The Asymptotic Behavior of the Free Boundary
in a One Phase Stefan Problem

Yoshiro Kakei and S.T. Kuroda

§1. Introduction

A one phase Stefan problem is a free boundary problem arising from a description of melting ice, where ice is maintained at zero degrees centigrade. In this note we are concerned with a Dirichlet type problem.

The situation is roughly described as follows.

Let D be a bounded simply connected domain in \mathbb{R}^n , $n\geq 3$, with smooth boundary ∂D . (D is the heat island, so to speak.) The exterior $\mathbb{R}^n\setminus \overline{D}$ of D is occupied by water or ice. At t=0 water occupies a domain G bounded by ∂D and another bounded connected smooth hypersurface Γ_0 lying outside D. We suppose that the temperature of water on ∂D for all t>0 is given and positive. Let us denote this boundary value by g(x,t), t>0. Let W(t) be the region occupied by water at time t. As time goes on, W(t) will increase.

In this note we are interested in the following question:

Supposing that g(x,t) satisfies the inequality (1.1) $c_1(1+t)^{\beta} \leq g(x,t) \leq c_2(1+t)^{\beta}$, 136

can one prove the estimate of the type

(1.2) $\{ x \mid |x| \leq R_1 (1+t)^b \} \subset W(t) \cup D \subset \{x \mid |x| \leq R_2 (1+t)^b \}$

and, if so, for what value of b?

A.Friedman [3],[4] proved (1.2) for the case $\beta=n/2-1$ with b=1/2. Recently, S.Tokuda [11] proved the second relation for the case $\beta=0$ with b=1/n. In this note we extend these results for $0 \le \beta \le n/2-1$ with $b=(\beta+1)/n$ (see Theorems 2 and 3). The second relation of (1.2) holds in fact for all $\beta \ge 0$ (Theorem 2) but we do not know if the first relation holds outside the mentioned range of β . Our result will be proved for weak solutions. The proof is based on a simple comparison argument. We compare the solution with a function which may be called a quasistationary solution.

- § 2. Formulation of the one phase Stefan problem
- 2.1. One phase Stefan problem

Let G be a bounded domain in \mathbb{R}^n , $n \geq 3$, whose boundary consists of two smooth connected hypersurfaces $\partial \mathbb{D}$ and Γ_0 , with $\partial \hat{\mathbb{D}}$ lying inside Γ_0 and bounding a simply connected domain \mathbb{D} . Further we assume that \mathbb{D} contains the origin 0. We put $\Omega = \mathbb{R}^n \setminus \overline{\mathbb{D}}$. Since W(t), the region occupied by water at time t, increases with t in a one phase problem, we can assume

that W(t) can be expressed as $W(t) = \{(x,t) \in \Omega \times (0,\infty) \mid t > s(x)\} \ ,$ where s(x) is a certain function defined on Ω . The free boundary Γ_t at time t is given by $\Gamma_t = \{x \in \Omega \mid s(x) = t\}$. Now, the Stefan problem we are concerned with is formulated as follows:

Problem (I) Given smooth functions $h(x) \ge 0$, $x \in G$, and g(x,t) > 0, $x \in \partial D$, t > 0, find (smooth) functions s(x), $x \in \Omega$, and $\theta(x,t)$, $x \in \Omega$, $t \ge s(x)$, which satisfy

(2.1)
$$(-\Delta + \frac{\partial}{\partial t})\Theta(x,t) = 0$$
, $t > s(x)$,

(2.2)
$$\Theta(x,0) = h(x), x \in G$$

$$\Theta(x,t) = g(x,t) , (x,t) \in \partial D \times (0,\infty) ,$$

$$\Theta(x,t) = 0$$
 , $t = s(x)$

(2.5)
$$\operatorname{grad}_{x} \Theta \cdot \operatorname{grad}_{x} s = -\kappa$$
, $t = s(x)$, where κ is a given positive constant.

