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Abstract :

The current schema design theories assume that a database
may be regarded as a single relation. Usually, this is
hardly acceptable. However, if a relation is allowed to
have unspecified items, any database can be representéd as
such a partial relation. Since the normalization theory is
for relations, it needs to be extended so that it may became
applicable to partial relations. As extensions of
dependencies, natural dependeﬁcies are defined. They are
axiomatized, and the set of axioms is proved its completeness.
The schema design based on natural dependencies solves not
only the problems caused by a universal relation assumption
but also the update anomalies caused by decomposition of

a database.



1. Introduction.

While the theories on database schéma design that are
based on dependencies among attributes of a relation have
been much criticized their inapplicability to the actual
design of practical databases, the growing dimension and
complexity of databases are increasing the needs for a CAD
system for the design of database schemata. In order to
automatize a major portion of design processes, such a CAD
system needs as its basis a mathematical design algorithm
based on a complete axiomatic system. . The purpose of this
paper is to fill up an alleged gap between theory and practice
of the schema design.

The curreﬁt design theories are based on the-so-called
normalization theory, which was originally applied only to
a single relation. Normalization was first proposed by E. F.
Codd ([cCODD72]. It decomposes a relation to decrease update
anomalies. The decomposition increases the locality of update
operations, and<hence it saves trouble in the execution of
update requests. kUnfortunately, the same theory has been
applied to a database, which is not always a single relation
but a set of relations. The schema design theories originated
from a hasty conclusion that normalization is also applicable
to databaseé. Thérefore, they have to assume that an object
database can be regarded as a single relation. This assumption
is called a universal relation assumption. Obviously, it is
hardly acceptablevfrom a practical point of view. The alleged

gap between theory and practice originates in this assumption..
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This paper will extend the definition of a relation in

Section 3 to allow some of its tuples to have attributes whose
values are not specified. Such an extended relation is called
a partial relation. Instead of regarding a database as a |
relation, we will regard it as a partial relation. This
assumption imposes no essential restrictions on object
databases. The definition of dependencies is also extended
in Section 4 to describe dependency structures in partial
relations. New dependencies are called natural dependencieé.
The replacement of dependencies by their corresponding natufal
dependencies will make the normalizaticn theory and the design
algorithms also applicable to partial relations. Section 5
will axiomatize natural dependencies, and prove its complete-

ness. Section 7 will show this extention will solve various

problems caused by update operations.
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2. Problems in the Conventional Normalization Theory.

Schema design theories based on the conventional
normalization theory aséume the universal relation assumption.
The examples in this section wili show the unreality of this
assumption. |

Let R(A, B, C) as shown in Fig. 1 (a) be a relation
satisfying a functional dependency B*C. In this section,

R is taken és an example database that can be regarded aé a
single relation. Schema design theories decompose the data-
base R to yield aswits schema two projections of R, i.e.,

R

and R, in Fig. 1 (b). There are two different major

1 2
approaches to the design of schemata. One is the decomposition
approach, and the other is the synthesis approach. In this
case, however, the result is independent from which of the
two approaches is applied.

Problems will arise when we try to update R(A, B, C)
that is actually stored as a set of two relations Rl and R2.
The following two update requests will explain the problems;

(1) Delete the relationship that B is 'c' and C is ‘e'.

(2) Delete the value 'c' from the values of B.

The execution of (1) will change Rl and R2 as in Fig. 1
(c), while the execution of (2) will change them as in (f).
The result (c) has no corresponding universal relation over
{a, B, c}. A table in (d) represents the result (c), however,
it is not a relation since it has an unspecified item. Such
a table with unspecified items is called a partial relation.

Since unspecified items may be regarded to take a special
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value 'L', a table (d) may be identified with (e). This
example indicates the possibilities that even a very simple
update request may make a database to lose its universal
relation even if it initially satisfies the'universal relation
assumption.

There is another noticeable point in (d). Although the
projection of a tuple (b, c, e) to the attribute set {A, B}
is preserved in the result of the update, its projection to
{a, cl disappears from the result. This seems to reflect a
tacit understanding that, if B +C holds, the value of C is
not specified with the corresponding value of B remaining
unspecified. .

