goooboooogn
0 4610 19820 21-48

21

IMPLEMENTATION OF GOING :

A DATALANGUAGE USING GRAPHICS DISPLAY

Yosihisa Udagawa

and Setsuo Ohsuga

Institute of interdiscriplinar& research
faculity of engineering, Tokyo University
4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan

1. Introduction

This paper concerns design and implementation of a friendly
user'interface‘ language for the relational databases. A less
procedural or non-procedural 1language 1is considered to be
preferable to end user languages, bacause it permits a user to
focus on the functional specificatiéns of a given problem rather
than on its solution methodology.

So far, a number of non-procedural interface languages have
been proposed for expressing queries against relational
databases. Among them, query languages based on the predicate
logic have several advantages ,e.g.

(1) permit a user to fequest the data by its values ;
(2) provide a useful way to derive the facts derivable by using
general axioms togethér with the facts stored explicitly in

a database ;

(3) allow the database system to optimize execution of the

query ;

22

However, it is pointed out that this class of languages
(1) require users to invent variables to formulate a query ;
(2) rely on the universal and existential quantifiers in the

formulation of queries.

Two approaches are commonly known to avoid the difficulty
of the use of variables and quantifiers in the predicate logic.
One is to describe a query by means of (restricted) natural
language. Then it is translated into a formal query, and if

necessary, it 1s rephrased back into a natural language for

user's approval. However, +this approach meets only limited
queries.
The other 1is to express a query by means of a graph. By

taking advantage of two-dimensional representation of a query
by using a graphics display , queries are expressed within a
simple and easy-to-understand conceptual framework.

GOING (a Graphics QOriented INteractive query lanGuage) ,

the language discussed in this paper, belongs to the latter
approach. GOING 1is designed to enable the user to express
queries in terms of nodes, arcs, comparison predicates and
functions. Other well known 1language with a similar Dbasic

orientation includes Query-by-Example [7] and CUPID [6].
The main features of GOING are as follows

(1) GOING provides a concise , easy-to-understand representa-
tion of queries. Queries are expressed in terms of simple
figures (ellipse for domains, directed arcs for logical
orders of entities), and expression composed of comparison
predicates and functions.

(2) GOING avoids the use of quantifiers and bound variables iﬁ

23

expressing queries, hence does not require the user to have
a high degree of sophistication on the predicate logic.

(3) The wuser can control the size and layout of a graph, thus
can express a wide variety of queries on a graphics display.

(4) GOING enables the user to state a query in a non-procedural
way. The meaning of a query only depends on the properties
of the figure expressing it , and does not depend’on the se-
quence of making it. - " In this sence, a GOING query
expression is descriptive.

(5) GOING is designed to minimize the number of concepts that
the user subsequently has to learn 1in order to use the
whole language. |

(6) A query expression 1in GOING is translated into an
inﬁermediate language, the multi-layer logic ‘in this case,
then reduced 1into a sequence of ‘high level procedural
operations of the relational algebra. -

(7T) GOING provides high expressive power. | GOING 1is able to
describe any formula in the multi-layer 1ogic- for
relational databases [1], which is proved to have more
expressive power than conventional query languages based on
the predicate 1logic and graphics-oriented query languages
[1,2,3,4].

In section 2, we illustrate GOING and compare it with two
other graphics oriented languages, i.e. CUPID, Query-by-
Example. ‘Section 3 discusses correspondence between GOING
eéxpression and basic concepts in the multi-layer logic. Section

4 deals with implementation of GOING.

24

2. GOING expressions for relational database queries

2.1. GOING expressions for the basic database queries

In this section , basic queries of the relational database
are illustrated in the GOING expressions.
(A) To express queries containing Boolean conditions.

One of the most basic and important queries are those of

retrieving values which satisfy given Boolean conditions. In
GOING , those queries are expressed in terms of domain
specifications, Boolean expressions and directed arcs. For
example,

REL {ATTR2 @ <PREDICATE CONSTANT><CONMSTANT>

~REL:ATTR1

indicates to retrieve the wvalues of ATTR1 in the relation REL
relation whose associating values of ATTR2 satisfy the given
condition.

(B) To express queries containing aggregation functions.

