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INTRODUCTION

After the Togical database structure has been clearly defined, inform--
ation sytems designers must determine physical repreSentation of this
logical database structure. This 1is particularly important when a data-
base management system is to be designed to support information systems
construction. There are many excellent materials [Knuth 1975, Martin
1976, Wiederhold 1977] describing physical file or database organiza-
tions; however, all of them are too thick to get an overview easily.
Also, many materials use several ill-defined terms (for example, ISAM
and VSAM, which are actually not access methods but file organization,
methods). These makes it very difficult for the systems designers to
select the best representation for their applications.

In this paper, the author tries to present a brief but still
systematic discussion of the physical representation of data structure.
The paper does not include much quantitative discussion. However, it
may become a good guide for the first step of physical database
design procedure. ‘

UNIT DATA REPRESENTATION AND ASSOCIATION

- Physical representation of database structure is basically composed
of two techniques; expression of individual values by appropriate bit
strings stored in computer storage, and formation of various multi-
level associations among tnese bit strings. The former is almost
‘application-dependent. If the value is like the scalar or subrange
type in PASCAL, its representation is very easy. If the value is
1ike the structured type, we must devise a more complicated expres- -
sion. We would not discuss this problem because there may be an
infinite number of data types to be represented.

The organization of memory in human brains is not well understood.
We can suppose, however, that human brains use many types of multi-
level associations among data elements. There seens to be associations
of various strength. Some seems very strong, while some others very
weak.

In contrast, fewer methods.of association are available in
computer storage. The following four are basic. The first method is’
association by arranging individual values represented by bit strings
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adjacently on physical storage devices. One or more yalues can be associ-
ated in this way. The yalues associated in this way are collectively
called a (physica]) necond, in which each value is called a f§ield.

The second method associates a set of records (composed of ‘one orr
more values) by allocating them in computer storage using a common
address assignment algorithm. As mentioned later there are various
algorithms for assigning storage addresses to records. Such a set of
records are collectively called a (physical) §ile.

The third method associates several records by giving them a
common value in a speci%itrfié1d called a Linking §ield. (A foreign
key can be represented by a linking field.)

In the fourth method, a linking field is replaced by a po&nte%
field, which is the physical (absolute or relative) address of
another record to be associated with the record containing this pointer
field...Pointer organization can be bi-directional, that is, two fecords
can have pointers pointing to each other. Several different pointer
organizations are possible when this method is used for associating
more than two records, some of which are illustrated in Fig. 1.
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Fig.1 Basic Pointer Organizations




194

The logical database structure established through the logical
design phase of information systems must be mapped into a physical
database that is structured using these associations.

BASIC FILE ORGANIZATIONS

First we will discuss several different address assignment algorithms for

organizaing a file.

(1) Heap File Organization

Records can be stored in a contiguous storage areas in the order of their
is deleted from this file, the location having been occupied by the
deleted record can be assigned to B new record generated afterwards. To

arrival. Such a simp]yrvofganiiéa/¥{ie¥1slca11ed a heap §ile. If a record

achieve such a reassignment, an appropriate file area control program
must be provided, which monitors the areas occupied by the existing
records as well as the areas available for newly added records.

The heap file organization can be used to store ettherifixed-length
or..variable-lergth™ records. If it is used for the latter, a number of
small alots that cannot be used to store newly added records may be gen-
erated after repeated updates of the file. A file reorganization called
garbage collection should be performed at appropriate times.to rearrange
records in the file and to eliminate such unusable slots.

(2) Sequential File Organization

Records can be stored on a contiguous storage area in the order of a
certain fie]d'zgihe}xThe field used to arrange records in this file is
called the key gield. The primary key attribute of tuples (logical -
records) is:not always .necessarily but usually represented by the key
field. A file organized in this way is called a sequential gile.