The execution of (2) will change two relations in (b)
to two tables in (£f), which cause another problem. Aithough
the universal table for this;result should be the table (g),
another table (h) is also decémposed to (f). Such ambiguity
is caused by an update operation that yield a partial relation
with unséecified items in its key attributes. 1In the
relational model of databases, partial relations of this kind
have been tacitly prohibited.

The example update (1) indicates that universal relations
should be allowed to have unspecified items. The second
observation on (1) and the example (2) indicate that
dependencies used for decomposition of a partial‘relation
should not be specified independently from the appearance of
unspecified items in this partial relétion. Dependencies and

the appearance of unspecified items seem to be closely related.
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The E-R model that is comparatively accepted by designers
of databases descriminates between two typesvof attributes,
i.e., entities and properties. It considers only those
dependencies X >Y and XY whose determinant X has no
properties. The values of properties can not be specified
independently without specifying the corresponding entities or
the relationship among entities. Therefore, if Y has no
entities, dependencies X *Y or X**Y satisfies the condition:

"In each tuple, its X values are completely specified

if thererexists some attribute A in Y whose value is

specifiedl"
It is proved in this paper tﬁat decomposition of partial
relations by such dependencies satisfying the above condition
yields no such undesirable partial relations that have
unséecified items in their keY‘attributes. Therefore, it
seems desirable to define depehdencies in partial relations

to satisfy the above condition.
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3. Partial Relations

Let [X~+Y] denote a set of all the total functions from
a set X to another set Y. A set of all the partial functions
from X to Y is denoted by [X>Y]'. Let Q be a finite set and
D an enumerable set. A relation over (2, D) with  as its
attribute set and D as its value set might pe interpreted as
a subset of [QR+>D]. As an extension of this interpretation,
a partial relation over (2, D) is defined as a subset of
[2+D]'. In distinction from partial relatibns, ordinary
relations are said to be total. An element of [Q-+D] is
called a (total) tuple over (Q, D), while an element of
[@+D]' is called a partial tuple. Let 'l' be a special value
called a bottom that is not in D, and D a union of D énd {L}.
For each partial tuple u in [Q?*D]', a totai tuple U in

[ >D] is defined as

- B{x) if u(x)# undefined,
p(x) = L if xef? and u(x)=undefined,
undefined otherwise.

The support of a tuple U over ({, D) that is denoted by s (1)
is defined as
s(u) = {a] aeQMu(@a)# L}.
A tuple u is said to be superior to u' if
xg@ (M' (x)#L) o (u(x)=p"'(x)),
which is denoted by p >u'. The difference p-u' of two tuples

y and p' in [@+D] is also a tuple in [ ~>D] defined as

ux)  if ¥
(u-p") (x) =41 K(x) if p > p' and x £ s(}¥')
L otherwise.



For each partial relation r over (£, D), a corresponding
total relation r over (%, D) is defined as

r = {ujuer }. |
By w(r) is referred to the attribute set of r. Since a
relation r may be identified with r, r is also called a
partial relation. Similarly, a tuple U is also called a
partial tuplé.

The restriction of a partial tuple M over (§, D) within
a subset X of Q is an element of [X +D] défined as

" u(x) if x eX,
Bly () ={_ : .
undefined otherwise.

The projection of a partial relation r with respect to an

attribute set X is a suset of [QRNX~+D]' defined as

{{MXIEEE} if X< Q,
[XIr

o) otherwise.
We define a directed join of two relations r and s as

{u] (Melw(r) Y w(s) »D]) " (E_lw(r) er) " (ulw(s) €s)

res
AVa ew(s)-w(r) YBew(s) w(r)
((H(A)#L) > (M(B)#L) I.

The join of two tatal relations R and S is denoted R*S.
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4. Natural Dependencies

As the dependencies are defined with respect to total
relations, we will define natural dependencies with respect

to partial relations.

Def. 4.1.
Let r, X and Y be a partial relation and two subsets of w(r).
An existential dependency ( ED ) X § Y is defined as
E_satngA. iff VBEYBAEXVEEE
(L(A)#L) > (1(B)#L),

where r sat C denotes that £'satisfies the condition C.