Many of practical queries contain aggregation functions.

To express these queries, sets to which aggregation functions
are applied have to be specified. Because the query language
GOING deals with a subset of a given domain explicitly, these
queries are formulated in a simple manner. For example, to get
the average value of the elements that satisfy a given condition

is expressed by the following GOING expression.

o5

REL;ATTR2 @ <PREDICATE COMSTANT><CONSTANT>

~REL:ATTR1

(C) To express queries containing "group by" operations.

| In some <cases, queries 1involve a aggregation functions
whose argument sets are ‘determined for each element of some
other set (i.e. for all elements of some set, there existstg
subset of a set which is an argument of a given aggregation
function). This kind of queries are formulated in a simple
manner . For example, the query getting the unique number of
items of REL:ATTR2 ﬁhat are determinéd for each element of a set

REL:ATTR1 is expressed by the following GOING expression.

AUCOUNTC %)

B—@

~REL :ATTR1 ~REL :ATTR2

2.2. Describing queries in terms of GOING expressions,

comparing GOING with CUPID- and Query-by-Example

In this section , the query language GOING is illustrated
by means of example queries and is compared with other graprhics
oriented languages, i.e. CUPID, Query-by-Example. The database

consists of the following relations:

26

LYP(LAND, YEAR, PRIC) ;

LU (LAND, USAG) ;

LDA(LAND, DIST, AREA).
The relation LYP has a row giving price for eéch land's
identifier and vyear. The relation LU gives the usage of each
land. The relation LDA gives, for each land, its area and the

distance from the center of a city in which it is located.

A query against more than one relation with Boolean conditions.
Query 1. List the lands of usage a and their areas, which are
less than 35 kilometer aprat from the center of a city and whose

prices are less than 600,000 YEN/m2 in the year 1981.

GOING ' LYPWYERAR IS #1981 LYP,PRIC IS LT #60

DIST IS GLT #35

~LDA: AREA ALU:LAND
LYP:LAND
COA:LAND

A domain or literal expression preceded by """ symbol denotes to
list the value of it. The arc which connects inside of the
right ellipse and the first argument of the Boolean predicate
LU:USAG IS 'A' indicates that there are some 1lands in the
column LAND in the relations LU, LYP, LDA whose usages are 'A'.
The literal .expressions LYP:PRIC IS @LT #60 and LDA:DIST IS

@LT #35 denote that the values of the price in the relation LYP

27
and the values of the distance in the relation LDA are less

than 60 and 35. They are correspond to the predicate constants

(3 p/PRIC) LT(p, #60) and (3 d/DIST) LT(d, #35/DIST),

respectively.
cuPID <g§>
@ LAND | USAGI - |uyp| LAND | YEAR | PRIC |

® © O

@ LAND l‘ DIST | AREA |
&

Query-by-Example

LU | LAND | USAG ~ LDA | LAND | DIST | AREA

P.1 | 'a o 1. <'357 P.

LYP LAND YEAR

1 '1981"

28

A query against more than one relation with a universal

quantification. GOING ~LU:USAG
Query 2. List the

~lands which are inquired

in all the years, their ~LDA:DIST
usage and distance from
the center of a city.

~LU:LAMD

LYP:LAMD

LDA:LAMD

LYPYEAR

Note that only those domains referred need be represented in the
GOING expression. In this example, the column PRIC in the
relation LYP and column AREA in the relation LDA are not used

in the above expression.

CUPID
- <>

@[LAND | USAG | LDA| LAND | DIST]

0 0

@L_LAND YEAR | (LYP| LAND [YEAR |

8 e

Quary-by-Example
Quel J-

LiP LAND YEAR LU LAND USAG LDA LAND DIST

P. 1 all 1 P. 1 P.

A query using built-in arithmetic and aggregation fuctions.

Query 3. List, for each land of usage a and inquired in the
year 1981, 1its identifire, its price and the difference of the

price with the average price computed on all lands inquired in

the year 1981.