The sequential file orzanization can be used to store either fixed-
length or. variable length records. This file organization is mandatory
on sequential storage devices. It can also'be.applied to.direct.:access -
storage devices; however, the update efficiency becomes very poor
because addition and deletion of records always require rewriting a

large part of the file.

(3) Partitioned Sequential File Organization
In order to improve the update efficiency of a .sequential file placed
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in direct access storage devices, it can be divided into partitions of
an appropriate size, each:-containing several records. This differes
from the sequential file, in which addition or deletion of a record
requires rewriting all the records located after the added or deleted
record. Update is propagated only within a partition in the partitioned
sequential file. If an overflow occurs in a partition, this parfition
is divided into two partitions. Conversely if all records in a parti-
tion are deleted, this partition itself is removed from the file.
Prtitiones are assigned addresses in a similar way to the heap file
organization. Each partition in a file contains a pointer to the

next partition (and a pointer to the previous partition). In this =
sense, the partitioned sequential file organization uses both the -
second and fourth methods of association.

(4) Tree-structured File Organization

As well known, we can use an n-ary search algorithm on a sequential
(and partitioned éequentia]) file to improve a certain kind of

search operations. This n-ary serach algorithm can be embodied in a
thee-structured §ile organization. A tree-structured file is composed
of a number of partitions each containing n-1 records and n pointers.
Let K(n) be the key field value of the record x. Records Aysflysenns q
in a partition are arranged in the sequence of their key field values,
that is,

K(nj)<K(n2)<...<K(nn_]).

The pointer P points to a partition containing records a]} whose key
field values are smaller than K(n]), the pointer P, (2sksn-1) points to
a partition containing records all whose key values are between K(nk_])
and K(nk), and pointer p, points to a partition containing records

all whose key field values are greated than K(&n_]). Fig. 2 shows a
ternary tree-structured file.

To achieve better search efficiency, all branches of each parti-
tion must contain an almost equal number of partitions. Such a tree
is called a balanced tree.

A tree-structured file can be maintained in a similar manner to
maintaining a partitioned sequential file. However, to obtain a
balanced tree, a dynamic file reorganization algorithm can be integ-
rated. The B-tree 4ife organization is a tree-structured file
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organization in which a means to always produce a balanced tree is

1ntegrated.
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o Fig.2 A Tree-structured File
(5) Direct File Organization
The direct §ile créanizéi{qg uses the key field in allocating records
in a file but in a difféfentkway. This file organization is achieved .
for a file F by assigning the address calculated by
/ A(n)=8xN(K(x))+b
to each record in it, where £ is the record length that must be fixed
for the file, N.is an integer-valued function, and b.is a constant
that specifies the beginning address of tne area assigned to this
file.

The function N must be an injection (one-to-one mapping from the
set of key field values into a certain set of integers). In addition,
the cadinality of I-I', where |

I={i|minnéFN(K(n))§é§maxk€FN(K(é))}
and

I'={N(K(x)) |neF}
must be as small as possible. In general, it is very difficult to find
such an integer-valued function.

Ong solustion is to neglect -the first restriction. We may provide
a bucket that can accommodate several (or just one) records cofliding
with each other (assigned the same address). If a bucket overflow
occurs, the record causing the overflow is assigned an open (not oc-
cupied by another record) bgda;ééglin the next bucket or in an overflow ;
bucket provided in some separate area-(organizéd as a heap file) linked
to the overflowed bucket by a pointer. To make the number of collisions
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as small as possible, a certain hashing gunction is usually used for
the function N.

