
nicely behaved with respect to computable mappings. It has some
‘very interesting subdomains; to name a few:

u+u, Uesl, UxU, Usl

U, ut, Ut pu, usu,

|14 2 2

That all of these are g U follows from knowing that they are all
effectively presented. What we wish to check next is that they
all combine well with respect to projections. To this end the
explicit definitions are given for the constructs +, x, and -, and

the details of the others are left for the exercises.

DEFINITION 8.9. Let the computable projection pairs
i tU+U->Uand j,_:U-U+U

be fixed.- Similarly choose i, j, and i_, j for UxU and U-U.
Define: '

a+b = cond o <which, i e in i, o in

eaoout(); + 1

0 eboout,>ej, ;
axb =1, o <ao projo,b ° prog, > ° Jy

asb=1i_ o (Af.bofoa)oj_ ,

for all a,b:U-U. O

These interesting(computable!) combinators on elements of
U-U have many,many properties. We shall, however, only see what
they do to projections.

PROPOSITION 8.10« If a,b: U-U are projections, then so are a+b,
axb, and a-»b. If a and b are finitary, then so are the others;
for the fixed-point set of each of them is isomorphic to the
corresponding construct applied to the domains determined by a
and b.

371

Proof: Suppose that a,bg Iu (= 1 for short). Then
a+bc I+I=i+oj+51.

The other cases are similar.

Suppose a=a°a and b=b D, then, for example,

(axb) o (axb) =i o <a s proj,, beprojy>e<aeproj,,b °proj,> e j,

= ixo <a o ao projo,b o b ° Proj, >e° j,
=axb.

The other cases are similar.

Now in case the fixed-point sets of a and b are domains, they

are respectively isomorphic to
D,={X€U]|XaX} and

D

L= {Yeu| byl

We have to show, for example, that

bE Da*b

Da» %
Now to simplify matters, remark that the fixed-point set of a-b
Con U is isomorphic to the fixed-point set of Af.befoa on (U-U).
(Hint: wuse i_and j_9 to set up the isomorphism.) So we . have to

think what it is for an f: U- U to satisfy

f=befoa.
Notice that we might as well say that a :U-—»Da and that this map
is the other half of an obvious projection pair where

i D _->U,

a a

and iao a=a and ao ia= ia' So if g: va-»v let

b’
f= ibo g o a,

then be foa=£f. Conversely, if f is like this, then let
g=bofo ia

Thus, ibo gea=bofoa=1f; so there is an order-preserving isomor-

phism between the g : Da-»D and the f=bofoa.

b

‘'The isomorphism proofs for + and x are similar. O

Well, this was a lot of work, but the pay-off is rather
handsome. What we have done is transpose all the
D QU
a
over to finitary projections a: U-U. This transposition is an
isomorphism, because
Da 47

b iff acb.

Moreover, by the method of 8.3 and 8.10,all our favourite con-
structs have bean made into combinators, that is, approximable -

even computable - maps on the domain of finitary projectionmns.

ALL APPROXIMABLE (COMPUTABLE) MAPS HAVE (COMPUTABLE) FIXED POINTS. And there
you are! The standard fixed-point method is available to obtain
computable (i.e. effectively given) solutions to «ll domain equations
(even sets of equations) where the constructs can be reworked in
this way to be defined on projections. Examples are suggested in

the exercises.

Another pay-off concerns the A -calculus itself. Inasmuch.
as ’
u+t, uUxu, uUu-ug u,
we might just as well forget the outside world and regard all these
useful domains as being part of U. For example, on the left we
have the new notation and on the right the old notation:

which (z) = which(j (2)) ;

in, (x) = 1,(in;(x)), 1=0,1;
out, (x) = out.(j,(x)), i=0,1;
<x,y> = i _(<x,¥y>);

proj; (z) = proj,;(J,(z)),i=0,1 ;

u(x) = Jj_(u) (x);
Axet = i _(Ax.71).
And, there is no reason to stop here. The system
T={[0,1/2),[1/2,1),[0,1) }q U,

so we might as well think of

373

true, false€ U]

and think of cond: UxUxU=-U. 'No! that is wrong: -under the new
regime EVERYTHING IS AN ELEMENT OF U, With the new meaning of A, all
functions, all pairs, all combinators, all constructs‘beccme

" elements of U.

It takes a little time to get used to "universal conscription'"
with all elements doing (at least) double duty in the same domain,
but there are many advantages, both notational and conceptual.

EXERCISES

EXERCISE 8.11. Let @ be the set of rational numbers and define a
neighbourhood system by the equation '

R={[0,)| r€Q and 0< r < 1}.
Show that the following defines an approximable map a: R-R:
{0,7) a[0,s) iff r<s orr=s=1.

Show in addition that a is a projection where the fixed-point set
of a is in a one-one correspondence with the real numbers between

0 and 1 inclusive. (Hint: Recall Dedekind cuts and show c matches
<.) Conclude that a is ¥OT finitary. (Hint: Aside from 1 there
areno finite elements for {x|[x=a(x)}.)

EXERCISE 8.12. Generalize the notation 2 X +1 for subsets Xc IN

to sets of the form

2k X +2Z, where 2 < Zk.

i . . N : k N 3
Let V be the non-empty finite unions of sets 27 N +£. Show that
U=V and that the isomorphism is effective, thus obtaining another

presentation of U.