COING LUJUSAG IS 'A

LYP WYEAR IS#

~LU:LAND ~LYP:PRIC
LYP:LAND

LYP:PRIC

The literal expression SUB(¥*,AVG(¥)) demonstrates that a built-
in function may be nested to any levels so far as the value of
arguments are properly defined. Note that first argument of
SUB(*, AVG(¥)) is some values of column PRIC in the relation
LYP, while the argument of AVG(¥*¥) 1is some subsets of column

PRIC. This difference is explicitly expressed in the above GOING

expression.

30

CUPID

> & &

@ LAND | YEAR | PRIC | @ LAND | USAG | LYp[PRIC| YEAR]

g B

Query-by-Example :

Not expressible.

A query with a nested aggregation function and a Boolean
condition.

Query 4. What is the average number of lands per usage, which
are inquired in the year 1981 and whose areas are not less than

100 square meter.

10

31

GOING LDAJAREA IS GGE #1099
~AUGCUCOUNTC K > >

LYPYEAR IS #1981

LU:USAG
LU:LAND
LDA:LAND
LYP:LAND
This query contains the nested aggregation function
AVG (UCOUNT (¥*¥)). The argument of this function 1is a set of
subsets of 1lands inquired in the year 1981 and corresponding

area is greater than or equal to (not less than) 100 square
meter. The subsets of lands are determined for each usage. This
fact is represented by the arc connecting inside of the ellipse

LU:USAG and the innermost ellipse of the right figure.

CUPID

&

& o | ©

@ LAND | USAG | LYP| LAND | YEAR | @[LAND- | AREA |
[

COUNT

11

32

Query-by-Example: Not expressible.

3. Correspondence between GOING expression and basic concepts

in the multi-layer logic

In this section correspondence between GOING expression and
basic concepts in the multi-layer logic is discussed.
As discussed in [1,51], a formula expressing query in the

multi-layer logic is constructed in terms of ;

(M-1) relationships between a variable and its domain,

(M-2) quantification of variables,

(M-3) expressions involving predicate constants and/or
\functions,

(M=4) 1logical order of quantifiers.

(M-5) 1logical connection of atomic (literal) formulas, i.e. in
terms of & (AND) and V (OR).

GOING represents these basic concepts in the multi-layer logic

by means of ;

(G-1) ellipse with a domain name for a domain of a variable in a
formula,

(G-2) hatching on an ellipse for a universal quantification and
non-hatching for an eiistential quantification,

(G-3) Boolean expressions and/or functional expressions having
the syntax defined in the appendix,

(G-4) directed arcs mentioned below,

(G-5) undirected arcs that connect specified directed arcs, re-
spectively.

Directed arc in (G-4) is used for specifying logical order

12

33
of quantifiers , that is, the arc x —>— y denotes that x de-
termines the corresponding entity y. An undirected arc
jndicates that two Boolean conditions A and B are ORed. If there
is no specification, it represents ANDed. That is,

indicates that the Boolean condition A and B are ANDed.

The GOING expressions "REL:ATTR IS 'C'" and "REL:ATTR IS #N",
where C is an identifier and N is a number, indicate that values
of attribute ATTR in the relation REL are restricted to the
character constant 'C' and the number N, respectively. So they
correspond to the formula REL(...,'C'/ATTR,...) and

REL(..., #N/ATTR,...) in the multi-layer logic, respectively.

denotes some values of the (multi)set obtained by
REL:ATTR
projecting the relation REL on the attribute ATTR. Thus, it

is the direct counterpart of (3 x/ATTR) [REL(...,x,...)] of

the multi-layer logic. On the other hand, é%

REL:ATTR

denotes all the values of the (multi)set obtained from the

relation REL. Thus, it corresponds to the formula (¥ x/ATTR)

[REL(...,x,...) 1. Inner ellipse of © represents a

REL:ATTR

13

34

subset of the (multi)set obtained by projecting the relation REL
on the attribute ATTR. In other words, it denotes an example of
a subset of the (multi)set obtained by projecting the relation
REL on the attribute ATTR. Thus the outer ellipse indicates the
powerset of the (multi)set. Hence, 1t corresponds to the

formula in the multi-layer logic (3 x2/*ATTR)(3 x1/x2) [

REL(...,x1,...) 1. in the GOING expression is used

REL:ATTR
for representing all the values of some subsets of the
(multi)set obtained by projecting the relation REL on the
attribute ATTR. Thus it corresponds to a formula (3

x2/*¥ATTR)(y x1/x2) [REL(...,x1,...) 1. In this manner,

@ and @% correspond to (¥ x2/¥*¥ATTR) (3 x1/x2)