The five basic file organizations mentioned above are mutually
excfus{ve except the binary tree-structured file organization, that . _,
is, no more than one distinct file organization can be applied to
organizaing a file. The binary tree-structure file organization is
non-exclusive because every partition in a binary tree-structured 7
file contains only one record and each record can be assigned an
address without regard to the addresses assigned to any:other records.
Therefore, we can overlay a binary tree-structured file organization”™
on whatever file organization we have employed. '

Among the five basic file organizations, the heap, and direct
file organization are 4fatic in the sense that the address once
assigned to a record is never changed unless a certain file reorgan-
ization such as garbage collection is invoked. In contrast, the
sequential, and partitioned sequential file organization is dynamic
in the sense that the address assigned to a record can be altered
whenever an update (adding or deleting a record) is applied to the
file. We know that the sequential file is more dynamic than the
partitioned sequential file. The tree-structured file organization
is basically static. However, if a dynamic file reorganization
procedure is integrated to obtain a balanced tree for antn—any<(n§2)
tree-structured file 1ike a B-tree, the file organization becomes '
dynamic.

REPRESENTATION OF ENTITY RELATIONS

In many data models, entity relations are distinguished from rela-
tionship relations. This distinction can be formally descibed as
difference of semantic constraints holding in both types of relations
[Kobayashi 1981a]. It is particularly significant when we consider |
navigations along relationship relations and represent them differ-
ently from entity relations.

A tuple in an entity relation may be represented by one record,

The latter representation is desirable when the tuple has several
groups of attribute values to be accessed in considerably different
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frequencies, or when the tuple has both fixed-length and varuable-
length attribute values. In these cases each group of attribute values
may be represented by one record. One of the records that together
represent a tuple is called the main necord (in most cases, composed
of fixed-length attribute values), while others are called the sub-
orndinate necords.

An attribute value is represented by a field in a record. If the
attribute value is compound, the corresponding field is composed of
a fixed or variable number of subgield.

Main records representing tuples in an entity relation are
organized to form a file using one of basic file organizations. Sub-
ordinate records of the same type (format), if exist, .compose another
file. There may several different types of subordinate records, and
hence éevera] files eachneomposed of subordinate records of a certain
type may be created. .These files are also organized using one of basic
file organizations. Aimainiéiﬂelconsisfihg'ofimainfrecords’andx£ubaad£nata
#Les consisting of subordinate records together represent an entity
relation.

Physical representation of an entity relation is not uniquely
determined. In fact, decomposition of a tuple into one or more parts
each represented by a record, selection of the linking .method for
associating a main record and one or more subordinate records, selec-
tion of the file organization for organizaing the main and subordinate
files, are all not uniquely determined. We must select a specific
representation from a variety of possible representations with various
qualitative and quantitatiye factors taken into consideration. Next we
will discuss how each file organization behaves when basic database
operations are applied to it.

(1) Exhaustive Search and Sequential Search
We will.first examine various search operations applied to a file. As a
special case the search condition can be T(x) which assigns all the
records in the file the value 'true'. The search with T(x) is called an
exhaustive search. If an exhaustive search must be performed in the
order of the key field value, it is called a sequential seanrch.

A heap file is efficient for the exhaustive search but is inadequate
for the sequential search. A sequential file is efficient for the sequential
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search because it can be achieyed by physical sequential read operations.
The partitioned sequential file organization is less efficient than the
sequential file organization but still fairly efficient for the sequ-
ential search. The tree-structured file organization is not so‘efficient
as .these. two fok.the.‘sequenfia] Search although the sequential search can
still be performed on it. The direct file organization is quite inadequate
for any .exhaustive search. It is almost impossible to perform a sequential
search on it.

Although we do not use here, the sequential search is in many cases
called the sequential access method (SAM).

(2) Equal Key Search
The equal key search is another special case of search operations, for
which the séarch condition is of the form

K(n)=const.

To perform an equal key search (as well as other more complicated
search operations described later) on a heap file, a seek, which fetches
all records in the file one by one and tests them against the given
condition, muét be carried out.

This time-consuming procedre can be somewhat improved when search-
ing a sequential file using a well-known n-ary search procedure. The
search time required for the seek is 0(n), where n is the number of
records in the file, while that required for the n-ary search pecomes
0(logn)..The.n-ary search is not easily achieved on a partitioned sequ-
ential file because partitibns in it are linked together by pcinters-
On the other hand, the n-ary search can be very efficienfiy achieved on
an n-ary tree-structured file because the n-ary search is embedded in
the associations among partitions.