Def. 4.2.

Let r, X and Y be the same as in Def. 4.1. A natural functional

dependency ( nFD ) X=Y is defined as |
r sat XY iff (r sat X>Y)

A("aey r sat {a} ¥ X).

Def. 4.3.
Let r, X and Y be the same as in Def. 4.1. A natural
multivalued dependency (-nMVD ) X=#»Y is defined as

r sat XY iff  (r sat X»»Y)

AN(Yaey r sat {A} % X).

A natural dependency X=Y ( X3»Y ) is a dependency X *>Y
( X»»Y ) with the implications that the value of any attribute

in Y is not specified with the corresponding value of some



attribute in X remaining unspecified.
As a relation R satisfies that
(R sat X»»Y) 1iff R = [XY]R*[X(Q-Y)]R,
a partial relation satisfies a similar relation as shown in

the next theorem.

Th. 4.1.
Let r, X and Y be the same as in Def. 4.1. A partial
relaﬁion is decomposable if it satisfies a nontrivial natural
dependency, 1i.e.,

| (r sat X=Y) iff r = [X(R-Y)]r® [XY]r.

(proof) Obvious from the definitions.

If total relations are concerned, natural dependencies might

be identified with the corresponding dependencies.
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5. Axiomatization of Natural Dependencies

FD's and MVD's are known to satisfy the folldwing set

of axioms.

FD1 (Reflexivity) if Yc¢ X then X+ Y.
FD2 (Augmentation) if Z<cW and X+Y then XW~—+YZ.
FD3 (Transitivity) if X»>Y and Y~ 2 then X~ Z.

MVD0 (Complementation)if X»>Y then X++Q-Y.

MVD1l (Augmentation) if Z«<W and X>>Y then XW>>YZ.

MVD2 (Transitivity) if X»>Y and Y+*2 then X*+Z-Y.
FD-MVDL if X+Y then X*-Y.
FD-MVD2 if XY and (R-Y) *Y then X~ Y.

Lemma 5.1.

The above set of axioms is complete with respect to FD's and
- MVD's.

{proof) See [BEER77].
Now, we axiomatize the properties of ED's.
EDl. (Reflexivity) if Ye X then X § v.
ED2. (Augmentation) if Z<W and X § Y then xw ¥ vz.

ED3. (Transitivity) Aif X $ Y and Y § 2 then X § z.

The above set of axioms for ED's is essentially the same as

the axioms for ED's.

- 10 -
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Th. 5.2.
" ED's satisfy the above axioms EDl ~ ED3.

(proof) Trivial.

TH. 5.3.
The above set of axioms for ED's is complete with respect to
ED's.
{proof)
Let A be an arbitrary set of ED's amdng subsets of . A set
of all thé ED's inferable from A using ED1 ~ ED3 is called
the closure of A. It is denoted by Af. The set of axioms
is complete if, for any A, there always exist a value set
D and a partial relation r over (g, D) such tﬁgt r satisfies
all the ED's i_n_A+ but not ahy ED's other than those in pT.
Here we show how such D and E’éan be éonstructed for an
arbitrarily given A, Let @ be'{Al, AZ’ ceey An}. For each
Xc 2, a set X* is defined as

x* = B8] x $BeAl },
and a value set D with 2" distinct elements is defined as

D ='{aX| XcQ }.

For each Xc £, a tuple MU, over (%, D) is defined as

X
_ Ay if A €X*,
o - |
L otherwise.

A partial relation r is constructed as =
- = c -
r={ylxcal
. . oo t - ' s e
Obviously, r satisfies A", Suppose that r satisfies an ED
. . t . .
£ : X $ Y that is not in A'. Since an ED X $ X* is included

N |
in A, a set Y-X* must not be empty. Let B be an element of

- 11 -
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Y-X*. Since r satisfies X § Y, it .also satisfies X € B..
This implies that

*aex Ywer (M(A)FL > (W(B)AD,
which is equivalent to the condition;

rneX V_Lie:_r; (E(B)=L)>(E(A)=.L). - (5.1)
While B £ X* implies EX(B)=L, the definition of By implies
EX(A)=aX' This contradicts the condition (5.1). Therefore,

r does not satisfy f. (Q.E.D.)

