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GENERALIZED J-INTEGRAL AND ITS APPLICATION

— An interpretation of Hadamard's variational formula —

{oHJI OHTSUKA

Hiroshima-Denki Institute of Technology

§1, INTRODUCTION, 1In Eshglby[2], J-integral (Energy Momentum
Tensor) is applied for a study of continuum theory of lattice defects.
Two dimensional version of J-integral is connected in Rice[16] with thé
energy release rate of straight crack extension. In absence of defects,
Gunther[8] and Knowles & Sternberg{10] add two new surface integrals
to J-integral, called L,M-integral, whose physical meanings are
conservation laws obtained by Noether's theorem[12] on variational
principle. kFurthermore, the three conservation laws mentioned above
are complete within the context of linear isotropic, homogeneous
elastostatics, in the sense that they are obtained by Noether's scheme
(see [10]). These surface integrals are written as follows:

Let § be an open set in R3 occupied by the elastic body in
its non-deformed state. We say that a triple [u,e,0] is an élastic
state if [u,e,0] 1is, in this order, the displacement vgctor, the
strain tensor and the stress tensor all of which are taken to be defined
on Q. The material considered here is homogeneous (nonlinear) elasticity,
i,e., there is a strain energy density W and thevstress—strain
relation is given by the formula Oij = aw/aeij. Let S be a closed
surface contained in Q. We assume that a interior force is zero in

the domain enclosed by S. If [u,e,0] 1is so smooth that the divergence
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theorem may be applicable, then we have
(1.1) Jyp = J {Wy, — T.D u} ds =0 for k =1,2,3,
S

which is also derived as a consequence of the invariance of the

‘potential energy under a coordinate translation. Here Vk are the

components of the outward unit normal to S, T the traction vector

On S, i.e., Ti = Oijvj and dS the surface element of S. Moreover,
if the material considered is isotropic, then the potential energy

is also invariant under the rotation of coordinates. Hence we have

(1.2) L, = Jsealk{kav2 - Tgu, - T‘(Dzu)xk} das =0
for o =1,2,3, where eaik are the components of the antisymmetric
third order tensor such that e = +]1, The third conservation law

123

for linear elastostatics is derived as a result of infinitesimal
invariance of potential energy under a coordinate scale change, which

is written as
1.3 M = — Te(D. - . = 0,
(1.3) JS{invi T+ (D, u) x; (Teu) /2} ds

If there are defects (singularity) within S, then these conservation
laws will not hold (see e.g. Budiansky & Rice[l]). These results
indecate that, in J, L and M-integrals, there exist three physical

meanings

(1) These quantities represent a class of consevation laws
obtained by Noether's theorem.
(2) These gquantities are forces acting on singularity within 8.

(3) In two dimensional case, J,-integral equals the energy

1

release rate of straight crack extension.



But forces acting on the singularity are not only these
quantities. Indeed, for three dimensional crack problem, there is
a crack extension whose energy release rate cannot be expressed by
these surféée integrals (see Ohtsuka[l3]). Generalized J-integral
(GJ-integral) is proposed as a generalization of these surface
integrals in order to express the energy release rate of smooth crack
extension (see [13], Definition 3.3).

We may consider that Hadamard's variational formula (see Theorem
3.1) express a behavior of solutions at the boundaries. But, in the
total space, the boundary is the set of singularities of solutions.
In section three, we reconsider Hadamard's variational formula froﬁ
this viewpoint and apply GJintegral to obtain it. As shown in
section four, such a point of view is important when we study the
mixed boundary value problems. We now generalize GJ-integral to be

applicable for various elliptic boundary value problems in the next,

§2. GJ-INTEGRAL AND ITS PHYSICAL MFANING, Let @ be
. . n . . . 1,.n n
a bounded domain in R and W be a given function in C (R xR XR).
We consider a functional of potential type I(v;Q) defined on a
Hilbert space V() (contained in Hl(Q))
I(v;Q) = f'{W(x,v,Vv) - foy} dx
Q
for a given function £ in Lz(ﬂ). Here we assume that V(Q) is
dense in LZ(Q)J

The problem we now consider is the following

P: Find u € V(R) such that I(u;Q) < I(v;p) for all vy € V().
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Hereafter we assume that the problem P is uniquely solvable,

and suppose that there exists a limit

DW(v,h) = lim_, 8_1[W(v+€h) - W(v)]

0

for all wv,h € V(2). Then the solution u satisfies that
J DW(u,h) dx = J f*h dx for all h € V(Q).
Q Q

If u and h are suitably smooth, then the following Green's formula

hold
(2.1) J DW(u,h) dx = —J Au+h dx + J N(u)-h ds
! Q- 2 - L a0

where u > 4u is a partial differential (nonlinear) operator on
of order 2, and u * N(u) 1is a bartial differential (nonlinear)
operator on 9% of order 1.