The equal key serach is very efficeintly performed on a direct
file The equal key éearch applied to a direct file is called the direct
access method (DAM). '

(3) Key Search

The key seanch is a search operation with a search condition of the form
K(1) 6 const |

where © is -an arbitrary relational operator other than =. The n-ary

search procedure is still applicable to a sequential file, a parti-

tioned sequentail file and an n-ary tree-structured file as well. In
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contrast, no efficiant search procedures are available for a direct file
- to achive any key search, or it is even impossible to achiey a key
search on it.

(4) Non-key Search
The non-key search is a search operation with a search condition of the
form -

A(xn) 6 const
where A(4) is the value of an. arbitrary.field of yecord.n,.and:6 is.an
arbitrary relational operator (8 can be =);_The'Vélﬂe A(n) can be rep-:
1acediby Ff(A(n)) where F is an arbitrary function of A(x).

If A(n) is not K(x), all the basic five file organizations are
powerless in improving the efficiency:of :the non-key search, and hence
a seek must be carried out (except on. a direct file, for which the seek
operation itself is very difficult to operate).

One way to shorten the seek time is to let the record size as small
as possible. To deal with the non-key search, we may use the record that
has . only two fie]ds, one is A(n) and the other is a linking field or a
pointer field used for associating it thh the ' record 2.  This small record
is.called :the index necornd.ofix regarding A. Index.records-of.vecords:in a
file are organized to.form an.4index. 5L£e‘using‘the sequential, 'partitioned
sequential or tree-structured file organization with A(x) be1ng the key
field of ‘the index file to enable an efficient sequant1a] or n-; -ary search

The non=key search can be performed by a search on the index file
regarding the field A (by a sequential or n-ary search) followed by fetch-ﬁ
ing the associated record. The latter step can be achieved by an equal keyt
search if a Tinking field containing K(x) is used, or by traversing the
po1nter if a pointer field is used. This procedure may be called the
indexed access méthod égIAM);XIf.the;fi]efto be .indexed is formed by a
dynamic file organization, the linking field association is mandatory.

If it is formed by a static“%i]e organization, the pointer field associ-
ation,‘whicﬂis more efficient than the linking field association in

finding the associated record, can be employed. Index .files:iare not..
necessarily indexed; therefore, they can be formed by a dynamic file organ=
jzation. The B-tree organization is widely used.

If the field regarding which an index file is to be created is not
the. key. field, more than one index records with the same A(x) value (the
key field of the index file) can be generated. These records can be stored



161

in contiguous positions in the index file. They can also be collected

into a single index record whose linking field (or pointer field) is an
array of key field values of associated records (or pointers pointing to
assaciated records). A pointer array can be replaced by a linear list or

a ring pointer organization. Such a method of forming association is

called a multilist or multirning. The mulyilist (and multiring) organization
is good for processing a single ;non-key search but it is not adyisable

when the non-key search must be performed as a unit search in a compound
search descr1bed later.

Index f11es can be created so that each index record points to the
partition or bucket to which the associated record belongs. Also for a’
partitioned sequential file only the first record of each partition can
be indexed. This organization is called the .indexed sequential f§ile
organization. Both the sequential search (SAM) and search using .the
index file (IAM) are possible on a indexed sequential file, (No search
operations corresponding to the term ISAM exists!) '

If A(n) is an fixed or variable size array, a search with a search
condition of the form

consteA(n)
may become necessary.. In this case, the index file can be modifieddso
that as many index records as the number of components of A(n) vé]ue
each having a component value as its key field and pointing to the same
record are generated for a single record. Such index files are very
desirable in, for example, document retrieval applications.

