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Information Games

By

Yu Kai*

Abstract

In a game each player holds a strategy based uoon the ac-
tions that he can actually take. The quality and the quantlty of ~
the feas1ble actions are determined by his ability or power in N
the game. Generally every player has no 1nformat10n on the others
powers, it is one of the most 1mportant problems for them to know
the powers. We "treat such unknown games, played perlodlcally, from
the v1ewp01nt of information theory We discuss both non- cooperatlve
and cooperatlve games and prove some suff1c1ent condltlons Under -
which a player can get the full information on the other-playere'
powers from segdehtial observations on the states; Ih'two‘Pereon

games we show also optimal strategies with respect to the informa—

tion.

* Department of Home Life Science, Fukuoka Women's University,

Fukuoka.
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1. Introduction.

The main problems of the game theory established by wvon Neumann
and Morgenstern [9] are to find some solutions for the competitions
of players' interests, and to show optimal strategies for the solu-
tions. In the theory it is generally assumed that every player knows
the game structure such as the sets‘of all feasible actions of the
players and the payoff system acqording to the actions. However, the
assumptions are not always satisfiéd in practical games. In complex
games the skill and the experiences determine principally the issues
of the games. For example, the skill and the experience in chess or
'go' provide the set of the feasible actions, and in athletic games
provide the force of every feasible action,which affects the payoff
derived from the actions. Such abilities bf a player are not usually
known to thé other players, thus the game structures‘are not always
clear to the players. If the structure isAunknown, each pléyer
must play cauciously not to suffer a seriocus loss and should make a
point of getting the information on the others. Therefore in the
present paper we dicuss the unknown games, treat the_information as
the principle subject, and study hbw much information the players
can gain. - .

We may mention that the powers and the strategies of the players
decides the issues of the games. Thé strategy is the way to choose
actions, which effects the issue directly. The power is practical
abilities to play the game such as forces, proficiencies and féasi;
bilities of actions, that is, the power shows the qualities and the
quantities of the actions,and the powers provide the game structure.
Thus the pla?er, who wants to map out an optimal straﬁegy, should

make efforts to get the information on the others' powers as much
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and as soon as possible. We suppose, of course, every player knows
his own power exactly. The more a player gets the information, the
more he géins advantages over the others. We show an éxample of
two-person zero sum game. The players are denoted by P-1 and P-2,
whose action spaces are A and B respectively. Let r(a,b), a€A, be
B, be a payoff function, the value of which is paid to P-1 by P-2.
If P~1 gets the information that the feasible actions ofvP—2 are
restricted to a subset B' of B, he can expect more reward according
to the following inequality;

max min r(a, b') 2 max min r(a, b)
acelA b'eB' , achA beB

If the payoff depends on the proficiency in the actions and each
player doe;}not know it of the opponent, he will not able to esti- .
" mate the value of r(a, b). Thus if a player*gétsfénqﬁgh'information
on the opponent's proficiency, He’can chéose moreteffective actions.
On the other hand the informatién on the strategies is also
valuable, because it brings every player great benefit to know the
way$~that the others choose their actions. Since. a strategy of each
player is determined according to his power, it‘is impossible to
estimate the other's strategy without sufficient information on the
power. Even if the information is obtained enough, it is very hard
to estimate the strategy, since the way to choose actions. is very
variable because of;its dependency on time, the past states, the
rewards and so on. Therefore we treat only the information on the
powers, which we call simply the information from now on. If a
player obtains the information enough and knows the game structure,
he can take an optimal strategy by means of'thé general game theory.

Therefore, if the structure is not known and the game is played’
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periodically, every player should treat it as the main subject to get
the information as much as possible. We call such games the informa-=
tion games and study the amounts of information that players can ob-
tain from sequential observations of actions, states and payoffs
throughout all time.

We consider the information games as follows (see Fig. 1l). In
n-person games each player is called player i and denoted P-i. The
power of each player is determined by some random system and is clas-
sified among finite grades G = {g,,..., gm} according to its quality
and quantity. Every player does not know any other player's grade.

A feasible action space of a player is determined according to his
grade and is also not known to the others, so observed actions con-
tain some information on the grades. Every player determine his stra-’
tegy before the game begins. In the present paper we treat only simple
strategies which are sequences of actions and are independent of past
history.At each time players' actions bring them some results such

as rewards and states, célled briefly states from now on. The states
do not depend only on the actions but on the grades of powers. Thus
the players observe the actions and the states, and obtain informa-
tion on the grades. The main subject in this paper is to study how
much amounts of information players can get from sequential obserf
vation of the actions and states through all time. We discuss the
subject, applying the results of Renyi {111, (12], which treat the
testing hypothesis theory and give some conditions under which® the
fﬁll information on a parameter can be obtained from sequential ob-
servations. Kai and Kano (4] stﬁdied the subject in special games
such that the power grades strictly determine the strategies, that

is, the grades are essentially equivalent to the strategies. In this
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paper we treat generalized games and study relation between the in-
formation and the strategies,

In section 2 we discuss non-cooperative 2-person information
games, where we give some sufficient conditions under which the full
information on the grades can be obtained. At 2.2 we treat the cases
that the states' sequences are Markov proceéses, at 2.3 and 2.4
study the cases that states' sequences are independent. At 2.4 wé
also show optimal strategies when the states are normally distributed.
In section 3 we Study n-person games, where we define the cooperation
with respect to the information and show sufficient conditions under
which the full information can be obtained by each of a cooperative

group.