REL:ATTR REL:ATTR

[REL(...,x1,...) 1 and (¥ x2/*ATTR)(¥# x1/x2)[REL(...,x1,...) 1,
respectively. These expressions are naturally extended to those

representing a powerset of the (multi)set obtained by projecting

the relation REL on the attribute ATTR. For example, _ 7
REL:ATTR
corresponds to the formula (3 x3/¥*¥ATTR)(3 x2/x3)(¥ x1/x2) [REL
(eoeyxt,..0) 1. Table 1 summarizes the correspondence of the

GOING expressions.

14

39

GOING',- : _ Tﬁe‘mulfi—layer logic
REL:ATTR IS 'C' | RELC...,'C'/ATTR,...)

REL:ATTR IS #M RELC.. ., #N/ATTR, ...)

(EX/ATTR) LRELC....%s...53

(AX/ATTRY> CRELC....,%,...)]

A
m
~
b o4
-
-y
2]

3

T

ey
m
r
o4

CEX2/%ATTREX1 %23
L RELC...,%1,...5 1

. CEX2/%ATTR X AXL/%2)
"L RELC...,%1,...> 1

o,

m

r

b o

puat

_,.* .

3 :

REL:ATTR

CAX2/XATTRIERL/X2)
L RELC...,%41,...> 13

0

REL:ATTR

CAX2/XATTR X AKL/X2)
[REL(...)KIJ...)]v f

@

REL:ATTR

et ———————————

Table, 1 Correspondénce.of GOING to the multi-layer logic.

15

36

The multi-layer logic

 CEA3/XXATTR ICEXR2/XI M ERL/K2)

CRELC...,%1,...> 1

CEX3/7XRATTRI(EX2/7K3 X AX1 /%2
CRELC...,X1,...> 1

CEXB/XXATTR I ARZ/ A3 W EXL/X2)
L RELC...,%L1,...2 13

CAR3/ZRXATTR I(EK2/-K3) EXL /K27

PEL:ATTR

CEX3/AXATTR X AR2/%3 5 A1 /42)

| L RELC...,%1,...> 1

REL:ATTR

LD

tt CAXS/XEATTR X EX2/%3 X AXL/%2)

\O~S4/ L RELC...,%1,...> 1

REL:ATTR
CAXZ/RXATTR X AX2/ X3 M ERL/%2)
L RELC...,%1,...3 13

REL:ATTR

T CAXB/EXATTR XCAKZ /X3 M AXL /%2)

L RELC....%1,...) 1

REL :ATTR

Table. 1 (céntinued)

16

Implementation of GOING

y..
.1. Commands for GOING expression
In this section we describe the commands provided by the
current GOING implementation. They consists of the following

three classes

(1) definition of variables and their domains,

(2) definition of quantification and logical order of entities,

(3) definition of expressions involving predicate constants_and
or functions.

For each concept , GOING provides one or more commands. In the

following, <c> denotes to locate the cursor where the user

desire to define something , and <c¢/r> indicates to press the
carriage return key.

Command 1 : <c¢> S m <c/r>
This command indicates to define a set and display a ellipse of
size m at the position where the cursor is located. m is an in-
teger not greater than 8. The size of the ellipse to be
displayed is determined by the function x = 5/ 2.6m_'cos(e),
y = BJ 2.6m-,sin(-9 Y [mm].

Command 2 : <c>>\P m <c/r> .
This command indicates to define a set and display two ellipses
of size m and m-1 at the position where the cursor is 1ocatéd.

Command 3 : <¢> T m <Ke/r>

37

This command indicates to define a set and display three

ellipses of size m, m-1 and m-2 at the position where the

cursor is located.
Command 4 : <e> N s <e/r>

The command is available for defining a domain name for a set, a

17

38

power set or a set of power set. s is a string of characters
having the syntax <relation name>:<attribute name>.