Like the binary tree-structured file ofganization, the index file
organization is non-exclusive. Therefore, indexs files can be created
for any number of fields in the record.. Index .filés .can be created even
for.values attached to but not explicitly represented as fields 1n the
record. These index files can be created regard]ess of what file organ-
ization is employed for the file to be indexed. However, the presence of
index files decrades the update performance because they must be updated
whenever the indexed file is updated. We must be very careful in select-
ing fields for which index files are to be created [King 1974, Kollias
1979, Lum 1971, Palermo 1970, Senko 1973, Schkolnick 1975J

Index f11es for two: Fields A ( ) -and A, (&) can be used to 1mprove the

search with a search cond1t1on of the form

£y () =F5(Ay(1)



162

where both f}:and fé:arefconstant]y_increasihg’(or decreasing) functions.
two index files provided for A] and A2 are sequentially collated and, for
each match, it is examined whether the two have common linking field
values or pointer values. Such common values, if exist, determine the
records qualified for the given search condition.

(5) Compound Search on:.a File:

There may be various other unit searches to be applied to a single
file for which no efficient search procedures are available. They
as well as non-key searches for which index files prepared for the
file on which the search must be performed cannot be used must be
achieved by a seek.

In general, a search on a single file may be requested with a
compound condition composed of several unit conditions combined by
logical operators-v:and/or a. (The '~ operator:can:be eliminated by
changing a relational operator in the unit condition appropriately.)

A search with two unit conditions A; and A, combined by an v or
A operator can be processed collectively by a seek. However, as we
have

s[A1vA2](F)=s[A]](F)us[AZJ(F)
and

s, (F)=s DA 1(Flas D1, 1(F)
where s[A](F) is the result of the search on F with the search condi-
tion A, we can use two unit searches followed by a union or an inter-
section operation to obtain the same result. If an efficient search
procedure is availabe to achive bbth unit searches and if the search
results _contain a .fairly small number of records, the latter procedure
is faster than the seek. The unon and intersection operations can be
achieved efficiently by sorting both search results and then collating
them sequentially.

Also as we have

sD AN (F)=s[A 1(s [, (R =s [, I(s [A 1(F))
we can process A;AXS by a search on F with A, (oriAi) followed by a
search on its result with A, (or lz). If the former search can be
performed efficiently and if the search result contsins a fairly small
number of records, this procedure is much faster than the seek, even
if the latter search must be performed by a seek.

Given a compound search condition, we can make a syntactical
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transformation to maximize the use of efficeint search procedures sup-
ported by the file organization and index files. This problem has been
studied by several reserachers [Astrahan 1975, Kobayashi ]976];.-

(6) Search on more than one File
Generally, the search

SD(FFps - os By
is performed with a logical function A defined on F]XFZX...XFm. The
function A may have one or more variables bound by existential or
universal quanitiers or by some other means. The matrix part of its
prenex normal form is composed of one or more unit conditions:combined
by Togical operators. For some unit conditions defined on a single
file, we already have some means of improving the unit search effici-
ency. ' '

If a unit condition itself is defined on a Cartesian product of
more than one file, then we should perform a seek on this Cartesian
product. The seek time on F]XFZX"'XFE is O(njanX...xnt), where n, is
the number of records in Fk'

However, for a component:conditionfiof the form

ﬁz](A](n])=Ah(nk)) (for nkeFk)
or that of some equivalent form, a sequentail collation of £ files
F]’FZ"';’FK can be used. The time required for this procedu;e is
O(n]+n2+.;;+nk, To achieve thecgequential ¢ollation, files tobe
collated must have been sorted in the sequence of Ak‘value. If a
sort operation is necessary.(if F, 1s not sequentailly organizaed
with A, as its key field), we need O(nh]ognk)'as the sort time. Inj
the worst ‘case, the time requ1red to process this condition becomes
O(ZlZ ] k]ognk)+0 Zk 1 n& which is still much less than the time
required for the seek in most cases. If an index file is provided
for Ak, it can be used in the sequential collation instead of the
file on which the search is to be performed.