Actions

Force = Power —> Strategy

!l

(play)

Proficiency

Actions

i .
States (Payoffs)l

(observation)

Information,

Fig. 1. Game system -
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2. 2-person information games.

2.1 Introduction and essential theorems.

2-person information games are defined as follows. Let G ={gq ,
ceesr 9p }, (1<m<=) be the set of all grades of powers. We suppose
that the power of each player is determined by some random system,
and let P ={p, ,..., p,} be a probability on G such that P({g;}) =
p; (20) and §1p{ =1. Let 8 and 6, be parameters on G which show
the grades of P-1's power and P-2's power respectively, that is,
P(8 = g;) = P(6;= g;) = p;. Let A; be the set of all feasible actions
of a player whose grade is g;. A player being in grade g; employs
a strategy which is a sequence of actions & = (§; ,..., 8¢ ,...)
such that du € A; for all £t =1, 2, .... We denote his grand stra-
tegy by the m-tuple of strategies 6§ = (&;,..., 85), by which.héjtakes
§; if his grade is g;. Let S be the state space, assumed to be a
Borel subset of a finite dimensional Euclidean space. Let £; = (s,,
.-, S;) € St"l be the segquence of states up to time t, and let 6?
= (8 ,--.,8{4) be the first t actions of §;. For a Borel subset @,
let B(Q) be a o-field of Borel subsets of Q.

Throughout this section we assume that for every grade g; of
P-1 and gj of P-2:

Al. The initial state s, is given by a probability measure
@E‘(') on B(S), assumed absolutely continuous, whose density is
denoted by <i¥(s°);

A2. When §; and o; were employed, &, occured, §; and 0, are

oL

taken, there exists a conditional probability Q?}( 784 18 19

on B(S), i.e. for every Be B(S)
cA-1) o&=1)

Pr { ské B I Ef.' 164' 16)(‘/{- IGJ' ,0;* ,el=g{ '82-= gd' }
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Qt.j (Bi &4y +8; rcjﬁ) H 7‘ o i )
o cE @ w T w)y @ 2y 3
A3. For every t21, i, 3, 6{ ¢ G and &, QAJ( R IR ,% ) is
absolutely contlnuous and let q (leier f,o ) be its density.
Let % (- ; cs‘f-',c- ) be a probabili’tyon B(s*™') derived from
o . W) v) ' . e T : % .
¢ ;(-) and {Qij(' ; gH,é ,J Y; v=1,..., t}, i.e. for every VEOBV'

e B(s™)

1) £ *)
9% (1B, ;8,0

U yv=0

- J¢‘:}(so)dsoj a7 (s, g, 8 .oy s,

I
jq‘i}(S* |€4r v 87,0 dst
By

1 (X) . B .
Thus @t( . ;Gg,qgs is absolutely continuous and has a-density

. 1)
¢g(€t,6;,%~) such that |
A} ) ] .
(1) - ¢% (z,,, 609 = 81 (s,) Hq (sylz,_,, §0,07)  a.s.
We suppose that both the players know all these systems.

Now we discuss the information about the grades of the players

powers obtalned from & . When 61=Agi and 62 = gi, every player knows

his own grade and up to time t obéerpes 6?:’0?) and Ex,nhutwhe”dees
not know the opponent's grade. To avoid complexity, we discuss the
information from the stde of P-1l. Under each condition that &, = g,
8, = g; §; and o; are employed, the expected information on 6, P-1
can get from &, is»defined_by_
(2) (8,90
= H(8,) - Egp[H(8,]0,,80]8,=9,,8,=q; 1,
where H(6,) is a entropy ofye2 defined by Shannon's, formula
H(s,) = I - pilogp,,

H(GZIGI,EA) is the conditional entropy of 6, when 8, is known and

£; is observed, i.e.
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(3) H(8,[08,,64) = ;ﬁ - Pr(8,= g, (8,8 )
: =

'» lOg Pr(82= gk‘allg*)r

and E&G~[H(92l91,5*)|61=gg,92=g;l means the conditional expecta-
k)
iy

(-;8%,07)) with

tion on the probability space (s, @3(5‘"), ) ;

respect to 6;= g; and 6,= gJ, i.e.

(4) Eaics[ﬂ(ezleu‘ik”ex: 9:8,= 9; ]

= j (I -Pr(8,= g, [8,,8) log Pr(8,= g,18,,54)}

ter
S )

w Ny
“ 4y (B8, 000 dge

Since a player in a grade g; can not any action except the elements

of A}, one can define with no contradiction that

W, ' e
. @) t + ) ) )
if §; % A; or c?’; A; . Therefore o?’contalns some information on 6,.