Command 5 : <e> A <Ke> E <Le/r>
This command provides for defining wuniversal-existential
quantification. That 1is, for all elements of the domain
indicated by the first cursor positioning, there exist at least
one element of the domain specified by the second cursor
positioning. As the result of excution of this command , a
directed arc is displayed, which connects a element of the
domain indicated by the first cursor positioning and that of the
domain specified by the second.

Three other commands are defined similarly.

Command 6 : <¢> E <Kec> E <Le/r>
This command serves for defining existential-existential
guantification.

Command 7 : <c> A <Kc¢> A <Le/r>
This command provides for defining universal-universal
quantification.

Command 8 : <c¢> E <Kc¢> A <e/r>
This command serves for defining existential-universal
gquantification.

Command 9 : <c¢> D <e> Ke/r>
This command 1is used to define a disjunctive relation of two
directed arcs, one is indicated by the first cursor positioning
and the other is specified by the second cursor positioning.

Command 10 : <e¢> X s <Le/r>

This command indicates to define a expression involving

predicate constants and/or functions. The expression to be

18

39

defined has to Dbe obey the syntax described in the appendix.
As an example, the query 4 illustrated in Section 2 is ex-

pressed by means of the following command sequence

> S 4 <e/r> ——-- (D)
¢e¢> N LU:USAG <c/r> -——— (2)
> T 6 <Lc/r> -—-- (3)
<e> N LU:LAND <c/r> -—-- (4)
¢e> N LDA:LAND <c/r> -——- (5
<e> N LYP:LAND <c/r> -J-— (6)
<> A <> E KLe/rd -—-- (7)

(First, the cursor is pointed inside of the ellipse defined by
(1) , next it is on the side of the innermost ellipse specified
by (3).)

<c> X LYP:YEAR IS #1981 <c/r> - (8)

<¢> A <> E Ke/r> -———— (9)

(First, the cursor is pointed inside of the innermost ellipse

specified by (3), next it is pointed the first argument of the

expression specified by (8), i.e.":".,)
<e¢> X LDA:AREA IS @GE #100 <c/r> -———- (10)
<¢> A <Ke> E KLe/r> -—— (11)

(Similar to the command 9.)
<e> X "AVG (UCOUNT(*)) <c/r> -—-- (12)
¢> A <Ke> E <e/r> ———— (13)
(Similar to the command 9.)

However , as mentioned above, the order of commands is immaterial.

19

40

4.2. Algorithm to translate a GOING expression into a formula

in the multi-layer logic

4,2.1. An overview

Algorithm to translate a GOING expression into a formula in
the multi-layer logic is divided into two parts: generation of
a prefix and that of a body.

Generation of a prefix includes
(1) to get variables required from a given GOING expression,
(2) to determine the quantifiers and logical order of variables

in a prefix.
This algorithm will be discussed in detail in the following
sections. On the other hand, algorithm generating a body of a
formula 1is implemented by simple symbol manipulation. The key

of this algorithm involves to reference the schema of the

relational database concerned, to 1list wup the predicates
required, and to assign constants and functions obtained from a
GOING expression to the arguments of the predicates. Since the

implementation of algorithm generating a body contains no novel

techniques , it is not discussed here.

L,.2.2. To generate variables from a GOING expression

Variables are generated according to the following rules.
(VG-1) For a domain specified by
(1) command 1, a variable defined on the domain is
generated ;
(2) command 2, two variables are generated, i.e., a

variable defined on the set of subsets of the domain,

say X, and a variable defined on the X ;

20

41

(3) command 3, three variables are generated,i.e., a
variable defined on the set of powersets of the
domain, say XX, and a variable defined on the XX , say
X, and a variable on the X.

(VG—2) For an expression containing a predicate constant, and
the arguments take the form of <relation name>:<attribute
name> , a variable is generated.

(VG-3) For a function whose value is to be answered, a variable

is generated.