Natural dependencies are axiomatized by\adding the
following two axioms to the axioms FD1 ~ FD3, MVDO ~ MVD2,

FD-MVD1l, FD-MVD2, and EDl1 ~ ED3.

nFD x>y iff (X>Y)AN(YAey A %X
nMvD X%y iff  (x=¥) A (aey A $ x)
Th. 5.4. -

A set of axioms consisting of ED1 ~ ED3, MVDO ~ MVD2, FD-MVD1,
FD-MVD2, ED1 ~ ED3, nFD, and nMVD is complete with respect
to nFD's and hMVD's.
’(proof)
Let T be a set of nFD's and nMVD's among subsets of {,

We define two sets as

Iy = {x+Y| x=>yerT }Y{X+»>yY| XY el }.

S

A set of ED's inferable from Pl by ED1 ~ ED3 is denoted by

lT' and a set of FD's and MVD's inferable from FO by the
remaining axioms is denoted by F0+.

(A S x| (xoveTVxs»yel)A(acy) }.

r

- 12 -
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The above set of axioms is complete if, for any T and Q,
there exists a value set D and a‘ partial relation r over
(2, D) éuch that r satisfies F+ but not any naturél
dependencies other than those in P+.‘ Here we show how to
construct such a value set D and an example partial relation
r for an arbitrarily given @ and T'. From Lemma 5.1, there

exist, for each @ and T, a value set D, and an example

0

relation R, over (%, DO) such that R, satisfies P0+ but not

0 0

any dependencies other than those in Fo+. From Th. 5.3,
there exist a value set Dl and an example partial relation

£l that satisfies Fl
+

Fl . Since the elements of Dl defined in Th. 5.3 are.

independent from DO' Do and Dl

Let D and r over (Q, D) be defined as

T but not any ED's other than those in
can be made mutually disjoint.

= V)
Do ¥R+

= \V}
R0 £l'

Then r satisfies F+ but not any natural dependencies other

o

]

than those in FT. This is proved as follows.
Let £ be a natural dependency X=Y ( or X=+Y ) that is
arbitrarily chosen from Pf. Since the corresponding dependency

0
definition of R

holds, T T includes X+Y ( or X»>»Y ). Therefore, the

implies that

0
R, sat X>Y ( or XY ). (5.2)
On .-the other hand, f,er+ implies that’
v e T

AcY A -+ XE:Fl '
which further implies that
YaAey Yz2cQ  (Aez) > (X cz¥*)

because A* includes X and Z* includes A*.

...13_
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7 in £1 which was defined in

the proof of Th. 5.3 satisfies EZ(A)# l, then, for any B in X,

Therefore, for any Z <, if U

EZ(B) is equal to EZ(A). Since a, does not appear in any

tuples in r
)

1 other than By this implies that

AeY 1, sat XA,

or equivalently

r sat X +Y. (5.3.a)
Obviously, this also implies

£l sat XY, (5.3.b)
Since the value sets of RO and r, are muiually‘disjoint,
conditions (5.2) and (5.3) imply that

r sat X+Y ( or XY ). : (5.4)

Now we will prove under the same assumption that

VA £Y r sat A & X.

Since X =Y ( or XY ) is an element of Pf, Flf inclﬁdes

A S x for any A in Y. Therefore, the definition of Iy implies

Yaey "_st_l sat A § X. (5.5)
Since RO is a total relation, it is obvious that
Yaey R, sat A € X. (5.6)

The conditions (5.5) and (5.6) imply that

Yaey r sat A % x. (5.7)
From (5.4) and (5.7), it can be concluded that

r sat X=Y ( or XY ). (5.8)

The remaining part of our proof is to show that r
does not satisfy any natural dependency £ that is not in T .
Let f be X=2Y ( or XY ) that is not in PT. This
assumption implies either

X*Y ( or X*°Y ) Qfof, or

- 14 -
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Aey A Sx¢g rlf.