In general, there can be more than one logical function Togic-
ally equivalent to each other. Given a compound search condition
defined on more than one file, we can make a syntactical transforma-
tion to obtain a logical function, which is equivaled to the given
search condition but maximizes the use of sequential collations as -
well as index files. Component conditions for which an efficient
search procedure is available nust be processed before processing



164

other component conditions. This problem has been studied also by
several researchers. Some studied the opt1ma1 strategy for searches
on two files [Sm1thi1975 Yao 1979]. For a class.of. 1og1ca1 func-
tions defined as relational calculi, Codd [1972]_gresented,a decom-_. -
position of the search operation into relational algebra operations
but no optimization issues were included. This work has been extended
by several researchers [Palermo 1972, Rothnie 1975, Wong ]976,

Held 1975] with an optimization issue taken into consideration. To
process quantifications, projection and division in the rela&ional
algebra were used. For a larger class of 1og1ca1 functions defined

as extended relational calculi, Kobayashi []98]c] presented a general
search strategy, in which the search operation was decomposed into
extended relational algebra operations.

’7) Update
The update eff1c1ency depends on how a unit update propagates other
unit updates. If the file organization is static, no propagattoon is
occurs. Therefore, the heap and direct file organization are very
efficient for updates. Also, the basic (in the sense no dynamic re-
organization is integrated) tree-structured file organization is ef-
ficient for updates. On the other hand, the sequential file organiza-
tion is quite inefficient for updates. Both the partitioned
sequential file organization and the tree-structured file organization
in which a dynamic reorganization procedure is integrated show an
intermediate efficiency for updates.

As mentioned previously, provision of index files considerably
degrades the update efficiency. One or more unit updates on the
index files are usually propagated from a unit update on the indexed
file.

We will not go further into quanyitative discussions of select-
ing file organizations to represent entity relations because further
discussions must depend on specific hardware devices and specific
implementation on them. There are several quantitative discussions
found in materials like Knuth [1968], Martin {1976] and Yao [1976].

REPRESENTATION OF RELATIONSHIP RELATIONS

Unlike entity relations, tuples in relationship relations are not
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always represented directly by (physical) records. In particular,
when the relationship relation to be represented is binary and has

no more attributes than those pointing to its origin and destination,
it is usually represented quité diffefent]y from representing an
entity relation. We will next discuss these different representations
and the efficiency of navigations along the relationship relation

and updates on it.

(1) Sequential Record Arrangement

A tuple in a binary relationship relation is a relationship between
two tuples in one (if the relationship relation ‘is defined on a
relation) or two (if it is defined between two relations) relations.
Such a relationship cani be repbesented by forming an association
between the two records representing the two tuples to be related by
it. The first, third and fourth methods of associafion described
previously can be used to form thié association.

The first method, which is to store the two records adjacently,
can be used only when the fé]ationship relation is a sequence or.a
quasisequence (a union of several sequences, which are disjoint with
each other). If the relationship relation is not a sequence, an ex-
plicit indication spcifying apices and/or terminal records with
respect to the quasisequence must be provided.(by adding an additional
field or some special records). The obtained file resembles a
sequential file mentioned previously but no key field are used in
organizaing it. Note that this organization is still exclusive.in
organizing a file for the relation on which.thq"re1at§bnship‘re1a-
itionzis defined.

This representation has two advantages. One is that it does not
use any additional storage spaces to represent the relationship:rela-
tion. The other is that navigations along this relationship relation
can be very efficiently achived by physical sequential read (forward
or backward) operations. On the other hand, the update efficeincy is
very poor because either ap update of the relation on which the
relationship relation is defined or an update of the relationship

relation propagates many other updates.

(2) Linking Field Representation
The third method of association using a linking field can also be
used to associate two records representing two tuples related by a )
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relationship. Usually a foreign key is represented by the linking field.