4.2.3. To generate priority informations

Another information to be produced is that of priority. This
information is obtained from the following rules
(PI-1) For the variable generated by the rule (VG-1) the
priority information 1is N*100 , Where N is ‘an integer
corresponding to the level of the variablé i.e. N=1 for
command 1, N=2 for command 2, N=3 for command 3.
(PI-2) For the variable generated by the rule (VG-2) this
information is 100 ;
(PI-3) For the variable generated by the rule (VG-3) the
priority is 100 + 'the priority information of the output
variable', which 1s set 99 at first and 1s decremented by

one for each time an output variable is generated.

b.2.4. To generate a matrix for the logical order of variables

The variable matrix discussed in this section 1is a matrix
that is used to determine the logical order of variables in the

prefix of a formula. The logical order of variables are

21

42

expressed in the GOING expression by means of directed arcs
and the structure of domains. The former is the logical order
explicitly expressed by directed arcs. While the latter
implicitly indicates the logical order of a variable whose
value is set and a variable defined over it. The value of an
element of the variable matrix e(i,j) is defined as follows

e(i,j) = N, if the j-th variable precedes to the i-th

variable, where N 1is an integer corresponding to the level

of the j-th variable ;

e(i,j) = 0 , otherwise.

As an example, the variable matrix shown in Figure 1 (pre-

1g2g 258 488 § B8 1 @8 @ & ® a8 @ a a a
11 a 8 8 8 @ 8 8 8 8 @ @ 5852 g g
1848 608 488 6 B 2 I 4 8 8 B8 @ g g a
1) a 8 8 8§ 8 8 A 8 & B8 @r7iez2 g a
28 a 4 8 8 a a4 a8 v 8 @ @ a a a
11 a B 8 8 8 8 8 8 8 @ @4 5183 6183 g

218 318 LU:USAG

J68 288 LU:LANO

apd 268 LOA:LAND

368 248 LYP:LAND

338 348 LYP:YEAR IS #13¢2

JJ8 638 LOA:ARER IS @GE #1o@
&r8 688 ~RUGCUCAUNT£))

= U B Gy P e O L0 g) T b

g1 Y3 Y2 YT H 1
lgg 21 @8 @ 8 @8 @ @8
Jag Y3 & @ 8 8 8 @8
2éaa vz 1 2 8 @8 @ @
Ie@ ¥1 8 @8 1 8 @8 8
IS8 H @8 3 8 a4 @8 @
g I g 8 a8 1 8 8

Figure 1. The variable matrix (preceded by the data

structure constructed in the system) ob-
tained from the GOING expression for query 4,

22

a
g
a
g
a

a

43

(start)

/output the variable matrix/

~ es
(fank of the matrix is 0>*Y >
[o
for each nonevaluated variable, select the one end

whose row-wise summantion is 0

l

the number of variables having \ no
‘the maxinum priority is plural
l yes
r;elect the one having the maximum priority

\

——

in descending order, let L points the selected variable

//output the variable indicated by L;7
I

select variable i, where e(i,L) # O

‘in descending order, let N points the selected variable

1

e(N,j) = 0 for all no
nonevaluated variable j
MLk

/ output the variable indicated by L//

end of inner loop

Figure

end of outer loop
2. General flowchart of prefix generation.

23

4

ceded by the data structure constructed in the system) is ob-

Ne N

tained from the GOING expression for query 4 in Section 2. The
leftmost column represents priority informations corresponding

to the variables in the second column.

4,2.5. To generate a prefix

The general flowchart for generating a prefix is given in
Figure 2. The result of the application of this algorithm to

the vari able matrix given in Figure 1 is shown in Figure 3.

TE YISRELAMND?

CE YISRFELAMDOICE H O ~sRERL D

CE YZ-RFLANDME H ~wREAL A J1-USAG?

CE YI-RF3LANDME H ~sREAL M A Z1-USAGINE Y2-Y30

Y1 I

L E SYE N
(E A YD
{E
#¥ Mell-formed formula reduced from 3 GOING exerszsion 3%
CE YICRELAND M E H ~<REALIA F1-USHLME Y2530 8 YI-Y20
(E I SARER
r
Ly'Ed Y1, #1921-YERR. @)

RO 7 T o IR S

s Lomd Yi. @ o, I]

LOGEC IL #lagsgrEg o

L LETC H o+ aUGCUCOUNTOYI XYY)
3

Figure 3. The result of the application of the
translation algorithm to query 4.