®
When 6;= g;, §; and qf)

are given, according to the Bayes' theorem
and the theorems on conditional probability, we have from our assump-

tions that
(5) Pr(9,= 9,18, ,&) = Pr(e,= g,]0,= 9z .&)

o) PGS
ph‘bik(gt r(SA rUd‘)

L

Therefore, when the grand strategies § = (§,,---, 8y) and o = (o,,

..., Op) are employed, P-1 can expect the following amount of infor-

mation on 8,

*
E, [ 1%, a) 1

f?(d,o)
(6)

H(GZ) "E?pipJEaio,j[H(ezlellgt) |61= 9'4‘:92'—' gJ‘ ] .
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It is easy to know that I“%a'c) is nondecreasing for t = 1, 2, ...
and I?(G,c) < H(e ). Thus llm I (s, c) = f (§,0)alwayes exists. If
fmkﬁ g) = H(Ez),'we say‘that P-1 obtains the full information on 8,
from the sequential observations {&;}, t =1, 2, ....

We note a lemma of Renyi [11]

Lemma 1. There exists a universal conétant C > 0 such that

for any sequence a;, 3, .--s a,Of possitive numbers forming a prob-

ability distribution (i.e. a, +---+a, = 1) we have

Applying this lemma, we prove the following result.

Lemma 2. There exists a constant C such that for every ¢, g, -

i and J

Eé{QI{H(62|el’€*)]e1= 9;18,= 951

A

R U(’) ) @*® &)
cr J{ (at,‘,‘,wk(axw o)} ag, -

Proof. By Lemma 1 and (3), there exists a constant C > 0 such

that for any 1 £ j £ m

H(0,]8,,8,) < €z YP(8,= g, [8,,8) -
. d

Then from (4) and (5) it follows that

EG&OI[H(GZIGI,Et)]elz 94".92: g ]
R (Sr,dmo y 1
< czI|{ R4k o } ¢¢§{ (Ex’ ’b)dgﬁ
Mi) % B B 0% (54187, J
Stn
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(£, 560, 0%) 1
P h £i0000) T o @
S8 ool (558,05 d g,

e
o (st.s‘f,cj-)

A

I/\
\——~‘\\

(n3) .
=ch§5 (si:&, Dy o (sk;sl,"’)} dg, .
) S‘ J
Theorem 1. If § and ¢ are employed and for every i, j, and
k # 3
1imj{¢ (g,a,o)¢(g,5’,o°")} dg, =0,
ko x Siﬂ % 4 &4 £
then P-1 obtains the full information on g,, i.e. I&té,q) = H(8,).

Proof. By Lemma 2 it follows that for every t 2 1

.p.E. [H , =g, ,8,=9. 1
4253 p(pJ OIG.;[ (8,]8,,8:)]8,=9; /8, gd

)
5L I p. /p. J @ ( ;s by 6% (5,58, 0 )} ae, .
4‘J~ kfij pJ pk Stfb Ex 5‘ Cd - AN n ¥

WA
(@]

Then from (6) it implies the theorem.

2.2. sSufficient conditions under which the full information
is obtained when states' sequence is a Markov process.

We suppose that the states’ sequencel st t =1, 2;;.. is”
a Markov process; that is, for every i, j, t, a;e A , bre A and sy

€ S there exists a conditional probability tfg( 7 Sg,34 , by )k on

(#-1) 1-1

B(S) such that for every Be B(S), §; € Ay, (f")é A and &,

(,t) - 1) £-1)
; (B | €4y Seir 800 2y '03 »bx )

) . .
U‘\J(SI{\.EB;S‘_IIarI bt) *
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We denote the density of U ( : %é,@[}jc%ﬁ by 11 ( Se ; sp,,éﬁu%,),

then the density,¢b(£;,5?,c ) of @ - &)&ﬂ) is a.s. equal to

£
¢&(S°)zguig(s”;sy”'é”'%”)' Denotlng for each t 2 1

N
Xiik(ﬁff'gji)
= sup J {u (s*,si_,,d}r, t) uk(s/f Sey S G Y dsy
S

St-1
we have the next result from Theorem 1.

Theorem 2. If § and ¢ are employéd and for e%ery i, j and k # j

t
bim AT (80 00 =0,

then P-1 obtains the full information on 6.
. . @ Cw D, o) | x }u) ' '
Proof. Since ¢iJ (E,76; ,o; ) = 0% (5,). yIL u (s, PSy 184,,9;) ~a.s.,

¥

it follows that

F

b

| (phiegs ‘,c‘*’) ¢“’ (E*,

j SX-H

d) @
Yo )} ds,

: * . ) | ; "_f

j (b(; (SO) H- {u (S}, lsy_, 7 6‘4‘},1 ij) uik(sy ;Sy_, I‘S{p-lhczfy)} dgx—
Al .

S . < : . -

HA

Y
I AJ,{( 8yrTy) -

Thus by Theorem 1 P-1 gets the full information on 6,.

We 'say that the Markov process is statlonary if for every a,

) . ()
'(S'l' S, &, b) = u"(S’7 S, &, b) a.s. =

b, s, & and t, u(J 4

Corollary. If the states sequence is a statlonary Markov
process and for every 1, i, k # j

.. 8up. AJk( a'b)<l'
uePQbeAj

then, employing any strategy, P-1 can get the full information bn»bz.