In several space variables, the existence of a classical solution of Problem (I) is proved only for a small time interval (see E.-I. Hanzawa [6] and A.M. Meĭrmanov[9,10]). In this note we shall prove (1.2) for weak solutions which have been proved to exist. Specifically, we follow the approach of G.Duvaut [2], A.Friedman and D.Kinderlehrer [5], and formulate the problem as a parabolic variational inequality.

2.2. Variational inequality

According to Duvaut [2], Friedman and Kinderlehrer [5], Problem (I) leads to the variational inequality, expressed in a pointwise form, of the following type. Let $K = \{v \mid v \in H^1(D), v \geq 0\}$.

Problem (II) Given functions f(x), $x \in \Omega$, and $\Psi(x,t) \geq 0$, $x \in \partial D$, t > 0, find $u \in L^2_{loc}([0,\infty); H^2_{loc}(\overline{\Omega}))$ such that $u_t \in L^2_{loc}([0,\infty); L^2_{loc}(\overline{\Omega}))$ and $\left((-\Delta u + u_t)(v-u) \geq f(v-u) \right)$ a.e. for $v \in K$,

$$\begin{cases} (-\Delta u + u_t)(v-u) \ge f(v-u) & \text{a.e. for } v \in K, \\ u = \Psi & \text{on } \partial D \times (0, \infty), \\ u = 0 & \text{on } D \times \{0\}. \end{cases}$$

Problems (I) and (II) are related as follows. Given g , h , and κ of Problem (I), define f and Ψ as

$$(2.6) \left\{ \begin{array}{l} \Psi(\mathbf{x},t) = \int_0^t g(\mathbf{x},\tau) d\tau \ , \ \mathbf{x} \in \partial D, \ t \ge 0 \end{array} \right.$$

$$f(\mathbf{x},t) = \left\{ \begin{array}{l} h(\mathbf{x},t) & \text{if } \mathbf{x} \in G \end{array} \right.$$

$$-\kappa & \text{if } \mathbf{x} \in \Omega \setminus G \end{array} \right.$$

It was proved in [5] that Problem (II) has then a unique solution u and that u satisfies $u_t \ge 0$, a.e., and

$$u \in L^{\infty}_{loc}([0,\infty); H^{2,p}_{loc}(\overline{\Omega}))$$
 for $1 \le p < \infty$,

$$\mathbf{u}_{\mathsf{t}} \in \mathbf{L}^{\infty}_{\mathsf{loc}}([0,\infty); \mathbf{L}^{\infty}_{\mathsf{loc}}(\bar{\Omega})) = \mathbf{L}^{\infty}_{\mathsf{loc}}(\bar{\Omega} \times [0,\infty)) .$$

Thus $u \ge 0$, a.e. Relate θ and u through $\theta(x,t) = u_{+}(x,t) \quad ,$

$$(2.7) \begin{cases} u(x,t) = \int_{s(x)}^{t} \Theta(x,\tau) d\tau & \text{if } x \in \Omega \setminus G \text{, } s(x) \leq t \text{,} \\ u(x,t) = 0 & \text{if } x \in \Omega \setminus G \text{, } 0 \leq t \leq s \text{,} \\ u(x,t) = \int_{0}^{t} \Theta(x,\tau) d\tau & \text{if } x \in G \text{, } 0 \leq t \text{.} \end{cases}$$

Then it was proved in [5] that u is a solution of Problem (II) if and only if Θ is a weak solution of Problem (I) in the sense of [4]. We also remark that u was proved to be continuous in $\Omega \times (0, \infty)$.

The following comparison theorem, also due to [5], will be used as a basic tool in our proof.