Let A be a domain in R" and let XKA) be a set of all
suitably smooth vector fields defined on A. We call a domain A
"regular relative to Q" if A is a bounded closed domain in R"
and the divergence theorem hoids on AnAS, for all suitably smooth
functions and all elements in X(A). Let us define GJ-integral
JA(u;ﬁ) as a functional of all domains A in R" regular relative

to @, all solution u of P and u in X(a).

Definition 2.1. If the following two quantities

.PA(U;u) j C{W(u) (pev) - N(u)X (u)} ds,
g u

RA(u;u) —J X (W(u)) - DW(u,xu(u)) + W(u)div y+ f-Xu(u)} dx

Al u .

are finite, then GJ-integral JA(u}u) is defined by



U,
[olg
Lo

JA(u;u) = PA(U:U) + RA(u;u)
where S is the boundary of A'; A' = AN, v the outward unit

normal to S, (y*v) the inner product of v and. u; uw € X{Aa),

and X = u-Vv,.
g =M

2

Example 2.1. If 2W(u) = IVu]z + pu {(Laplace equation), then

h
N(u) = du/dv; X (W)-DW(u,X u) = -D.u(D. D, u.
(u) / u( ) (u, 0 ) JU( 5M ) B

Example 2.2. If 2W(u) = aijDiuDju + au2, then

= _ h .
N(u) = aijijiu, XU(W) DW(u,XUu) = xu(aij/z)DiUDju aijDiu(Dju )Dhu.
Example 2.3. If 2W(u) = Uijsij (linear elasticity), where
Sij = (Djui+Diuj)/2, Uij = cijklekl' then N(u) = Cijvj;

h v
X“ (W) _DW(UIXUU) = Xn (cijkﬂ/z) Ekﬂ,eij.’cij (Djll ) (Dhui) .
Example 2.4, If W(u) 1is given as a strain energy density, and
if a genergal nonlinear Hooke's law oij = aW/aeij holds, then

_ . _ . - h
N(u) = Oijvj' XU(W) DW(u,qu) Oij(Dju )(Dhu).

Remark 2.1, If DW(u,h) is a bilinear form, then u > RA(u)
is a bounded functional on V() (see e.g. Examples 2.1-3), In
Example 2.4, u > RA(u) is also bounded on '{Hl(Q)}3 in a special

case of the nonlinear Hooke's law (see Necas' & Hlavacek[1ll], Chapter 8).

Therorem 2.1. If a solution u of P is so smooth that the

divergence theorem may be applicable on AN @ and u € X(A), then

JA(u,U) = 0.
Proof. By.the divergence theorem we have

J Xu(W(u)) dx = j W(u) (4*Vv) ds - f W{(u)divy dx,
Al S JA ‘
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Moreover by Green's formula it follows that
J DW(u,X u) dx = J feX (u) dx + j N(u)X. (u) ds.
' u T u
A ]
Thus we have that JA(u;u) = 0.

Theorem 2.2. Let u be a solution of the problem P whose
W is given in Example 2.4. Assume that f =0 on A, and [u,e,0]
is so smooth that the divergence theorem may be applicable on A n @

and X(A), then the surface integral (1.l1l) is written as

J, = JA(u;e

K for k =1,2,3

k)

with the unit base vector e in the‘xk—direction.

In addition, if Ju,e,0] 1is isotropic, then
L = JA(u;qa) for a=1,2,3
with g (%) = (€ ¥ r8 oo ¥k €KXk *

Finally, if [u,e,0] 1is linear (not necessarily isotropic), then

M= JA(u;x) with x =.(xl,x2,x3).

Proof. For the proof we may refer to [13], Theorem 3.5.