- 10 -



Proof. By the assumption, for every §, o and t

*t? w
A;p(68;,,04) < sup A, (a, b)
YRD DT ST 2 gen be; R
< 1,

then the result is derived by the theorem.

2.3. Sufficient conditions under which the full information
is obtained when states' sequence is a independent process.
We suppose that the states' sequence is independent, that is,
for every i, j, t, a € A; and b € A; there exists a probability
*) u-1) ®-1)

V4J( -; a, b ) on B(S) such that for every Be B(S), 8; ’(ﬁ and 5*4

2 A1) 2-1) x) .
Qi (BiEy, 8% a 00/ b) =V (B:a,b).

. ) )
Denoting the density of Vg‘ (B;a ,b ) by f(fd-( s¢i; a ,b ), one

has

{4 RPCU ) NN L e
%.(g i 8, .ci;) = ¢4'4'(S°) Ly fj/. (s, :8;, ,od.,) a.s.

Then we have the following result immediately from Theorem 1.

Theorem 3. If § and ¢ are employed and for every i, j and
k #3

ot ) z
;]Ell;l ’/I_{l}{f(:.;.( Sy i 8,00, ) £0s, 58,0, ds, = 0,
4 /g .

then P-1 obtains the full information on 9,.

We show an application of this theorem.

o)
Example 1. Let S = Rz, A{ C {0, ») for every i, and fg( Sy 7

Qu,qm) be a density of a 2-dimensional normal distribution, defined

as follows;
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k = (%)
(7) rg(x* ,y’_{ ; ,sil“q#)
’ 1 ol % my)?
= — exp [ - { 2
27w & ,rt’/l pZ 2(1-gf) &
| 6 -8 -8,.)2
2, (%, -o) (% =8) +(Yx— 8‘,/) by
t 2
(S ”} : ) . ‘on‘ }
Q. = Q- 8.. - B.
Let  ath), = A% ana Bt = © =% . We suppose that p, is
84 ] G,

independent of §;; and Tig -

Proposition 1. Let § and o be strategies of P-1 and P-2 réspec-

tively. If for every i, j and k # j

T ~—————{ a#>k - 2p, ad)-

B(if) + Bﬁ) } = =,
=1 - D* 4/k k Jk

then P-1 obtain the full information on 6,.

Q..+ Q. B.. + B.
9 4R na bk = M R 1 follows

= 1'4_' R
EIQOL. Let an'_ " "

) 1
J'{ ( ( Xt s Yx ; 61%" ,:i(‘) ,Q( x,(- ’ Y,(» H 6.«;&‘ 1 o’"‘)} 2 dxkdyﬁ'
RZ

1 1 ( X*' - a“jk )Z
= - = exp [ - — 5
26y g /1 -0, 2(1-0;) 5%
- 2
( Xt = aA;fk) ( Yt~ bljk) R ¢ Ye — bqk)
- ZQ* : . + . .
— Sit Oy 0%
+ L z 4 &) + ! Bﬁ?z‘ }1a dv
T oz(ﬂxd.k | > P o), kB iR 7 ik xf Yt.
1 2
= exp[ - —— { am)? - 2p, au). kB(x) + Bl 11

8 (l - ptZ) 4/&

- 12 -

]
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Hence

LY [ (v) (v) é
I { fij (%, ¥, 78, (0, ) £50%, ,v, 38,, g, )} dx,dy,

=

1
i l_p‘2

N M

—_— “2 - / V). ;2
3 ( a“/)(dk 2p),a‘u£,jk8( e ¥ B/Pﬁﬂ)},

and we have the result by Theorem 2.

Remarks. (a). Concerning the information on 8; which may be
cbtained by P-2 and is egual to the information P-2 can get, we can
prove the same results that we have shown with respect to the infor-

mation on &,. Defining the information that P-2 gets about 6; by

¢
19(s, o)
(8)
=H(8,) - L Ip pE, [H(8,]6,,8)]6,=9,9,=9; I,
1 4 d £
one has:
Theorem 1'. If § and ¢ are employed and for every i, j and
k # i
. 7% RPCINY 23] R z _
]*"J;g} J;{‘ ¢»{‘J‘(€X’6A\ IGJ) ¢A‘k(€/{ld“l0'd‘)} dgx - 0 14
SQ

then P-2 obtains the full information on §¢,.

Both in independent case and in Markovian case we can shcw the

same conditions underywhich P-2 obtains the full information on 9,.

(b). Theorem 1 shows that the probability on the grade set
G does not affect essentially to get the full information. There-
fore, even though a player knows little the probability on G, he can

get the full information ultimately as long as he does not misjudge
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that there is no probability of his opponent's being in some grade

when the opponent is in the grade.

2.4. Optimal strategies when states' sequence is independent
and is normally distributed.

In the previous subsections we discussed thebéufficient condi-
tions under which a player can get the full information on the
opponent's grade. However, every playér should take éccount of both
the information he»ge@sand the inﬁormation obtained by his opponent.
Thus the‘object in the game of P-1 is to maximizg the following .

quantity as soon as possible:
(9) 15,00 = 13(8,0) - 15X8,0).