Theorem 1. Let u , \hat{u} be solutions of Problem (II) for f , Ψ and \hat{f} , $\hat{\Psi}$ respectively. Assume that $f \leq \hat{f}$ and $\Psi \leq \hat{\Psi}$. Then $u \leq \hat{u}$ in Ω .*)

§ 3. Main results

Let G and D be as at the beginning of §2 and let $\Omega = \mathbb{R}^n$ Given g, h, and K as in Problem (II), let u be the solution of Problem (II) with f and Ψ defined as (2.6). Put (3.1) $W(t) = \{x \in \Omega \mid u(x,t) > 0 , t > 0 \}$. Our main results can now be formulated as follows.

Theorem 2. If g(x,t) is majorized by a smooth non-decreasing function η (t) , namely if

(3.2)
$$0 < g(x,t) \le \eta(t)$$
, $x \in \partial D$, $t > 0$; $\eta_t \ge 0$
($\eta_t = \frac{\partial \eta}{\partial t}$), then there exist positive constants a_1

^{*)} We remark that this theorem applies even if f and Ψ of Problem(II) are not derived from Problem(I).

and a₂ such that

(3.3)
$$W(t) \subset \{x \in \mathbb{R}^n | |x|^n < a_1 \}_0^t \eta(\tau) d\tau + a_2 \}, t > 0$$
.

Theorem 3. If there exist constants β , $0 \ \leq \ \beta \ \leq \ n/2 - 1 \ , \ and \ k > 0 \ such \ that$

(3.4)
$$k(1 + t)^{\beta} \le g(x,t)$$
,

then there exist positive constants k' and t_0 such that $(3.5) \quad \text{W(t)} \cup \text{D} \supset \{x \in \mathbb{R}^n \, | \, |x| \leq k' \, (1+t)^{(\beta+1)/n} \} \text{ , } t > t_0 .$

Remark 1. Theorem 3 and Corollary to Theorem 2 show that (1.1) implies (2.1) if $0 \le \beta \le n/2 - 1$.

Remark 2. Suppose that D is a ball with center O and $g(x,t)=c(1+t)^{\beta}$. The proof of Theorems 2 and 3 shows that $\partial\theta/\partial r|_{\partial D}, r=|x|$, is of $O(t^{\beta})$. Thus, (1.2) shows that the amount of heat used to melt ice up to time t is of the same order as the amount of heat having flown in from D up to time t. In fact, the proof shows that the heat retained in water at time t is of lower order if $\beta < n/2-1$.

141

- §4. Proof of Theorems 2 and 3
- 4.1. Upper bound for W(t); the proof of Theorem 2

The proof is based on Theorem 1 . In order to obtain \tilde{u} , with which u, the solution of Problem (II), is to be compared, we introduce a melting-ice situation with heat generation in the water region. It is a spherically symmetric problem, and for convenience we express the free boundary as $|x| = \rho(t)$. The function ρ and the temperature function $\Phi(r,t)$, r = |x|, are defined as follows.

$$(4.1) \left\{ \begin{array}{l} \Phi(r,t) = c(t) \left\{ r^{2-n} - \rho(t)^{2-n} \right\}, \ r e(0,\rho(t)) \right\}, \ t \geq 0, \\ \rho(t)^{n} = \frac{n(n-2)}{\kappa} \int_{0}^{t} c(\tau) d\tau + \rho(0)^{n}, \end{array} \right.$$

where c(t) is a positive function to be determined later. Note that Φ is determined by c(t) and $\rho(0)$. We use the notation

$$B = \{(x,t) \in (\mathbb{R}^n \setminus \{0\}) \times \mathbb{R} | |x| \le \rho(t)\},$$

$$\tilde{s}(x) = \rho^{-1}(x).$$

where ρ^{-1} is the inverse function of ρ . The free boundary would then be described by $t = \tilde{s}(x)$.