‘Physical méaning of GJ-integral Let G be a domain with smooth
boundary. Let us éssume that @ = G - £ in which ¥ means defects.
The initial defects I move smoothly depending on time t, denoted
by ZI(t). We denote by Q2(t) the set G -~ I(t). Here we assume that

n

there eixts a family of Cw—diffeomorphisms ¢t: R > R such that

¢t(9) = Q(t). Let us set
a4 -
HE) = g 0 ) [

Then by a formal calculation we have
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(2.2) =J, () = lim ot [Txauif(t)) - I(x,uiQ)]

is the characteristic function of A, i.e.,

A and XA =0 on AC.

where XA
This indicates that JA(u;u) equals the rate of energy éhange

by force acting across S and acting inside the domain enclosed by

S. In the case when A{Z(t)} is a family of smooth cracks, the precise

proof of (2.2) is given in [13].

§3. A INTERPRETATION OF HADAMARD'S VARIATIONAL FORMULA

Let Q@ be a bounded domain in R" with smooth boundary vy. Let

p(x) be a smooth function defined on <y and Vo the outward unit

normal to y. For any sufficiently small t 20, let - Q(t) Dbe thei

bounded domain whose boundary vYy(t) is defined by vy(t) = {x+tp(x)vx;x € Y}.
Consider Green's function Gt(x,y) of the Laplacian with the

Dirichlet condition on Y(t), i.e.,
AXGt(x,y) = -0(x~y) for x,y € Q(t),

Gt(x,y)! =0 for y€ Q(t),

X € Y(t)

where & 1is the Dirac function and we set G = GO.

Theorem 3.1, (Hadamard's variational formula[9]) -For fixed
X,y € Q, there exists §6G(x,y) = (BGt(x,y)/Bt)tzo. Furthermore

we have

3G (x,z) 9G(y,2)
ov v
Y b4 zZ

(3.1) 6G(x,y) = J p(z) ds .

In total space Rn, the boundary' Yy of Q is the set of

singularity of the solution of the Dirichlet problem for Laplace's
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equation -Au= f in Q. The formula (3.1) is regarded to represents

the behavior of this singularity. We now derive (3.1) by GJ-integral.

Let us consider a family of boundary value problems.

P : For a given f in LZ(Q), find u

.1 .
& u, in HO(Q) which

minimize the potential energy functional
I(v;Q(t)) = f '{%lwlz - f.v} dx
(L)

1
H .
on 0(SZ)

The problem El is uniquely solvable, whence there exits a family

of Green's operators

We now consider a family of bounded operators in Lz(ﬂ) defined by

~

th = rQ{zero extension of Gt[rQ(t)f] outside Q(t)}

where f denotes the zero extension of £ outside Q and rQ(t)

the restriction operators. Since the adjoint operator-of is

o (1)

the zero extension outside Q(t) for each t, we have for g € LZ(Q)

where

(f’g)ﬂ(t):fjﬂ(t)f.g dx.

So that Gt is self-adjoint in Lzﬁn, since Gt is self-adjoint in

LZ(Q(t)) for each t, i.e.,

Hence the operator t_l[Gt - G] is a bounded self~adjoint operator

on Lz(ﬂ) for each t > 0. 1If
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(3.2) 11mt_>0 (t [Gt—G]f,f)Q exists for all £ in. L7(Q),

then from Banach-Steinhaus theorem we have a bounded linear operator

§G on LZ(Q) such that
-1.7 . 2 2 \
t [Gt - Gl > 686G in B(LT(R) » L(R)) weakly as t -~ 0,

where B(LZ(Q) - LZ(Q)) is the space of all bounded Iinear operatoré
on 12(9). Since CJ(@) is dense in .2(q), the condition (3.2) is

equivalent to the following

. : -1 . o
(3.3) 11mt_>0 Jﬂt (ut—u)-f dx exists for all £ € CO(Q),

where u, is the solution of E% for the given £ in CE(Q).

On the other hand the following hold

[

J t—l(ut—u)-f dx t-l{J qutlz dx - J |Vu[2 dx}
Q Q(t) Q

]

t-l(u -u) «f dx}
Q t

M2 (00 () ~T (s ] + ZJ
whence we can deduce that

lim ¢t (u,-u)*f dx = 2{1lim, . t_l[I(u-Q)—I(u ()1}

e>0- J e >0 7 t! :

Thus the condition (3.2) is equivalent to the existence of the variation
of potential energy with respect to the boundary perturbation.