Conversely P-2 wants-to-minimiié“tﬁé;vélué of ;Iw(S}o) as ‘soon as
he can. For each time t the system can.be seen as a 2-person zero
sum game, where the sets { 6”"(61,..., )} and { dﬁt;(c,,...,ow)}
are action spaces of P-1 and P-2 respeétively;'ﬁéndéf for‘éidmple,
if every action space A; is. flnlte, there EXlStS the game value and
exist optimal mixed strategies for both the players. Qur problem
in the present paper1ié to study optimal strategies through all
time. We define 6" and o*to be optimal strategiés for ?—i and P=2

respectively; if

I

(10) sup inf (6, 0) inf sup I7X§,0),
§ o) e )

inf (8%, 0)
0 T
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= sup I®N(§,d"),
1)

where T19(§,q0) = %im 19(s,q) .
->x

We suppose the states' sequence is independent, S = R*, A; is
a subset of [0,=) for every i, and the probability density of sg

= (x; ,y,) is given by

£
(11) £ (%, + ¥ 7 S s %x)
2
1 1 ( (xy - u;)
27 b0 /T 0 YR
(x¢ = W) (ye = v) .(yx—.v-)z
- 2p4 “ I + - . ! 1.
St Tt ' 9y -
cov (x4, ¥z ')
Lemma 3. If py = is independent of § . and

S (‘/{ O—J‘/‘

gy, then I(§,0) is independent of §.

Proof. For every i anf j

Eétqj[H(eZlel'gf) l6,= g, .,08,= gj]

PN ) ) & W
p, 0% (E, 38, ,0;) 3 B (Epi8,,0)
J{z % Oik i1 e 2 B )
r#

g
ot) . RAY ) i) L)
7 B by (& 78, gD Bedix (538079

&) o*) ¢!
. ¢/“J~( €‘f. 7 6‘~ 10:1' ) d El‘; ’
where *
) ) b w)
¢.‘i{(€}(.;64‘ ’0]) = ¢i;)(XUIYQ)V£I’ f’(\j(x‘pl ,Y» ; (Sj_y: 0"‘,/).

- 15 -
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for every v, we see E [H(O
py v Y 4 54’9; Zl

i

From {(11), letting x,
el,Ex)l81=g; »8,=9; 1 is independent of §.

Theorem 4. TIf for every t, p; is independent of §;zand it « then

for §, §'and ¢

19(8,0) < 1%, 0),

if 6= *°° = §p, 8= +-- =84 and 6, < 6% for all t21.

Proof. From the assumption and Lemma 3, I{;{)(S,O’) .is independent
of & . Thus we treat only 1.2(6 o). Denote §4= &§; . Since §;= ---

= 8m, we have

{X p{‘EQ)O}[H(el‘le‘z'E;f‘) 191'_‘ g{‘ 18,= g.]\] )
)
pkd>A (gf,a‘;‘, J) cp””(g ao,o*’)
=Ip [IZ{ ’ 3 & log P *)
{ k ¢ (g, ) B ao,o)
2(k+1) " 1 d TR
R S 4
£ ) ()
¢”(£L, 6 10) A,
A) o
By (€, & .0; )
= 1 | (poflg; 80, log —2H Yy ag,.
k . {3 # *) 617!‘) Op()
R2AAD } P‘(‘t’u (EX" 07 )
- Xy, - B O/ - )
Putting x, = -——6—— ar__x*d Y, £ —— for every v, 1< vgt, we. -
. : o: :

- o . )L
get -

% pA\E‘SA‘o;[H(egtezlgx) !91=gl; ,82=_ gl‘ ]

- 16 -
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_ Pé(b;u;(xo IYQ)
= E dXQ dY()

R2
-1

Rzk

)
9 Fé‘,(ao IUJ\)

Putting the integral on R F®

R J‘

38,0

1

= | 1 expt——
RY 2(1-p;)

-{z

2wy 1-p.2

; .
. fﬂ' exp {——2——( % -20,%, ¥, + v, )}
2(1-p3)

llx - uk
——— ( xl/ -
Goy(l—pl,z) 28 ey

U.X -le

- nyy)} dgy -

(501(5]") ’ we get for every n, Lgngt,

(xf - 20,3, + )}

B, (u, - “uk) Couy Tuy

< pk(l-—pyz)_csn,?‘ Son

=y

exp
.

I
/ I & I exp
[’ pk)/:l‘

1 p,
- |y Blm
S on :.("( 1‘93

R

v=i 2(1-p2)

UI“‘

u u, — u
R £ R
(x, -——2 — gy )}

' S (1-p2) 284,

u —uk _U.j‘uk

2 v ‘
60V(l‘py) 260)/

)

(p= Xn + Pp¥, )

) v
((x, —cpe V2= 20,y (x, -ci) + v, )}

) w)

Sk S

(x - -0y ) dE,
5 =5
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o) Uy = Up

where Cea

— .- Then it follows

602/ B ’ ‘ '
(€2 .

3 F"‘J (50 "GJ‘ )

149

38gn
1 )
S B -1
an th,
_ -1
- - VY2 - ~V) 2
yI:I’ eXP{Z(l-pj) ((x, -cp) 20, 'Y‘.,(x,, S )ty )}
(p R f ST }
. exp X, - - )
o) o)
c c
24 2k 2
/ {tp I exp - (x, - — = oy, )} dg,
1-p/ 2

Hence for every j and 1 < n < t

3 S8n
Thus from (6)

— 1%%5,0) 2 0
3 84n

“for all 1 ¢ n g t, which implies the theorem.