It is now easy to prove the following properties of $\ \ ^{\varphi}$. Lemma 1.

$$\begin{split} & \Delta \Phi (\,|\,\mathbf{x}\,|\,,t) \,=\, 0 \ , \ (\mathbf{x},t) \,\in\, \mathbf{B} \ , \ t \,\geq\, 0 \ , \\ & \Phi (\,\rho \,(t)\,,t) \,=\, 0 \ , \ t \,\geq\, 0 \ , \\ & \mathrm{grad} \ \Phi (\,|\,\mathbf{x}\,|\,,t) \,\cdot \mathrm{grad} \ \tilde{\mathbf{s}} \,(\mathbf{x}) \,=\, -\, \kappa , \ |\,\mathbf{x}\,| \,=\, \rho (t) \ , \ t \,>\, 0 \ . \end{split}$$

Lēmma 2.
$$c_t(t) \ge 0 \Rightarrow \Phi_t(r,t) \ge 0$$
, $r \le \rho(t)$.

Proof of Theorem 2. We use function Φ with c(t) equal to $c'\eta(t)$ where c' is a positive constant to be determined. We take $\rho(0)$ large enough so that the set $\{x \mid |x| \leq \rho(0)\}$ contains D. It follows from Lemmas 1 and 2 that (Φ, \tilde{s}) is a solution of Problem (I) if we make the following replacement. Firstly, Θ , s and G are replaced by Φ , \tilde{s} and $\tilde{G} = \{x \in \Omega \mid |x| < \rho(0)\}$, respectively. Secondly, h(x) and g(x,t) are replaced by the values of $\Phi(|x|,t)$ on the respective set. Finally, equation (2.1) is replaced by an inhomogeneous equation that

$$(-\Delta + \frac{\partial}{\partial t})\Phi(|x|,t) = q(x,t)$$
, $t > \tilde{s}(x)$,

where

$$(4.2) \quad q(x,t) = \frac{\partial}{\partial t} \Phi(|x|,t) \ge 0.$$

Define now \tilde{u} by (2.7) with obvious replacements. Then, it is seen that \tilde{u} is a solution of Problem (II) with Ψ and f replaced respectively by $\tilde{\Psi}$ and f defined as follows:

$$\tilde{f}(x,t) = \begin{cases} t & \Phi(|x|,\tau) d\tau, x \in \partial D, t > 0, \\ 0 & \Phi(|x|,0) + Q(x,t) & \text{if } x \in G, t > 0, \\ -\kappa + Q(x,t) & \text{if } x \in \Omega \setminus G, t > 0, \end{cases}$$

where we put

$$Q(x,t) = \begin{cases} \int_{\widetilde{S}(x)}^{t} q(x,\tau)d\tau, & x \in \Omega \setminus \widetilde{G}, t > 0, \\ \int_{0}^{t} q(x,\tau)d\tau, & x \in \widetilde{G}, t > 0. \end{cases}$$

It is clear that by choosing c' large enough and $\rho(0)$ still larger, if necessary, we can make $\tilde{G}\supset G$, $\overset{\sim}{\Psi} \geq \Psi$, and $\tilde{f} \geq f$. Applying Theorem 1, we then obtain $\tilde{u} \geq u$. Therefore, u is zero whenever \tilde{u} is zero. Thus, we get

4.2. Lower bound for W(t); the proof of Theorem 3 We first reduce the problem to a spherically symmetric one. Let us denote by B_R the open ball of radius R with the center 0. Since D is a domain containing 0, we can take R_1 such that $\overline{B_R} \subset D$. We fix such an R_1 and take R_0 so that $0 < R_0 < R_1$. Letting k and β be constants appearing in (3.4), we introduce a function of the type Φ defined by (4.1). Namely, we put

$$(4.3) \qquad \hat{\Phi}(r,t) = kR_0^{n-2} (1+t)^{\beta} \{r^{2-n} - \hat{\rho}(t)^{2-n}\}, \quad r \in (0, \hat{\rho}(t)], t > 0$$

144

$$(4.4) \qquad \hat{\rho}(t)^{n} = \frac{n(n-2)kR^{n-2}}{\kappa} \int_{0}^{t} (1+\tau)^{\beta} d\tau + \hat{\rho}(0)^{n}, \hat{\rho}(0) = R_{1}.$$