Consider Cm—differomorphisms ¢t from R" onto R’ defined by
¢ (x) = x +t‘B(X)p(§)vx

where R € CE(Rn) satisfies B > 0 and B =1 near «v(t) for
all t. Then u(x) = B(X)p (x)v,.
Let A be an open set in Rn such that A D Q(t) for all t.

Since



1 2
I(uifi(t)) = JA{EIVutI - fou,} ax

it follows from the physical meaning of GJ-=integral (sgction two) that

. -1
llmt_>0 J t (ut—u)-f dx = 2JA(u;u).

Q.
Since u =0 on A - Q, we obtain that JA(u;u) = RQ(u:u). But by

the regularity theorem it follows that JQ(u;u) = (0. Thus we have

il

(6GE,£) o =2P, (u;n)

]

ZJ' {(au/a\))2 - %lw]z}p ds.
¥

Observing that u =0 on vy, we have |vu]2 = (au/av)z, whence

(6Gf.f)Q = J (su/av)zp ds,
Y

from which it follows that

(86£,9) ¢ = J (3u/3v) (3v/3v)p dS
Y

where u = Gf and v = Gqg.
Therefore by the kernel representation of Green's dperator G, the
Lebesgue convergence theorem and Fubini's theorem, we can derive

the following

f(y)dyj asng,z) aG‘é‘{f”p(z) ds_.

Y z z

(8GE,9) ) = J g(x)dXJ

Q Q
Since we can take arbitrary functions in C:(Q) for f£f,g9, Theorem 3.1

follows.

. . ON
Next we consider Neumann's function G associated with the

operator -A + p (p > c > 0). In this case Hadamard's variational

formula is the foilowing

- 10 -
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Theorem 3.2. (see Garabedian & Schiffer[5])

(3.4) 86" (x,y) = —f’{veN(x,z>ch(y,z) + (26 (x,2)6 (v,2) Jp(2) as_.
.

In the case of the Dirichlet problem, GJ~integral acts on the

singularity of zero extension. But, for the Neumann problem, we must

consider another extension.

We now consider the following singular perturbation of the
Neumann problem:

P*. Find u® in Hl(R) such that for a given f in C:(Q)

['{Vuev¢4puEQﬂdx + J e{Vu€V¢»pu€¢ﬂ dx = J fap dx
Q QO Q

hold for all ¢ € Hl(R), where R is a domain in R" with
smooth boundary satisfying that QCR and QO =R - Q.
A solution of the problem P® is the solution of the following

transmission problem
-Au® 4+ puE =f in Q; =-Au® + puE =0 in QO,
wWH* = @H7, (uem’T = c(3u/ow)” on 22,
3us/8v-= 0 on BQO - 239,

where v is the outward unit normal to 23R (or BQO_- Q) and

for h € Hl(R) ,

+ -
h” (resp. h') = trace of hlQ (resp. th—ﬁ)‘ on: Q..

Then we have

Theorem 3.3. Let u0 be a solution of the Neumann problem,
i.e.,

- 11 -
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2u® + pu® = ¢ in 9; 3u%Bv =0 on s0.

Then the solution uE of the problem Pe converges to uO in

the following manner:

€

u® > 0¥ in Hz(ﬂ) as € > O;Itel ;;ccnst.f‘vs“; 0.

2,90

. . . 2 -
Furthermore, there exists a function v in H (QO) and a subsequence

{Ej} of {e} such that

€3 . a
u-*v in H (QO) as j >« for all o < 2,

and (u0)+ =v on 99.

However, no proof of this statement will be given here (see [14]).

If, for each e > 0, we perturb the interface Yy = 30 by a
family of surfaces 7Y (t), then the behavior of solutions determined by
this perturbation is described as GJ—integral which acts on the
singularities at the interface. Letting ¢ =+ 0, we get by Theorem 3.3
the formula

. -1, 0 0
llmt_+0 J t (u,-u’)-f dx

Q t
= J'{2(au°/av)2—IVu°|z—p(uo)z}p as.
v

Since 3u0/ 3v = 0 on Y, Theorem 3.2 follows from a similar argument
as in the case of the Dirichlet problem.
In the next section we shall show Hadamard's variational formula

without making use of extension operators.

sii, HADAMARD'S VARIATIONAL FORMULA, In preceding we

studied the case when a weak solution of the problem is also a strong

solution, so that the corresponding Green's functions are sufficiently

- 12 -



161
smooth. 1In such a case Fujiwara & Ozawal[3] generalize the worké of
Hadamard[9], Garabedian & Schiffer[5] and Garabedian[4] to the case of
Green's function of some normal elliptic boundary value problems
by means of the Whitney extension theorem. Another approach is made
in Peetre[1l5]. If a weak solution cannot be a strong solution, then
GJ-integral will be useful to obtain Hédamard‘s variational formula.