If X-+Y ( or X»+Y ) is not included in Pof, then the
definition of R0 implies that

—.(RO sat X>+Y ( or X»+»Y )), , | (5.9)
~and hence it is proved from the disjointness of Dy and D,
that

- (r sat X=Y ( or X»Y )).
Otherwise, there existsA in Y such that A § x is not in Flf.
Therefgre, the definition of I implies that

~(x; sat A §x), | (5.10)
and hence it is proved that

—~(r sat XY ( or XY )).

Thus the set of axioms as shown above is complete with

respect to natural dependencies. (Q.E.D.)

- 15 -
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6. The Computation of the Natural Dependency Closures. .

The proof of Th. 5.4 gives a hint how to compute F+ from
an arbitrarily given I'. The following is an algorithm for

this computation.

ALGORITHM

step 1. Obtain FO and Fl from T.

step 2. Compute FOT from Fo using axioms for FD's and MVD's.
step 3. Compute Fl+ from’I‘l using axioms for ED's.

step 4. Compute FT as

rt - {x=>1{a}| (x~-{a} ero‘k) AN § x srl*)}

.f.
B2

Vi{xs»y] (x++ysr0+) A(VYaey ASxerT

The algorithms to computeTF0+ have already been studied
by‘several authors. Here we show an algorithm using the
canonical representation of dependencies [TANA79]. For a
partition {X, Yo, Yl’ oy Yn} of Q, a representation

X: [YO]YlIYZI... lYn
is called a canonical representatioh. It denotes a set of
dependencies

XY and

v

OI
1 X++Yi.
Let C be a set of all the canonical representations over Q. -

The dépendency base of PO that is denoted by Fo is a subset

of C that is defined as
r = A
Ty {§| (8ec) (Tyt 8)

A-(326" ec-{6} (Tgr8") AN (8" -8)) ).

- 16 -



Since, for each element £ in F0+, there always exist an

element 6§ in FO and an element f' in 6§ such that £'+ f, the

-i.

computation of T might be replaced by that of T The

0°

0
FO can be computed by using the following

dependency base

rules.

rule 1.

A

if Tyv X:[Yo]Yl]YZI...IYn and T, + U:[VO]V1|V2I... o

0

.z |z where

then T, + w:[zo]zllzzl.. ol Zna s

0
W =X U(Yi’\U),

[
"

v n _
0 = YoV (YN V) - W,

Y.NV, for 1 <j<m,
i 3j -7 =

(]
I

rule 2.

U: [volvl[vzl... le F X: [Yolyllyzl lYn

i A
iff (Uc X) (VODYO)

A(Yi *1<cfo, 1, 2, .., m} xvyi=t1v(ujE AR

I

If MVD's are not concerned, each canonical representation

X:[YO]Yl might be replaced with X:[YO]. The computation of

r T in step 3 is essentially the same as the computation of

1
the closure of functional dependencies. Therefore, its
dependency base ;l is defined. The Computation of Fl+
might be replaced by that of ;l'
An example is given below to show how to apply this

algorithm.

- 17 -



Example 6.1.

The computation of I‘-l~ for such @ and I' given as
Q = {AI B,C, D, E, ¥, G, H, I, J, K, L, M, N, O, P, Q}r

r

{G=DK, AC=>0P, H-AB, ABs>CDEFGKLM, C=>DEFGKN,
D> AHKLN, F=» ABG, I=3»JQ}

is shown below.

step 1.
r, = {6>DK, ACOP, H~AB, AB>>CDEFGKLM, C>>DEFGKN,
D++AHKLN, F++ABG, I++JQ}, |
rpr={0%¢6 xK%G, 0%ac, p%ac, A%H, BSH,
cS$as, DS aB, ES s, F¥aB, G ¥ as,
k$aB, LSaB, MSaB, DSc, ESC, FSC,
cS¥c,kSc,n%c,a%pD,uS¥D, K %D,
LSDp, NSp,a8F, BSF,c8F, 0%1, 0% 1.
step 2.
;0 : G:[ABDKOP]H|L|N|IJQ|CEFM
H: [ABOP]N|IJQ|CDEFGKLM
VAB:[OP]HIN]IJQ]CDEFGKLM
C: [ABOP]H|N|IJQ|DEFGK|L|M
D: [ABKOP]H|L|N|IJQ|CEFGM
F:[ABDKOP]G|H|L|N|IJQ|CEM
I:JQ|ABCDEFGHKLMNOP
step 3. .
El A: [BCDFGH], B: [ACDFGH], C:[ABDFGH], D:[ABCFGH],