We now consider the following problem:

Problem (III) This is Problem (II) with D , G , etc. replaced by the following \hat{D} , \hat{G} , etc.

$$\begin{cases} \hat{D} = B_{R_0}, \hat{G} = B_{R_1} \setminus \overline{B_{R_0}}, \\ \hat{h}(x) = \hat{\Phi}(|x|, 0); \hat{g}(x, t) = \hat{\Phi}(R_0, t), |x| = R_0. \end{cases}$$

This problem has a classical solution $\hat{\theta}(x,t)$ and $\hat{s}(x)$. The pair $(\hat{\theta},\hat{s})$ gives rise to a solution \hat{u} of the corresponding variational inequality in $(R^n \setminus \hat{D}) \times (0,\infty)$. Since $R^n \setminus \hat{D} \supset \Omega$, \hat{u} may be regarded as a solution of the variatinal inequality in $\Omega \times (0,\infty)$. Thus, we can compare the solution u of the original problem with \hat{u} . Since the boundary value \hat{g} of Problem (III) is non-decreasing and majorizes the initial value, it is clear that $\hat{\theta}(x,t) \big|_{x \in \partial D} \leq \max_{|x|=R_0} \hat{\theta}(x,t) \leq k(1+t)^{\beta}$, where the last inequality follows from the definition of $\hat{\phi}$. Therefore, it follows from Theorem 1 that $\hat{u} \leq u$. Thus, we have seen that it suffices to prove Theorem 3 for the solution $\hat{\theta}(0,x)$ of Problem (III).

Since $\hat{\theta}$ and \hat{u} are spherically symmetric, there exists a smooth function $\hat{r}(t)$ such that

$$\widehat{\mathbb{W}}(\mathsf{t}) = \{ \mathsf{x} \in \mathsf{R}^n \setminus \widehat{\mathsf{D}} \mid \widehat{\mathsf{u}}(\mathsf{x},\mathsf{t}) > 0 \} = \mathsf{B}_{\widehat{\mathsf{r}}(\mathsf{t})} \setminus \overline{\mathsf{B}_{\mathsf{R}_0}} .$$

The following lemma, which expresses the conservative law for heat flow, can be proved easily by integrating the heat equation by parts.

Lemma 3. Denoting by |A| the volume of the set $A \subseteq \mathbb{R}^n$, we have $(\theta_r = \partial \theta / \partial r)$

$$(4.5) \qquad \int_{\widehat{W}(t)} \widehat{\Theta}(\xi, t) d\xi - \int_{\widehat{G}} \widehat{h}(\xi) d\xi + \kappa \{ |\widehat{W}(t)| - |\widehat{G}| \}$$

$$+ \int_{0}^{t} d\tau \int_{\partial \widehat{D}} \widehat{\Theta}_{r}(\xi, \tau) d\xi = 0$$

On the other hand, we see from the proof of Theorem 2 that $(4.6) \qquad \hat{\theta}(x,t) \leq \hat{\Phi}(|x|,\,t) \;,\; x \in \hat{W}(t) \;,\; t > 0 \;.$ Since $\hat{\theta}$ and $\hat{\Phi}$ take the same boundary values on $\hat{\theta}\hat{D}$, the following lemma holds. This lemma is crucial, as it gives a lower bound of the amount of heat flowing in through $\hat{\theta}\hat{D}$.

Lemma 4. We have

(4.7)
$$-\hat{\theta}_{r}(x,t) \geq -\hat{\Phi}_{r}(|x|,t), x \in \partial \hat{D}, t > 0$$
.