Theorem 5. Let A= A,= °*°- = A,= [q¢,8]

{ z ESOUJ{H(e;Iez ) lei=g

82

v

A7 ]}

:) g}

= C [O,é)/and every -
strategy be restrected such as §,= §3= ~*-° =5ﬁand o, =0, = -~;'=4om;
If py is independent cf §;x and Tit s then a- strategy &F = (§*,

ees §8), 8% =8 for all t21, is optimal for

- 18 -

0

both the playefs;



I56

Proof. By Lemma 3 and Theorem 4, for any § and o

(s5,0%) < 1™(s%,8%) < 1¥(8%,0) for all t.

A

Thus, since every 68 and o I&ké,o) converges to 1*(8,0), we have
17(8,0%) < 1(8%,8%) ¢ 17(s%,0),

which implies the theorem.

3. n-perscn Information games.
© 3.1 Definition. )

We define n-person information games which is an extension
of 2-person infqrmation games. Let N ={1, ..., n} be the set of
players, G ={g,, ..., 9m} be the set of grades with respect to the
powers, P = (p,, ... , P,) be a probability on G such that P(g;) =
p; and § P, = 1, S be the state space which is assumed to be a Borel
subset of a finite dimensional Euclidean space, and Ay, (i=1,..., m)
be the set of all feasible actions of a player beiné in grade g; -

Let © (2 =1, ... , n) be a parameter on G which shows the.grade

X
of the g-th player P-2. A stretegy of P-% being in grade g; is a
sequence of actions &:(2) = (&(L), , §,(L), , .. , 8§ (%), ... ),
where §;(2)s is an element of Ap for all t. Let (ﬁiz) = (8L), + <.y
Sa(L) 5 be the first t subsequence of §;(L) and let &§(2) = ( §(2) ,

cee 4 @41) ) be a grand strategy of P-%L. Let gi , (L=1, ..., n)
yA

- 19 -
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be a ¢rade of P-L's power and denote m-tuple of thier strategies by
§C 14 «wn v 1a) = (8@, ..., 8(n) and denote 64, ,...,1,) = (81,
...,6{:(1'1))- Let €;=.(Su,.-.,5,+)65*” states' sequence up to time t.

We suppo;e; when players' grades are g; , --.- , 9 Sw( i, ,
‘, in) are employed and' Er is observed, az state s, at time t is
determined a conditional probability QJ.‘:T)_ "in( S84, e s ia))

on (B(S), which is assumed to be absolutely continuous. Let @;f’ .e-i

: 1 n
() be a probability on B(S), which determines the initial state s,
and is assumed to be absolutely continuous. Thus a probability

(<)

o™ (- & iy, ... , in)) on B(s*') is derived from ¢’ .
R 1 °**1n

[¢
and {Q‘."’ -(';GV{iu cee o 1in)): v =1, ..., t}. From the as-
1, ***1n : )
3 .
sumptions each @, .n(- ;cSei., ee. in)) has a density, which is

& . LT e ¥
denoted by q')ﬂ .. _in<5,{;58 i/, «-.. + in)). Since every player can .not

¢
i :
take any action except the elements of feasible actions' set re-

stricted by his power, we define that

W A . _
¢i1"‘i!—| ji!ﬂ"‘in(g’t' 5211' e o dnd) 0

6y
)of P-L is not an

for all &; if an observed sequence of actions § £

4
element of A;‘ .

To avoid comp‘lexity, we treat only P-1's information about
P-n's power. When players' grades are gy, ... , 9, ahd 6i,(f),\..,6;"(n)
are émployed, the expected information that P-1 obtains about 6, is
defined by ’

I‘f)( enza( il 7 LR ’ iﬂ))
= H(8) - Egy 5, HG@nla, E4)| 017 G40« - - s8n=Tinl #

where

EG(i\r-..'in)[H(e_"'el'gil')lel =y oo 16n= 9'(“1

- 20 -



is the conditional expectation of H(enIGI,Et) given Fire- 19, with

respect to the probability Q?) (—:é?i,, ee. ,1in)), and H(8,4

V!

|8 ,& ) is a conditional entropy of 6 given 8; and £, , i.e.

Tty kn

H(8y]| 8,,84) = T -Pr(6n=g, |8, ,&) log Pr{d,=g; |8, ,&).
. 1{

According to the Bayes' theorem and the theorems on conditional prob-

k)
ability, we have for 8, = =N and §(i,, ... , ip)

b v (&80 i)
. . ; , e, in
(12) Pr( eﬂ: g; Isl = g; lg ) = dn T uin 1 t l
in vk a) (g _éu'(. )
E,pl”wi"j" YR 1, 4, «--s 1n
where

)
0y (Eei8(a . oee, ia))

= f - Ip -eep 00 (5,801, aa., in)),
A S L

which is a conditional probability density on @(SX") when 8; = g;,

. @), . .
and 93= g; are given and (i, , ..., i,) is observed. Hence we get

(13) Es (i, ,._.’in)[awnle,gt e, =gy ¢ -viBn=9i, ]