In some cases, a.special field expressing.the relationship.directly
can rep]ace'the linking field. For eXamp]e, a.set of .ordinal numbers can
represent a .sequence and a set of Dewey numbers can represent a tree. We
will call such a representation a coding representation.

On sequential storage media Tike magnetic tapes, the coding repre-
sentation is.convenient. Navigations along:.the relationship relation can
be made by sorting or topologically sorting the file representing the
relation on which the relationship relation is defined followed by a
sequential read. However, it is not advisable on direct access storage
media because maintenance of such code values is not.so easy and the
efficiency of nav1gatiohs, which must .be achieved by cectain search opera-
tions, is worse than other representations.

(3) Pointer Field Representation
Association by pointer fields is the most commonty used and most effici-
ent method for achieving navigations. Various pointer organizations are |
used according to the type of relationship relation to be represented.
_ If the relationship relation is a sequence or a quasisequence, it can
be represented by a uni- or bidirectional pointer contained in the records
representing the relation on which it is defined. (uni- or bi-directional
linear list). |

If the relationship relation is neither a sequence nor a quasisequ-
ence, no single pointer can represent either or both difections of a
relationship connecting two records. In fact, if the relationship rela-
tion is a tree, one origin record may have several destination records
and hence a.pointer array must be used to represent the forward direction
of the relationship relation. (A single:pointerican represent the backward
direction.) If the relationship relation is a network, we need a pointer
array to represent the forward direction and sometimes another pointer
array to represent the backward direction.

‘ However, in most cases a fixed number of pointers are used instead
of pointer arrays. The following four propositions are basis of obtafning
such represéntations.

P1. A tree can be converted into two quasisequences if a sequence can be
defined on every set of destinations with a common origin.

P2. A hierarchy (a relationship relation defined between two relations
and giving a one-to-many onto corresponding between these two



167

relations) can be converted into a quasisequence if a sequence can be
" defined on every set of destinations with a common origin.
P3. A multilevel hierarchy (a set of hierarchies whose skeleton becomes
a tree) can be converted into a quasisequence if a sequence can be
defined on every set of destinations with a common origin. A sequence
obtained by connecting all conncted component of this quasisequence is
sometimes called the preorder.
P4. Any relationship relation can be converted into an entity relation
and two hierarchies.
A more precise description of these propositions together with their
- proofs are given in [Kobayashi 1981b]. Here we will only show conversions
corresponding to P1, P3 and P4 respectively in Fig. 3, 4 and 5. P2 is a
special case of P3, |
As the result of con-
vertion mentioned in P1, each
of two quasisequences can be

7 ,E >
pA

u) /

d

represented by a uni- or bi-
directional pointer. This
implies that a tree can be

&
i

represented by two uni- or

bi-directional pointers. Such a

. 20

representation is sometimes ,

called a hierarchical 1list. Fig.3 Conversion of a Tree inté
If the: tree to be two Quasisequences.

represented is a hierarchy,

a more simple representation by a single uni- or bi-directional pointer
is possible as the consequence of proposition P2. In many database
management systems developed according to CODASYL DBTG Proposal [CODASYL
1971], a ringed 1list is used to represent a hierarchy.

A multilevel hierarchy can also be represented by a uni- or bi- '
directional pointer as the consequence of proposition P3. this simg]e
representation of multilevel hierarchies is‘used jn most database
management systems of hierarchical type [Tsichritzis 1976].