F: [ABCDGH], G:[ABCDFH], H:[ABCDFG],
E: [ABCDFGH], J:[I], K:[ABCDFGH], L:[ABCDFGH],
M: [ABCDFGH], N:[ABCDFGH], O:[ABCDFGH],

P: [ABCDFGH], Q:[I]



o
(albg |
(8]

step 4.
r : G=ABDKOP, G*H, G»L, G>»N, G=3»CEFM,
H=>ABOP, H> N, Hs» CDEFGKLM,
AB=0P, AB®»H, AB3»N, AB=»CDEFGKLM,
C=>ABOP, C»H, C>»N, Cs»DEFGK, C» L, C»M,
D= ABKOP, D+ H, DL, D= N, D5 CEFGM,

F=>ABDKOP, F%G, F»H, F>»L, F=N, FsCEM,

I»JQ.

It should be noticed there exist some dependencies that are

not natural dependencies. An MVD G-»-+IJQ is such an example.
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7. Updates of a Partial Relation

The insertion of a partial tuple ﬁ over (9, b) to a
partial relation r over (Q, D) is a simple process to change
r to E.U{E}° However, the deletion of a partial tuple v
over (Q, D) from r is not so simple. 1In this paper, it is
defined as a process to change r to

{v'-v] ' ezl.

.Thé difference of two tupies is already defined in Section 3.
An example of such deletion is shown in Fig. 2.

Assume that Q is an attribute set satisfying natural

dependencies I'. For a subse£ X of Q, X* and *X are defined

as

x* = {A] (Ae@) M ('+xS$a) }, and

*x = {A] (Ae@) A({AI*NX # ¢) T,

These two sets X* and *X are fespectively called an insertion
base and a deletion base of X. Suppose that a partial tuple
U is to be inserted to a partial relation over (2, D)
satisfying I'. A partial tuple p must satisfy existential
dependencies in Fl. Therefore, if its value is specified at
an attribute A, it is also specified at any attributes in
{A}*. A subset X of Qis said to be insertion compatible
if X* is equal to X. If u is ﬁo be inserted, its support
s(u) should be insertion compatible. -

Suppose that a partial tuple v is to be deleted from a
partial relation r over (Q, D) satisfying I'. Let v' be a
tuple in r satisfying v' >v. Suppose that there exists an

attribute A in *X such that v'(A) will not become 'l' after

- 20 -



the deletion. -Since A § {A}* holds in T , there exists some

1
attribute B in {A}*" X and v'(B) will not be 'L'. However,
since v is to be deleted, 2'(3) should become 'L;- Therefore,
the value of v' should become unspecified at all the attributes
in *s(v). A deletion base of s(v) is a maximum set of

attributes to which the deletion of a partial tuple v might

propagate.

Th. 7.1
For any subset X of @ and any insertion compatible set Y,
(Y-*X) is also insertion compatible, i.e.,
(Y-*X)* = Y-*X.
({proof)
If there exists A in (Yf*X)*—(Y—*X), then A is in Y N *X
because the insertion compatibﬁlity of Y implies that
(Y-*X) *= (Y=*X) €« Y=-(Y=-*X) = Y N *X,
Therefore, A satisfies
y-*x § A, and 3Bex A S B.
Since each ED in Fl has only one attribute in its determinant,
there exists some C in Y-*X such that ¢ § A. This implies
c & B, and further implies C is in *X. This contradicts
the condition that C e Y-*X. Therefoer, (Y-*X) should be

insertion compatible.. (Q.E.D.)

Def. 7.1
Let Ql and Qz be two subsets of Q. A pair (Ql, QZ) is a
decomposition of Q if it satisfies

n - N -
I’l-—(Ql Qz)»Ql 522 or I‘\—-(S’Z:L 522)2»92 Ql.

