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The Asymptotic Behavior of the Free Boundary

in a One Phase Stefan Problem
- Yoshiro Kakei and S.T. Kuroda

§1. Introduction

A one phase Stefan problem is a free boundary
problem arising from a description of melting ice, where
ice is maintained at zero degrees centigrade . In this
note we are concerned with a Dirichlet type problem.'
The situation is roughly described as follows.

Let D be a bounded simply connected domain in r" ’
n >3 , with smooth boundary oD . ( D is the heat
island, so to speak.) The exterior R \D of D is
occupied by water or ice. At t = 0 water occupies a
domain G bounded by 9D and another bounded connected

smooth hypersurface T, lying outside D . We suppose

0
that the temperature of water on 93 for all t >0 is

given and positive. Let us denote this boundary value

by gi(x,t) , t >0 . Let W(t) be the region occupied
by water at time t . As time goes on, W(t) will
increase.

In this note we are interested in the following
question :

Suppbsing that g(x,t) satisfies the inequality

(1.1 o @+t < gx,t) <c +ef
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can one prove the estimate of the type

(1.2) { x||x]| §R1(1+t)b}c W(t)VD cix|[x] <R, (1 +)P}
and, if so, for what value of b ?
A.Friedman ([3],[4] proved (1.2) for the case

B= n/2 -1 with b = 1/2 . Recently, S.Tokﬁda (111
proved the second relation for the case B8 = 0 with

b =1/n . In this note we extend these results for

0 < g <n/2-1 with b = (B+1)/n (see Theorems 2

and 3 ). The second relation of (1.2) holds in fact for

all g > 0 (Theorem 2 ) but we do not know if the first
relétion holds outside the mentioned range of B . Our
reSﬁlt‘will be proved for weak solutions. The proof is
based on a simple comparison argument. We compare the
solution with a function which may be called a quasi-

stationary solution.

§ 2. Formulation of the oﬁe phase Stéfan problem

2.1. One phase Stefan prdblem

Let G be a bounded domain in Rn, n > 3, whose
boundary cdnéists of two smooth connected hypersurfaces

@ and T, , with 3D 1lying inside T, and bounding

0
a simply connected domain D . Further we assume that
D contains the origin 0. We put Q = R'\D . Since

VV(t) , the region occupied by water at time t ,

increases with t in a one phase problem, we can assume



that W(t) can be expressed as
Wt) = {(x,t)eax(0,x)| t > s(x)} ,
where s(x) is a certain function defined on Q . The free

t t

Now, the Stefan problem we are concerned with is formulated

boundary T at time t is given by T, = {xe Q| s(x) = t} .

as follows

Problem (I) Given smooth functions h(x) > 0 ’
XxeG , and g(x;t) >0 , xe€d3D , t >0 , find (smooth)
functions s(x) , x€ , and ©O(x,t) , xe€Q , t > s(x) ,

which satisfy

(2.1) (= a+ s5£)0(x,8) =0, t>s(x,

(2.2) 0(x,0) = h(x) ’ xeG ,

(2.3) 0(x,t) = g(x,t) , (x,t)€ 3Dx(0,=) ,
(2.4) o(x,t) =0 , t=s(x),

(2.5) gradxe- gradX s = -k, t = s(x) ,

where k is a given positive constant.

In several space &ariables, the existence of a
classical solution of Problem (I) 1is proved only for
a small time interval (see E.-I. Hanzawa [6] and
A.M. MeIrmanov[9,10]). In this note we shall prove (1.2)
for weak solutions which have been proved to exist.
Specifically, we follow the approach of G.Duvaut (2] ,
A.Friedman and D.Kinderlehrer [5], and formulate the

problem as a parabolic variational inequality.
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2.2, Variational inequality
According to Duvaut [2], Friedman and Kinderlehrer
[5], Problem (I) leads to the variational inequality,

)
expressed in a pointwise form, of the following type.

Let K ={viver'm,v >0}.
Problem (II) Given functions f(x) , xe¢ @ , and
¥(x,t) >0 , xedD , t >0 , find ueLi__([0,=);H] (D))

2
ut Lloc
( -A u+ ut)(v—u) > f(v-u) a.e. for veK,

2 -
such that ¢ ([o, ),LlOC(Q)) and
u =Y on 3Dx(0,») ,

ua=0 on Dx{0}

Problems (I) and (II) are related as follows. Given

g , h , andk of Problem (I), define f and VY as

(2.5) i Y(x,t)= fg g(x,t)dtr , x€3dD, t > 0 ,

f(x,t) ={ h(x,t) if xeG ,

-K if xe Q\G .