Proposition P4 is used to obtain a representation with a fixed
number of pointers for a non-hierarchical trees and networks. Note that
in this case a new (entity) relation representing the given relationship

relation must be created.
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Fig.4 Conversion of a Multilevel C%/ eD

Hiererchy into a Quasisequence. Fig.5 Conversion of an arbitrary

Relationship Relation into

Navigations along the paths speci- a Relation and two Hierarchies.

fied by pointors are very efficiently
achieved. The choice between uni-directional and bi-directional pointer
organizations depends on the frequency of forward and backward naviga-
tions. If backward navigations are necessary but are requested not so
frequently, a ringed list organization can be used. Note that we need
navigations in both directions to update the relationship relation and
the relations on which it is defined. In fact, any addition and deletion
of records in these relations propagates update of several other records.
Uni-directional pointers are insufficient to perform such updates effi-
ciently. The update procedure is a little complicated but the update ef-.
ficiency is not so poor if thekfile is static and bi-directional pointers
are provided.

(4) Relationship File Representation

In addition to the above three we can represent relationship relations
just Tike representing entity relations. This representation is mandatory
for n-ary relationship relations when 1x3. Also if the relationship rela-
tion has some attributes other than its origin and destination attributes,
we must create a file representing it. In both cases, n (ngz) hierarchies
can be defined eath between this relation and one of relations on which

it is defined, which can be represented by the pointer field representa-
tion to achieve a better navigation efficiency. If such a representation
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of hierarchies is not employed, navigations must be achieved by a search
with a search condition defined on two files or by two consecutive
searches each with a search condition defined on a single file. In the
latter case, the update eff1c1ency is very good, since no'propagated

in updates :are .necessary. '

LOCALIZATION

So far we have discussed a variety of representations of entity and
relationship relations. For each relation a specific representation must
be selected so that database operations frequently requested in user's:
applications are efficiently performed.

Physical read/write operations on theseiufiles are usually made with
several records as a read/write unit. This unit is called a bLock or a
page. A heap file as well as a sequential file is physically composed of
a number of blocks sequentailly arranged in sequentail ot direct access
storage devices. A stand-by buffer control technique can be used in .
an exhaust1ve (or sequent1a1) search.iA block may contain a part1t1on in
the part1t1oned sequent1a] or tree-structured file organ1zat1on A bucket
may correspond to a block in the direct file organ1zat1on

Block buffering can be regarded as a device that enab]es a qu1ck access
to a record x' which is the next (in some sense) to the record n current1y
fetched. In general, if a record 4' is frequently fetched 1mmed1ate1y
after the record n is fetched, the time £(x,1'): required for fetchlng '
under the condition that xn is currently fetched (in the workspace provided
in the program area) must be as short as possible. Let p(x,x') be the
possibility of fetching »' immediately after fetching . Here, the
record 1' is not necessarily in the same file to which « belongs. For the
whole database DB, we have '

2, pgP Ve’ )1
for all x, and

L, pgPtsn')=1
for all »'. It is desirable to minimize

1y L
Z/LEDBZ/'L 1 EDBP(}L YA I/t(_/‘l. 'Y )_‘
' A7§éﬁéra1 method to minimize the above is to divide a.whole

database into a number of pages aof an appropriate size. Paging can be
regarded asﬂgedevice by which two records Toginally near each other are
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placed in two locations physicallu near each other. If we can faorm a
probability matrix, whose (i,f)-coefficient is p(ni,nj), we can
divide.-the :database .into clusters each corresponding to a page. However,
both estimating p(ni,a.) values for all records in the database and
clustering are too difficult for practical applications.

For the program,'which is a set of instructions, paging or virtual
storage techniques are very popular. However, in contrast to the program,
which has a $trong zocaziﬁg,:the;database‘has?in most cases only a.very weak
Tocality. This makes the application of paging techniques to the database
organization very difficult. Improper apptication’of.page buffering may even
worsen the .total efficiency. | ‘

In some applications, the extent of page clusters is obvious because
of a specific characteristics of the data to be stored in the database.

For example, in a cartographic database for some regional information
system, page clustering can be made according to the geographical area
subdivision.on the map to be accommodated in it. In such cases, we ‘can
apply page buffering as a storage allocation algorithm for some parts of
the database [Kobayashi 1980]. |
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