In what follows we denote by c_1 , c_2 , ... various constants which do not depend on t nor R_0 . Using (4η) , we see that

$$(4.8) - \int_0^t d\tau \int_{\partial \hat{D}} \hat{\Theta}_r(\xi, \tau) d\xi \ge - \int_0^t d\tau \int_{\partial \hat{D}} \hat{\Phi}_r(|\xi|, \tau) d\xi$$
$$= c_1 R_0^{n-2} (1+t)^{\beta+1} .$$

Using (4.7), we also obtain

$$(4.4) \int_{\hat{W}(t)} \hat{\theta}(\xi,t) d\xi \leq \int_{\hat{W}(t)} \hat{\Phi}(|\xi|,t) d\xi \leq \int_{\hat{B}_{\rho}(t)} \hat{\Phi}(|\xi|,t) d\xi$$

$$= c_2 R_0^{n-2} (1+t)^{\beta} \int_0^{\hat{\rho}(t)} \{ r - \hat{\rho}(t)^{2-n} r^{n-1} \} dr$$

$$\leq c_3 R_0^{n-2} (1+t)^{\beta} \{ c_4 R_0^{2(n-2)/n} (1+t)^{2(\beta+1)/n} + c_5 \}$$

$$= c_6 R_0^{n-2+p} (1+t)^{(1+2/n)\beta+2/n} + c_7 R_0^{n-2} (1+t)^{\beta} ,$$

where $p = \frac{2(n-2)}{n} > 0$.

If $0 \le \beta < n/2-1$, the right side of (4.9) is of $o((1+t)^{\beta+1})$. Thus, by using (4.8) and (4.9) in (4.5) and recalling that $\hat{h}(x) \ge 0$, we obtain

$$(4.10) \quad \{|\hat{W}(t)| - |\hat{G}|\} \ge c_8 R_0^{n-2} (1+t)^{\beta+1} + o((1+t)^{\beta+1}).$$

If $\beta=n/2-1$, the first term on the right side of (4.9) is of order $(1+t)^{\beta+1}$. However, if we take R_o sufficiently small, which is permissible, so that $c_1-c_6R_0^p>0$, we can obtain (4.10) also for $\beta=n/2-1$. (3.5) for $\hat{W}(t)$ follows from (4.10) at once. Q.E.D.

References

- [1]: J.R.Cannon and C.D.Hill, Remarks on a Stefan problem, Jour.Math.Mech., 17(1967), 433-440.
- [2]: G.Duvaut, Résolution d'un probleme de Stefan (Fusion d'un bloc de glace à zero degreé), C.R.Acad.Sc.Paris, 276(1973), 1461-1463.
- [3]: A.Friedman, Asymptotic behavior of solutions of parabolic differential equations and of integral equations , in J.Hale and J.La Salle, ed. "Differential Equations and Dynamic Systems" (1967)
- [4]: A.Friedman, The Stefan problem in several space variables, Trans.A.M.S., 133(1968), 51-87.
- [5]: A.Friedman and D.Kinderlehrer, A one phase Stefan problem, Indiana Univ.Math.Jour., 24(1975), 1005-1035.
- [6]: E.-I. Hanzawa, Classical solutions of the Stefan problem, ^
 Tohoku Math.J., 38(1981), 297-335.
- [7]: H.Kawarada, Stefan-type free boundary problems for heat equations , Publ.RIMS , 9(1974), 517-533 .
- [8]: D.Kinderlehrer and L.Nirenberg, Regularity in the free boundary problems , Ann.Scu.Norm.Sup.Pisa , 4(1977), 373-391 .

- [9]: A.M. Meĭrmanov, On classical solvability of the multidimensional Stefan problem , Dokl.Akad.Nauk SSSR, 249(1979) = Soviet Math.Dokl. , 20(1979) , 1426-1429 .
- [10]: A.M. Meĭrmanov, On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Matem.Sb., 112(154)(1980), No.2, 170-192

 = Math.USSR Sb., 40(1981), No.2, 157-178.
- [11]: S. Tokuda, On the asymptotic behavior of solutions of the multidimensional one phase Stefan problem ,
 Master's Thesis, Univ. of Tokyo, (1976), (in Japanese) .