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Introduction

Recent years, there are a lot of requirements for three-dimensional
(3D) data processing with the advance of computer tomography (CT). Some to-
pological properties of 3D digital pictures are discussed in a series of
papers by Rosenfeld and Morgenthaler [1]-[5]. In many cases; the 3D picture
is represented by a 3D array of volume elements (voxels for short). For
every pair of voxels, the connectedness is defined, and the objects and cav-
ities are defined as the equivalence classes of the connectedness relation,
These correspond to two-dimensional (2D) objects and holes, respectively.
Moreover, in 3D case, there exist 3D holes whose properties are quite dif-
ferent from 2D ones. In this paper, we shall discuss algorithms such that
for every 3D digital picture they compute the number of objects, cavities,
and holes. Since we usually receive a series of 2D pictures as the outpUt

of a CT scanner, it seems to be natural that these algorithms scan such
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output plane by plane, from top to bottom, and stop when all of them are
scanned. Thus our computational model consists of a 2D array of finite-state
automata which scans a 3D digital picture, one plane at a time, in one-pass

only. In [6], Selkow has discussed such algorithms for 2D digital pictures.

1. Preliminaries

Let £ be a 3D array of lattice points, which we may assume without
Toss of generality to be nxnxn, i.e., £ = {(i,j,k) | 1 £ 1,j,k £ n}. A 3D
digital picture f is a mapping from ¢ to {0,1}, i.e., f:x — {0,1}. Each
point (i,j,k) 1is called a voxel. To avoid special case we assume that
f(i,j,k) = 0 if one of these i,j,k is equal to 1 or n. And the set of such
points, {(i,j,k) | i=Tvi=nvj=lvj=nvk=lyk=n}, is called the border of I.
Usually, the subset of z, {(i,j.k) | f(i,j,k)=1}, called S, and its comple-
ment is called S. For every pair of points X=(x],x2,x3) and Y=(y],y2,y3),
X and Y are 6-adjacent if lx]—y]|+|x2—y2|+ix3-y3l=1;‘x and Y are 26-adja-
cent if max(lx]—y1|, lxz—yzl,lx3-y3\)=1u If points P and Q are 6-adjacent
(26-adjacent), then P is called a 6-neighbor(26-neighbor) of Q. To avoid
ambiguous situations we assume that opposite types of adjacency are used

b

for S and S. A 6-path(26-path) w is a sequence of points, m = PgsPyse+ Py
where, for all i such that 1 <1 < m, P, is a 6-neighbor(26-neighbor) of
Pi_1e Any two points P, Q of S called connected in S if there exists a
path P=p0,oan,pm=Q from P to Q, where piESQ Evidently, "connected" is an
equivalence relation. This relation partitions S into equivalence classes.

These classes are called the connected components of S. In the same way, we

may define connected in S and the connected components of S. A connected
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component of S is called an object of S. Clearly, exactly one component of
S qontains the border of . This component is called the background of S;
all other components of S are called cavities of S.

Even in ordinary topology it is difficult to characterize holes. A
hole may be thought of as a property of a boundary surface which makes it
topologically equivalent to a torus. In another approach, an object is de-
fined to have no holes if every simple closed curve in the object is con-
tinuously deformable within the object to a single point. We see from these
remarks that the consept of a hole is different from those of objects and
cavities; we cannot point to or label the points which constitute hole.
Indeed, the points of objects and cavities cover the space, so that a hole
is a property of these collections of points. Thus, when considering an
object (and its cavities) we shall here try only to understand what is meant
by the number of holes in the object, and not what is meant by a hole.

On the other hand, the genus G(S) of a set S in a 3D digital picture
is defined as the number of objects in S (0(S)) plus the number of cavities
in S (C(S)) minus the number of holes in S (H(S)). As already mentioned the
definition of holes is not simple, and in paticular holes cénnot be labelled
to facilitate counting them. Since this can be done with objects and cavi-
ties, the definition of genus would defin the number of holes in S, and con-
versely. In [4], Morgenthaler has shown the methods computing G(S) directly
from the local patterns of S:

(1) When 26-adjacency is used for S,

G26(5)=¢]'¢2+¢3'¢4+¢5'¢6_+¢7'~¢8:

where 61 = #[2]
by = 4131 + #[4] + #[5]
o5 = #161 + 471 + #8]
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9g = #[9] + #[10] + #[11] + #[12] + #[13] + #[14]
95 = #[15] + #[16] + #[17]

b6 = #[18] + #[19] + #[20]

97 = #[21]

g = #[22]

and by #[n] we mean the number of times the configuration n of Appen-
dix A occurs in the picture S (in all orientations).
(2) When 6-adjacency is used for S,
Ge(S) = vy = Uy + g = Uy
where vy = #[2]

WZ = #[3]
vy = #[9]
Uy = #[22].

Morgenthaler has also shown that G26(§) - G6(S) = 1 and G6(§) - GZG(S) =1,

2. The number of objects, cavities, and holes

A scanner is an nxn array of finite-state automata

‘n %12 “In
21 ‘22
On-' seo Onn
Each automaton Oij is defined by a 7-tuple < Qij’éij’aij’aij’xij’eij’bij >,

where Qij’ the set of states, is a finite subset of integers,éij is the

next state function of the following form:



205

x {Oa]} e Q'IJ’

where aij is an integer, and aij:{l,o.o,aij} —> IxI is a one-to-one function
which enumerates the next state neighborhood of Oij' Aij is the‘output func-
tion of the following form:

137 0y Bya(k) 0,1} = L,

where bij is an integer, and Bij:{]""’bij} —> IxI is a one-to-one function
which enumerates the output neighborhood of JIEE We will use Qij(t) to rep-
resent the state of %3 at time t. It is assumed that the scanner advances
one plane each unit of time and that it scans the first plane at time t=1.
Thus the input to scanner element Oij at time t is f(t,i,3).

-The counter C monitors the output of each element of the scanner,

n n

thus  C(t) = C(t-1) + _2 Y oAsL(t).

Now we shall describe the algorithms computing the number of objects,
cavities, and holes.
(1) Objects
The set of states of scanner element Oij is Qijz {x | x is an integer and
iIx1 < (i+j-1)(i+j-2)/2+j}. Each automaton % starts in state 0 and remains
in thét state as long as 0's are scanned. When a voxel containing a 1 is
reached, %5 will assume state (i+j-1)(i+j~-2)/2+j. As %43 tracks a string
of 1's, an extension of the component of S is sought, i.e., two automata
which are actively tracking 1's are tracking same object if they are spa-
tially neighborsior if they are in same state. All automata which are track-

ing same object assume same state (the state of the automaton having the
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smallest state). An automaton which passes a lower border of an object and
has been in a state k enters the state -k for one period. The next time it
would go directly to state O unless a 1 is encounted. If %4 5 enters the
state -((i+j-1)(i+j-2)/2+j) and no others are in the state (i+j-1)(i+j-2)/2
+j, then Oij will output 1, i.e., one object has been scanned. The precise
definition of 6ij and Aij are represented in Appendix B.

(2) Cavities

Since all components of S except background component are cavities of S, the
algorithm for counting objects of S can be also used for counting cavities
of S by interchanging the roles of 1 and 0. In this case, the initial value
of the counter C must be -1 to remove background component from cavities of
S.

(3) Genus

For any S, every 2x2x2 local patterns in Appendix A is easily counted by our
computational model. Thus the algorithm computing genus of S is easily con-
structed.

(4) Holes

Finally from the algorithms (1) - (3), we can construct the algorithm count-

ing the number of holes in S since H(S) = 0(S) + C(S) - G(S).
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Appendix A
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