EXERCISE 8.13. (For logicians.) Prove that the universal domain
U is isomorphic to the domain of all proper filters of the free .
Boolean algebra on ¥ -generators (= the Lindenbaum algebra of
propositional calculus). (For topologists.) Connect this

374

representation of U with the collection of non-empty open subsets
of the product space 2N (= Cantor space).

EXERCISE 8.14. A retraction a :'D-7D is called a closure operator
iff H)gau On a domain 1like PN, give some examples of closure
operators. (Hint: Close up a set of integers under addition. Is
this continuous on PN ?) Prove in general for any closure

a:D->7 that the fixed-point set of a is always a finitary domain.
(Hint: Show that the fixed-point set is closed under intersec-
tions and directed unions.) What are the finite elements of the

fixed-point set?

EXERCISE 8.15. Give a direct proof that the domain {X | X<ID}

is effectively presented if DU is. (Hint: The finite elements of
the domain correspond exactly to the finite systems X<J0.) In
the case of D =1U, show that the computable elements of the domain
correspond exactly to the effectively presented domains (up to

effective isomorphism).

EXERCISE 8.16. For finitary projections a: E->E, write

v =1{XeE | XaXx}

(cf. 8.5.). Show that for any two such projections a,b :E-E

we have

‘agb iff Ua<1 Db'
(This fills in the gap at the end of the proof of 8.6.) Also
finish off the proof of 8.8 by showing that if E is effectively

given and a : E-E is computable, then Da is effectively given.

EXERCISE 8.17. Find explicitly (if possible) the projection pairs
for U+U, UxU, and U->U needed for 8.9. Are any of these domains
isomorphic with U? (The author does not know a really good con-
struction for U-U.) Find a universal domain V#U.

EXERCISE 8.18. Many of the ‘cases of 8,10 were left unproved.

Please establish these assertions explicitly.

EXERCISE 8.19. Suppose we know both
T and E-E 4 E

Does it follow that E+E and ExE g E?

EXERCISE 8.20, For any system we know D ¢ D+ 0, but what about
D 40xD and D g P~>D ?

Would these projections be computable if D is effectively given?
Are there more than one projection pair in each case?

EXERCISE 8.21. Using the fixed-point construction, show that
there is a continuous and computable operator Aa. a§, such that

if a is a finitary projection of U, then
§
D = (D)" .
a§ a
EXERCISE 8.22. Which of the two relations hold:
BgCorCgB?
Or do they both hold? In general if we use domain equations

D=T(D) + S(P), and
E=T(E) ,

will £ 4 D hold? What projections do you see in the examples in
6.27

EXERCISE 8.23. Suppose a construct T on domains can be made into
a computable operator t: (U-U) »(U-U) so that whenever a: U->U
is a finitary projection, then so is t(a) and

Dt(a) = T(Da).
Does it follow that (It = fix(t) 1s such that
Open = T Pppeyy)

376

really is the initial solution of the domain equation with respect
to projections? Since t is computable, will this solution be

effectively given?

EXERCISE 8.24. Suppose S and T are two.(binary-argument) con-
structs on domains that can be made into computable operators on
projections of the universal domain. Show that we can therefore
find a-pair of effectively presented domains such tﬁat ’

D = S(D,E) and E= T (D,E)".

EXERCISE 8.25. The problem is to find non-trivial solutions to

the domain equation
() D=D-7D
Show that the "obvious" solution by retracts is of no use because
1-1=1
for projections. Change the method as follows. Show first
u® x U= =u”
Next solve
‘ D=p>U”
and remark that U 4 D ; so D is universal and non-trivial. Finally
prove (®) for this D. - (Hint: First show
DxD=D,

and then show D satisfies (&).) Is this D effectively given?

EXERCISE 8.26. Discuss in more detail the 'pay-off" for U, name-
ly the translation of "untyped" A - calculus into U as shown by
the equations at the end of the lecture after the proof of 8.9.
In particular show how the whole of the typed A - calculus can
beretranslated back into U with the aid of projections. (Hint:

Whenever you want to write

f: Uae Db’

write instead

f=bofoa,
where a, b are finitary projections. Whenever you want to form
a A-abstraction) .

a
AX .0,

where o is of type Db’ instead form
Ax.b(c'[a(x)/x]),

where o' is the further translation of o into untyped A - calculus.
Be sure to show that this result "has the right type" in the sense
defined above.)

EXERCISE 8.27. (Suggested by James Donahue.) Finite cartesian
products of domains are formed by the DO X 01- construct we have
used so often. The problem is to define - computably - some
infinite cartesian products. In particular, as applied to the
universal domain U, the combinator sub is to be regarded as a
finitary projection of U whose fixed points are exactlyall

the finitary projections. A map

d=subeodo sub

can-be regarded as apolymorphic type (because, whenever t is a
finitary projection (= type), then so is d(t)). The continuous
product of all these types would be the domain of all approximable
functions x such that

x(t) =d(t) (x(t))

for all types t. (Why does this equation mean that x is in the
product?) Define I as a combinator by

O=AdAxAt.sub (d(sub (t))) (x (sub(t))).

Show that for d a polymorphic type, II(d) is a type. (Hint:
It is easy to check that II{d) is a projection; the problem is to
show it is finttary.)’