It was proved in [5] that Problem (II) has then a unique

solution u and that u satisfies u, >0, a.e., and
we LT ([0, ;H2'P(H)) for 1 <p < w
loc A NoYe! - ’

u €L ([O,w);Lloc(Q)) = Lloc(Q x[0,°)) .

t loc

Thus u > 0 , a.e. . Relate © and u ' through

G(X,t) = ut(xlt) 4



ulx,e) = [E 0 8(x,mar if xe QNG , sx It
(2.1) u(x,t) =0 if xef\NG, 0 <t <s ,
ulx,t) = [5 0(x,)dr if xeG , 0 <t

Then it was proved in [5] that u is a solution of
Problem (II) if and only if © is a weak solution of
Problem (I) 4in the sense of [4]. We also remark that
u was proved to be continuous in X (0,*).

The following comparison theorem, also due to [5],
will be used as a basic tool in our proof.

Theorem 1. Let u , u be solutions of Problem (II)

~

for £, ¥ and £ , ¥ respectively. Assume that £ < £

~ ~

and ¥< ¥. Then u< u in £ .*

§3. Main results

Let G and D be as at the beginning of §2 and let Q = R%
Given g, h, and k as in Problem (II), let u be the solution
of Problem (II) with f and ¥ defined as (2.6). Put
(3.1)  W(t) = {xe®Q | u(x,t) >0 , t>0kL

Our main results can now be formulated as follows.

Theorem 2. If g(x,t) is majorized by a smooth
non-decreasing function n (¥) , hamely if

(3.2) 0 <g(x,t) < n(t) , x€oD , £t >0 ; T]t >0

=an_ : L, |
(rlt d t ) then there exist positive constants a;

*) We remark that this theorem applies even if £ and Y of

Problem(II) are not derived from Problem(I).
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and a2 such that

(3.3)  wW(t)C {xe R |x|® < alfg n(oar + a,}, t >0 .

Corollary If n(t) = Ot(l+t)B , @ >0, B >0,

: . +
we obtain W(t) ¢ {xe R"||x|< c3(l+t)(B l)/n}' t >0,
where C3 is a positive constant

Theorem 3. If there exist constants 8 ,

0 <B <n/2-1, and k >0 such that

B

(3.4) k(1L +t)" < g(x,t) ,

then there exist positive constants k' and tO such that

(B+1) /n

(3.5)  W(t)uDo{xeR™|x] < k' (1+t) b e >t

0

Remark 1. Theorem 3 and Corollary to Theorem 2 show
that (1.1) implies (2.1) if 0 < B < n/2-1 .
Remark 2. Suppose that D is a ball with center 0O and

a(x,t) = c(l+t)B . The proof of Theorems 2 and 3 shows that

3@/8r|8D,r==|x|, is of O(tB

) . Thus, (1.2) shows that the
amount of heat used to melt ice up to time t is of the same
order as the amount of heat having flown in from D up to time

t. 1In fact, the proof shows that the heat retained in water

at time t is of lower order if B < n/2-1
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§4. Proof of Theorems 2 and 3
4.1. Upper bound for W(t) ; the proof of Theorem 2
The proof is based on Theorem 1 . In order to obtain u

14

with which u , the solution of Problem (II),is to be compared,
we introduce a melting-ice situation with heat generation in the
water region. It is a spherically symmetric problem, and for
convenience we express the free boundary as |x| = p(t) . The
function p  and the temperature function ®(r,t), r = |x|, are

defined as follows.
o(r,t) c(t){rz—n - p(t)z—n}

n _ n{n-2)
= =

, re(0,p(t)), t >0,
(4.1)

0 (t) f§ c(nar + o7,

where c(t) 1is a positive function to be determined later.
Note that ¢ is determined by c(t) and p{0) . We use the

notation

B = {(x,t) e (R™\{0})xr]| |x| < b(t)},

S(x) = o t(x) ,

where ¢ is the inverse function of p . The free boundary
would then be described by t = s(x) .
It is now easy to prove the following properties of ¢ .

Lemma 1.

A (|x|,t) =0, (x,£)€EB , t > 0
®(p(t),t) =0 , £t >0
- /

grad ¢(|x],t)*grad s(x)

]

I
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%
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Lémma 2. ce(t) >0 => 0o (r,t) >0 ,r < p(t) .

Proof of Theorem 2. We use function ¢ with c(t) equal
to c¢'n(t) where c¢' 1is a positive constant to be determined.
We take p(0) large enough so that the set {x||x] < p(0)}
contains D . It follows from Lemmas 1 and 2 that (¢,s) is
a solution of Problem (I) if we make the following replacement.
Firstly, 0, s and G are replaced by ¢ , § and
G = {xeq||x| < p(0)} , respectively. Secondly, h(x) and
g(x,t) are replaced by the values of &(|x|,t) on the

respective set. Finally, equation (2.1) is replaced by an

inhomogeneous equation that

~

(-A + géz-)®(lx|,t) = qg(x,t) , t > s(x) ,
where
(4.2) g(x,t) =

o(|x|,t) >0 .