We here consider the following problems.

(1) Does Hadamard's variational formula hold for a perturbation
of domains with local Lipschitz property ?
(2) Does Hadamard's variational formula hold for the mixed

boundary value problems ?

Theorem 4.1. Let § be a doamain with local Lipschitz property.
Assume that a deformapion_ Q(t) of § is written as Q(t) = ¢t(n)
by a family '{¢t} of Cm—diffeomorphismsbfrom Rn‘ onto R" such that;
¢t: [0,1] x Rn > Rn is of class of C .. Suppose that the mapping
v(x) > ¢Ev(x) = v(¢t(x)) is a continuous bijection from V(R(t)) onto
V(Q), and suppose that J DW(v,h) dx is a striétly coercive bilinear

At)
form. Then

Lim o € NII(R) - Ta(t):(6)] = R (ui) .

The proof is similar to that of [13], Theorem 4.5.

Remark 4.1. In the mi#ed boundary value problem, it should
be noticed that a perturbation applies not 6nly té thé domain, but also
to the interfaée betweeﬁ the Dirichlet part and the Neumann part.
Here fhe Dirichlet part yD(t) of Y(t) has positive measure and

written as Y (t) = ¢t(YD); Yp = Yp(0).

- 13 -
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Remark 4.2. Notice that u - RA(u) is bounded in Hl(Q).

Remark 4.3. If a domain § with non-smooth boundary is

oerturbed by smooth domanis §(t), then the above theorem does not hold.

Theorem 4.2. Let wu(t) be a solution of the problem E% under

3/2+¢

the hypothesis in Theorem 4.1. If u belongs to H (Q) for

some € > 0, then
RQ(U;u) = —JQ(u;u) .

If Q is convex, then a solution u of the Dirichlet (resp.
Neumann) problem for Laplacian belongs to HZ(Q) (see e.g. Grisvard[7]).

Hence

Corollary 4.2.1. If @ is convex, then (3.1l) and (3.4) are

valid under the hypothesis in Theorem 4.1.

If Q@ 1is a polygonal domain in RZ, then a solution u of
the Dirichlet (resp. Neumann) problem for Laplacian belongs to

H3/2+€(Q) for some e > 0 (see e.g. Grisvard[6]). Hence

Corollary 4.2.2. If @ 1is polygonal domain, then (3.1) and

(3.4) are valid for a perturbation satisfying the hypothesis in

Theorem 4.1.

Finally we study the mixed boundary value problem.

_2 — 2, -
Let O = R,. Let YD-{thR,xz—O, x1>0}andlet

Yy = N - ?b. Then the weak solution u of the mixed boundary value

problem for Laplacian

- 14 ~



-Au = £ in Q for a given f in LZ(Q),

u=0 on YD; ou/9x, = 0 on YN and u = 0 for [xl > 1,

is decomposed as follows
u = crxr/?sin(0/2) + wx); r = [x|, 0 = tan"t(x,/x))

where ¢ 1is a constant determined by £, w belongs to HZ(Q) and
z C:(Rz) such that suppt C {x; lx[ <1}, .20 and ¢ =1
near the origin. Here we notice that cc(x)rl/zsin(e/Z) does not

belong to H but belongs to H Q)  for all € > 0. Let

us put u(x) = ae, + Bez, where e, is the base vector in the
xi—direction, and 0,8 are constants.
We shall calculate the typical case when only the interface

is perturbed (see Figure 4.1). - Since the solution u is regular

except at the origin, we then have

Rofuin) = Ro(usu) = Jg g py (0in)

for all r > 0, where B(r) = {x; le < r}. Hence
| | " i 12  3u.du 19u
R (usu) = llmré_oj0 {EIVu! cos® - —?[—;51n6+;§§cosel}rdek
S
goc .

This is an analoge of Hadamard's variational formula under the

perturbation of the interfaces (see Figure 4.1).

- 15 -
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Figure 4.1, M(t)

du(t)
o

u(t)=0

1 —

A perturbation {M(t)} of the interface M

M(t) = ¥p(t) A Ty(t)
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