24

45
ACKNOWLEDGEMENTS

1 wish acknowledge all the members of Meetings of Informa-
tion Systems for their encouragements and constructive comments.
1 am grateful to S.Kunifuji, IIAS of Fujitsu Limited, for
many helpful comments and providing valuable documents.
I would like to express my appreciation to Dr.K.Agusa, Ohno
Lab. of Kyoto University , for providing the SAFE editor

system. The SAFE system is very useful and exclusively used for

preparing this paper.

REFERENCES
d] Udagawa,Y " A Study on Design and Implementation of a
Database System Based on Predicate Logic,"” Doctorial

Thesis, Tokyo University, February,1982.

2] Udagawa, Y., and Ohsuga,S. "On the application of the
multi-layer logic to a relational database query language,"
(in Japanese) WGDB Meeting of IPSJ 25-1 (1981).

3] Udagawa, Y. and Ohsuga,S. "The multi-layer ngic as a re-
lational database query language and its reduction al-
gorithm to relational procedures," (in Japanese), Joho-
Shori (submitted).

4] Udagawa,Y. and Ohsuga,S. "Design and implementation of a
database system based on the multi-layer logic," Proc. of
Advanced Database Symposium (Dec. 1981) pp31-42.

51 Udagawa,Y. and Ohsuga,S. "Construction of SBDS-F3 : a rela-
tional database with inference mechanism," RIMS, Univ of

Kyoto, Kokyu-Roku, 1982.

25

46

6] McDonald,N. "CUPID -~ A graphics oriented facility for
support of non-programmer interactions with a data base,"
ERL, Univ. Calif. Berkeley, Mem #ERL-M563, (Novem. 1975).

71 Zloof,M.M. "Query-by-Example : a data base language," IBM

Syst.J.4, pp324-343(1977).

APPENDIX
Syntax of the GOING expression:

The goals of the GOING syntax are simplicity, intuitiveness,
ease of use. In the sequel the syntax of the query language
GOING is given. The syntax is described by the Backus notation.
In the following, the special symbols x => vy , s t are used
for expressing connection from an expression x to y by a
directed arc and connection from a directed arc s to t by a

undirected arc, respectively.

<GOING expression> ::= <domain specification> }

<literal expression> |

<GOING expression><arc><domain specification>

<GOING expression><arc><literal expression>

<domain specification> ::= O i @ i

<domain name> <domain name>

{domain name> <{domain name> <domain name>

26

<{domain name> {domain name> <domain name>

|

<{domain name> <{domain name> <domain name>
Q&S & |
\
<h--i¢'
<domain name> {domain name> <domain name>
dared ::= => | =>=>

¢literal expression> ::= <Boolean expression> |

“<functional expression> |
{Boolean expression> ::= <argument> IS <argument> |

{argument> IS

8<predicate constant><argument>
{functional expression> ::= <function name>
({functional argument 1list>)
{functional argument 1list> ::= <functional argument>,
{functional argument list>

{functional argument> ::= ¥ | <constant>

{constant> ::

#<number> | '<identifier>’

{argument>

¥ | <domain name> | <functional expression>
{domain name> ::= <relation name)> : <attribute name>

i "Krelation name> : <attribute name>

27

48

<predicate constant> ::= EQ | NE | GT | LT | GE { LE | SSET

<function name>

add | sub | mult | div | mod

! ucount | count | summ | avg
{(function name> = <identifier>
<relation name> = <identifier>
<attribute name> ::= <identifier>

<identifier> ::= <letter> | <identifier><letter> |
<identifier><digit>
<number> ::= <unsigned number> | +<unsigned number> |
-<unsigned number>
<unsigned number> ::= <decimal number> |
<decimal number> E<integer>
<decimal number> }:= <unsigned integer> | <decimal fraction> |

<unsigned integer><decimal fraction>

<unsigned integer> ::=z <digit> | <unsigned integer><digit>
<decimal fraction> ::= .<unsigned integer>
<integer> ::= <unsigned integer> | +<unsigned integer> |

-<unsigned integer>
{letter> ::= A|B{CIDIEJFIGIH|I|JIKIL{MINIOIPIQIRIS|ITIUIVIWIXIY!Z

<digit> 112131415161 7:181910

28