. @) dr .
= J v { Pjnwi:(}‘n (Ef;é(l‘ roeeer 1n))
ol b 2 pl-n ‘b:‘,)],, (Ex;ﬁaeil 1oseea in))

o) A .
%‘Pjnw,@}"(gi;(ﬂl, ¢ eees 1n))

- log }
) LX) . :
B, V2 (€,:6C i, «.., i)
) o). )
- ¢6(i|,--.,i,\) (g*;ﬁ(l., o e sy ln)) dg,\*’

Therefore the expected information on 6, obtained by P-1 with re-

spect to the grand strategies &(l), ..., &8(n) is defined by

- 21 -



(14) 108, 78(1), S.., §(m))

9] .
Bl T0(8n38(4,, --vy in))]

H(8q) -~ I --- Ip -..p

4‘. . 4.71 A TAn

.EcS(il ,...,i")[H(enif%.Ei)l61=g;, ree-iOn=gy ]

It is easy to show that I@(Bn;é(l), ---¢ 8(n)) is nondecreasing

for t =1, 2, ... and f?(eﬁzé(l), wvey 6(n)) £ H{(B9). Hence gi%ie,
IV 8 8(1), ..., 8(n))=T8;8(1),.~.,8m) always exists. We say that
P-1 gets the full information on Ox if I(8,;8(1);.c.,8(m)) = H(g,) . We. ::

show.a sufficient condition under which the“fuli.informatiqnﬁis.optained.

(Theofem_G; If’for‘evefyti.,'...; in and j; #”iﬁ

. R o o F

(15}. E [T lim J { R/ {.}*i‘n (S*»;’ﬁ,(l;t 7o e :_ln) ) w("jn (;Ek ;8 (;L, sy ind )} = Q'
*-)W 51’70 ’ 7 .

then P-1 obtains the full information on 8 . A

~ Proof. By Lemma 1 there exists a constant CA>O”suph};haF

-E‘a(il.‘.in) [ H(enlel’gt) lejl‘:' 9"."'__."1 eﬂ:g«‘n] ;

L
< cj I APr (8= gile = g e

InTin
S . T - P . . .
@) @), . ,
. ¢4’..<.&‘n(st;6(l| ,.-.‘,ln).)#d’;gt”f;
Since
®*) S T
p“\z ...p»in-'(b"-‘:“"‘ﬁ (Ej 1'6(11! --'l- lYl))

)
s ¥ (g, aa, in)),

4 in
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from (12) and (14) we obtain the conclusion.

Applying this theorem we can show sufficient conditions simi-
lar as Theorem 2 and Theorem 3 under which the full information is

obtained when the states' sequence is Markovian or is independent.

3.2. Cooperation with respect to information.

Let K= {1, ..., k}CN be a cooperative group. Considering
the cooperation between the players in K, we must not treat only
the strategies to be employed, but take account of the infqgmation
" they havei Even though they cooperate eaeh\other in some way, they
cén hardly map out effective strategies without enough information
about every player in the group. Theiefore we discuss the coopera-
tion from the viewpoint of information and study conditions under
which the full information on the opponents to the cooperative
group is obtained. We define that the cooperation in a group is to
offer each other all information they have about the others and
themselves. In the present paper the cooperation is defined to
offer the information on.their own power, thén every player in the
groué-knows the powers of other members. We define the information

each of K gets about 6 under the cooperation as follows: for §(1),

e.., §(n)

T (8y 6(1), «..,8(n))

(16)

- 23 -
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=‘H(eﬂ) A- EP[ Eﬁ(i, l."‘.’if\) [H(e‘nlel l"'lehlg‘()

le‘l:_ g{\‘l"'len= g{‘" ]I

where
EG (i' , ..,in) [H(Bniel ,,-.,ekyg*) {e’ =g£‘ I-’.‘ren='g{n]
=J ,z{- Pr(e’ﬂ;g{n!el'—_‘g{‘ ""Iekz g,:hlg;-)
»SM“
) B &), .
-log Pr(8,=g;, le = TP S VN L TS (Ee:8(i,,...,1n))d8;
and
Pr(9n=ggn[6,=gi' reee s Bg=g 1 &)
) ). )
_ pfn w“‘-"‘*‘hjn (E,f»; 50(‘11 o eegpdin))
&) .. . ’
ji:' p/(nd)‘il“..‘(h!n (E‘, J(l‘ ;---'ln))
where

%) .
w‘i:,)"'{‘h,ln (Et ; S(ll g-~-r 1in))

- *) *). .
- Z .= z ‘ - o P, PR 7 PRI -
Jret Jn1 phﬂ pJn—l Q‘:“"ﬁlm'%ugn(g* 8 81, ! ¢ in))

By the definition each player in K obtains the same amount of infor-
mation on 6.

According to the theorems on conditional entropy we obtain

(17) 1(6a38(1), e, 8(R)) 5 TRA8n;8(1), ..o, §(n))

=

for all t =1, 2,... Thus the cooperation brings each member more
amount of information than he gets by himself. We show a sufficient

condition under which a player in K can get the full information on

On .
Theorem 7. If for every i, ..., ip and j, # in

- 24 -



‘ i @) & .
(18) lim J Cvip o (Bes 8(i, ooy 1a))
et Esal ‘ ®
S L
w z
e (Exi8(,, a., ia)FdE = O,

then every player in K obtains the full information on 6.