Define now by (2.7) with obvious replacements. Then,

[of] o QJ\Q)
ﬁ.

it is seen that is a solution of Problem (II) with V¥ and

~ ~

f replaced respectively by ¥ and f defined as follows

¥(x,t) jg o(|x|,t )dt , xedD , £t >0 ,

il

~

¢(|x|,0) + Q(x,t) if =xeG , t >0 ,

~

-K + Q(x,t) if xe QNG , t >0,

%(x,t)
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where we put

t ~
’ t = .
Q(x,t) Jg(x) glx,t)dt , xXx€Q\G , t >0 ‘

~

fg q(x,t)dt , xeG , t >0 .

It is clear that by choosing c¢' large enough and p(0) still

larger, if necessary, we can make GO>G , VY >Y¥ , and £ > £ .

Applying Theorem 1, we then obtain u > u . Therefore, u is

~

Zzero whenever u 1is zero. Thus, we get

w(t) € {x]|{x]| < o(t)}

{x|]x|" < p(6)™

{x]]x|® < c, ]5 n(rydr + cg}

where Cy = n(n-2jc' » Cg = p(O)n . Q.E.D.

K
4.2. Lower bound for W(t) ; the proof of Theorem 3
We first reduce the problem to a spherically symmetric one.

Let us denote by BR the open ball of radius R with the center

0 . Since D is a domain containing 0, we can take Rl such
that §ECLD . We fix such an R, and take R, so that

1
0 < RO < Rl . Letting k and B be constants appearing in

(3.4), we introduce a function of the type ¢ defined by (4.1).

Namely, we put

(4.3) ?{;(r,t) = kRg_2(1+t)B{r2_n - S(t)z'n} , re(O,B(t)] £ >0
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n-2
(4.4)  p(p = RBERy v g umfars GO™, 5e0) = R, .
We now consider the following problem
Problem (III) This is Problem (II) with D , G , etc.

~

replaced by the following D , G , etc.

D=B ,G=B \B 14
R, Ry M Ry

h(x) = o(|x],00 ; g(x,8) = 8(Ry, &) , [x|= R, .

This problem has a classical solution ©0(x,t) and s(x).

~ ~ ~

The pair (0, s) gives rise to a solution u of the

corresponding variational inequality in (R \D)x(0,») . Since

R'\D D02, u may be regarded as a solution of the variatinal

inequality in Q%X (0,~). Thus, we can compare the solution u

of the original problem with u . $Since the boundary value g
of Problem (III) is non-decreasing and majorizes the initial

value, it is clear that ©0(x,t)

6 B
x& 3D < T?‘(T_—_Roe (x,t) < k(1 +1t ,

where the last inequality follows from the definition of ¢ .

~

Therefore, it follows from Theorem 1 that u < u . Thus, we

have seen that it suffices to prove Theorem 3 for the solution
6( or ; ) of Problem (III).

Since 6 and ; are spherically symmetric, there exists
a smooth function ;(t) such that

R

~ n ~ ~ _
W(t) = {xe R \D |u(x,t) > 0} = Bo(g) \ B ,

- 10 -



145

The following lemma, which expresses the conservative law for
heat flow, can be proved easily by integrating the heat equation

by parts.

Lemma 3. Denoting by |A| the volume of the set ACR"

we have (@, = 26/37)
A . ~ A ) ~
(4.5)  [feE,vde- [gherde+ «llwier| - lel}
t P -
+ fo dt IBD 0.(g,1)dg =0

On the other hand, we see from the proof of Theorem 2 that

(4.9 O(x,t) < o(]x|, t) , xeW(t) , t > 0 .

Since © and & take the same boundary values on 3D , the

following lemma holds. This lemma is crucial, as it gives a

lower bound of the amount of heat flowing in through 9D .

Lemma 4. We have

(4.7) -0, (x,t) > —@r(|x|,t) , XE3D, t >0 .

In what follows we denote by Cq v c2 y e various

constants which do not depend on t nor R0 . Using (4%),

we sée that

(4.9) - [garf,0 0 (g,maE > - [bar [,5e (lg],aE

_ n-2 B+1
= clR0 (1 +t) .

Using (4.7), we also obtain

(4.8) [ G OE.8)AE < [, oUlE],m)aE < IBa(t)Q(lal,t)da

e, R2 1+ e)® [0 rop(e) 2™ P hyar

- 11 -

’
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< c3R0n_2(1+t)B{c4RO2 (n_"z)/n(l+t)2(8+1)/n + c5}
- C6ROn—2+p(l+t)(l+2/n)8+2/n + C7ROn—2(l+t)8 )
where p = ZLE%EL > 0 .

If 0 <B <n/2-1, the right side of (4.%) is of of(1+t)" ¥l

Thus, by using (4.9) and (4.9) in (4.5) and recalling that
h(x) > 0 , we obtain
g+1

R n-2 1

(4.10) {]vAv(t)l - Iél}zcgo (1+t) P ) .

+ o{((1+t)

If B =n/2-1, the first term on the right side of (4.9) is

of order (l+t)B+l . However, if we take R sufficiently small,
o

which is permissible, so that cl-w%Rop > 0 , we can obtain

(4.10) also for B =n/2-1 . (3.5) for W{t) follows from (4.le)

at once. 0.E.D.

- 12 -
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