- 21 -
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Th. 7.2.
Let (Ql, 92) be a decomposition of Q. If X is insertion
compatible and neither of Q, nor Q, includes X, then the set
of join attributes is included in X, i.e., -

N

Ql QZ < X.

(proof)

If neither of X<:Ql nor XcQ holds, then neither of the sets

2

defined as

]

N -
X X (Ql 92),

=X N(Q.-
X, X (92 Ql)

is empty. Let X3 be X-(Xl\/xz). Sincs (Ql, Qz) be a

) . 3 n - n V -
decomposition, either Ql 92=»Q Qz or Ql stbQZ Ql holds.

1
N - * 4 N i
If Ql staﬂl Qz holds, then Xl includes Ql Qz. Otherwise,
X, * includes Qln Q,. Therefore, if X* is X, then X includes
N )
Ql QZ. _ | (Q.E.D.)

Suppose that a relation r is decomposable by an ordinary
dependency and that it is actually stored as a set of its two
projections [Ql]£ and [02]5. The insertion of a partial
tuple p which crosses these two relations will cause a problem
if u ié not specified its value at some attribute in Ql“ QZ.

In such a case, if Elgl and H|92 are separately inserted to
[Ql]£ and [9215, the join of these two relations can not =+~
reconstruct p since |, and Elgz lack the values of the
join attributes. However, if the natural dependencies in r
are well specified and r is decomposed by one of them,

such a problem will not occur. In such a situation, s(u)

- 22 -



299

must bé insertion compatible and hence, from Th. 7.2, it must
include er\Qz. Therefore, the directed join can'reconstruct
H from EIQ and EIQ .

1 2

As it was shown in Section 2, the above situation also
causes a problem in deletion operations. If a relation r is
inappropriately decomposed, some kind of deletion operation
yields an undesirable tuple in r whose value is not specified
at some of the join attributes. However, if the decomposition
is performed by a natural dependency, it is guaranteed by Th.
7.1 that such a situation will not occur.

This desirable property of the decompositions by natural
dependencies is preserved for further decompositions.
Therefore, if a schema is designed by decomposing a .
universal partial relation and each decomposition uses a
natural dependency, then no updates will make any constituent
relation in this schema to haQe unspecified items in its

join attributes.
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8. Conclusions

The current schema design theories are based on the-so-
called normalization theory, which was originally applied to
a single relation and has no theoretical foundation for its
applicability to a partial relation. Thus the design
theories had to assume that an object database may be
regarded as a single relation. Usually, this assumption
is hardly acceptable. However, any/database can be regarded
as a single partial relation. Essentially; the normalization
theory is based on two concepts, a dependency among attributes
and decomposition of a relaﬁion. As their natural extensions,
similar concepts for partial relations has been defined in
this paper. The extensions are natural since the new concepts
degenerate into the original éoncepts if a partial relation

~happens to be a relation. The naturalness of these extensions
makes it possible to use the essential part of the conventional
theories with a little modification.

The join operation that is used as a basis of
decomposition has been replaced by the directed join
operation. An extended dependency is called a natural
dependency. A natural dependency X=2Y ( or XY ) is
basically a dependency X-+Y ( or X»»Y ) with implications
that, if some partial tuple is specified its value at some
attribute in Y, it must be specified its value at all the
attributes in X. Section 5 has axiomatized natural
dependencies and proved the éompletenesé of the set of axioms.

‘Section 6 has shown an algorithm to compute the closure of
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an arbitrarily given set of natural dependencies.

Updates of a database generally causes various problems.
If a‘database is decomposed and a partial tuple is not
specified its value at some of the join attributes, the
insertion of this tuple across several relations is impossible.
The similar troubles also occur in deletion operations.
However, it hs been proved that such a trouble will never
occur if natural dependencies are well specified with respect
to an object database and'decomposition is done by one of
them. »Therefore, the schema design using ﬂatural dependencies
solves nét only the problem.caused by a universal relation
assumption but also the updéte anomalies caused by

decomposition of a database.
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