Proof. By Lemma 1 there exists a constant C > 0 such that

El -[H(en!e)r~--rekr€*)!8\=q{‘l~~...-reﬂ=g«'"]

'--.ln

-L
£C ( ‘ZA\{Pr(6n=gj~”[6‘=g‘~l 1o OR= gy - Ey )}Z

InFin
s K+l

&) . .
. ¢‘§f,..;n (g*;csel, ro--iind)) dgy

v 9]
<c 5 { Bin YA
= N (_X)

It p w ;kfﬂ(g*;é?i, yeeerin))

o) ey
(‘Si’;d(l;r---/ln)) i—

in

@ .
- ¢l§f'--4‘n(€x75(i: reeerin)) 64 .

Since

)
Pion* " Ponn O4-ip (a7 8 sovtyind)

(st
@ @) .
< w(}"'i‘k'{n(gt;s(l‘ I"‘lln))l

it follows

EpEs(s, ... in LEGnI8 /oo o g0 [00= gpeens =gy, ]

1]

@) ) o : @) RN
jﬂzfijwi,..q}i(‘nggx;é(l; ,"- P ,ln) lb{‘ (SX 7 (S(l) RRE 1‘171) ) } de '

Siﬂ

).
“Ag

1Y
e

which implies the theorem.
Considering Theorem 6 and Theorem 7, (15) implies (18). Thus
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57
taking account of the inequality of (17), we can say that the coope-
ration brings every member of>thélgroup much more benefits than he

gets by himself.

4. Noéés andzréﬁaké:

We have defined optimalistrategies with respect to the amount of
ultimate information. However, in practical games another important
problem is how socon one can get the maximum information on the oppo=
nentsf power. Thus our next problem is to consider optimal strategies
with respect to the time to gettfhéhéggiﬁum information. In the pre-
Sent game the information obtained at each time is not used to modi-
fy the strategies. Inthe next problem we élso wish to cbﬁEfaér such
sYéfém‘fhéfké:piaYér Can’émpioy\thé'bBtaiﬁea‘ihfbimatibnﬁfb%&étefﬁine

his action at every time.

The information gamés Céﬁ*bé”tféétedxfromhtﬁé'Vie%pdfh%iof

lééfﬁiﬁg‘ﬁhédfyl'In thé‘game‘ﬁlayer'é'bbjébtVigrtd_éét"ihféfﬁation
about ah6thér”piayér} thus he learns some khoﬁiédge from the player.
On the otHer h3na’a'leérﬁing7procegs of a teacher and ﬁzstﬁdéﬁt can
be considered as a kiﬁdwof'i—éérsdn"cdépefétivé:ihfofﬁa€16%7géméf¢
where a optimal straﬁegf'of'a teacher is a ootimal reififorcement to
teach ‘the student. Therefore iéérnfngwprdcesées'migﬁt be'tiégted as

information games.

”.Ackndwiédgﬁents.

The auther would like to express his deep thanks to Professor

- 26 -



158

Seigo Kano of Kyushu Univesity, who discussed and supported him

throughout the work on information games. The auther is also grate-

ful to Hononary Professor Tosio Kitagawa, Professor‘Nagata Furukawa

and the faculty cf Research Institute of Fundamental Information

Science of Kyushu University, who gave helpful suggestions.

(1]

(2]

(3]

(4]

(sl

(6]

(7]

(8]

Refereces

Feinstein, A., Foundations of information theory, Mcgraw Hill,
(1958).

Guasu, S., Information theory with applications, Mcgraw Hiil,’
(1977).

Kano, S. and Kai, Y., Information theoreti;al approaches in
game theory, Bull. of Math. Stat., 19, No. 1-2,(1979),37-43.
Kai, Y. and Kand, S., An information theory of game systems,
Bull. of Math. Stat., 19, No. 3-4, (1981), 87-102.

Karlin, S., Mathematical methods and theory in games, program-
ming and economics, Addison-Wesley, (1959).

Kemeney, J. G., Snell, J. L. and Knapp, A. ﬁ., Denumerable
Markq? Chains, D. Van Nostrand, (1966).

Korsh, J. F., On decisions and information concerning an un-
known parameter, Information and Control, 16, (1970), 123-127.
Kullback, S., Information theory and statistics, Dover Publi-

cations, (1968).

- 27 -



159

(9] von Neumann, J. and Morgenstern, O., Theory of games and eco-
nomic behavior, Princeton Univercity, (1944).

[10] Neveu, J., Mathematical foundations of the calculus of prob-
ability, Holden—Day,.(1965);

(11] Renyi, A., On the amount of information concerning an unknown
parameter in a sequence of observations, Publ. of Math. Inst.
of Hungarian Acad. Sci., 9, (1964), 617-624.

[12] Renyi, A., On some basic problems of statistics from the point
of view of information ﬁheqry, Proceedings of 5-th Berkeley -

Symposium, 1, (1967), 531-543.

- 28 -



