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Identities for divisor generating functions
and their relations to a probability
generating function:
Keisuke Uchimura (Yamanashi Univ.)
GRS A
1. Introduction

Identities for divisor generating functions are studied
in e. g., [5], [9] and [10].

In [10] the following idntity is shown
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In this paper we shall show identities for divisor generating

- functions or(n)xn which are generalization of (1.1) and

n=1
their relation to a probability generating function. In
the section 3, we shall apply this relation to an analysis
of the data structure called a heap and evaluate the average

value and the variance of the number of exchanges to insert

a new element into a heap under certain assumptions.
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2. Identities for divisor generating functions

In this séction we shall show identities for divisor
generating functions. In order to prove the identities

we use the following standard abbreviations

n-1 .
(a), = T (1-aq)),
j=0
(a), = Illgi (a) >
(a)o = 1.

We define functions Mm by -

. T n +1
Moo= I n"q(q" .-
~ n=1
We denote =~ divisor generating functions Z Gm(n)qn by
' n=1
K .1- Namely K = ] o (nm)q"
m+1 Y “m+l L .
n=1
Theorem 2.1. For any n 2> 1,
B’frl = Yn(Klj e .. 2 Kn) 2
where Yn is the Bell polynomial defined by
k- k
( u, 1 u_n
Y (ug, ooo,u) = ) SR (T%) ‘e (5¥) )
I(n) kl! kn! n )

where NM(n) denotes a partition of n with

kl + Zkz + ...+ nkn = n.
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Proof. Let
G(x, q) = (qQ),/(xq),- (2.1)

From Euler's partition formula ([7, p. 21])

) = —1 (for -|ql < 1, [t} < 1), (2.2)
= (t). |

we get

G(x, @) = (@), [ x"a"/(a)
n=0

Pt (q™ ) . (2.3)
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Putting x = et, we find
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—G(e", Q)| ,_n =
at™ t=d n=1

Let log G(e®, q) = hyt + h,t?/21 + hot’/31 +

It follows from (2.1) that

t t
log G(e™, q) = log (q)_ - log (e q)_.

.n-1 3
J- qj-
1

Clearly -log (l—etq) = ) t%/nt )
n=0 j=

Therefore

il

x 't -
- § log (1-e-ql)

t
-log (e q)_
j=1

log (q)_ + § t"/n! zlj“'lqj/(l-qj).
. ! _
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3 ' 2
Thus hoo1 = g Om(n)q = Km+l for any m > 0.
n=1
On the other hand
t _ 2 3,
Gle™, q) = exp(Kyt + K, t7/21 + KL t7/30 + ... ).
ot
Hence S_EG(e :Q)lt:O = Yn(Kl’ <.y Kn).

This complete the proof.of Theorem 2.1. []

We remark that My = (q) -

By this theorem we have

Mp =Ky, (2.4)

. 2
M, o= KT+ KL (2.5)

Next we shall study several variations of the identities.

A. From the g-analogue of Gauss's summation [ 1,'P.f20]
; (a),(B) (c/ab)™  (c/a)q(c/b)y
nZ0 (a)_ () (€)(c/ab).,

(for |c| < |abl, faq| <1,

we get



1]

G(x, q) (@) /(xq)

(q) ,(xT)
= lim ——mm———
™0 (xq) (1),

© (x)h(q/r)nrn

= 1lim
>0 n=0 (q) (xq)

= (x) (-1)"g" (M2

0 (a),(xaq)

1]
o~

n

Cngt 2.6)

0 (a) 1-xq"

[}
I o~1 8

n

Thus

m

)
——EG(X, q)
ax n

n-lqn(n+l)/2 q(m—l)n

(@, (1-xq™™

m! (2.7)

§ (-1
=1

From (2.7) we have identities for divisor generating

functions. For instance,
-1 2
(0P r(Z  aq® L k2
- n, 3 2 1 17
n=l (q), (1-a™)

since

K, = e?tar(e")/6(e®) + efor(ety/ate®) - e?fareM P /ae Py, (2-8)

. j
where G(J)(x) = —3~G(x, a), j =1, 2
axJ

We temark that (1.1) is obtained from (2.4) and (2.7).
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B. Let

H(x,q) = (xq)_/(q)_

Then ' -

e~ 8

(—Kn)tn/n!.

log H(e',q) =
| 1

n
On the other hand,from Cor. 2.2 [1, p. 19],

we have

) z (- 1)n n n(n+1)/2

(xq),,
(@),

Therefore we have

ln.m n(n 1)/2

L 2 (1) n =Y (-K X))
(Do =1 ~(q)~n m- 1 m
for m > 1.
We now note that G(1, q) =:1. Then we can regard

z Xn n n+l)

the function . as a probability generating

function in which P{X = n) is defind to be qn(qn+1)ca ,

for 0 < q < 1. Let C(X, q) —'—‘,2 ann(qnq}'l)m‘

Then the radius of convergence of G(x, q) is 1/q
Therefore all monents ex1st and the exponential moment

generating function Z Mt T/
r=0

——
converges for | t | < log(l/q) and equals G(e , q) ([4, p. 285]).
We note that Mr 1s the r-th monent.

On the other hand, hr is the r-th cumulant for any

1

value and the variance respectively. '

r 2.1, and so 1is Kr' Therefore K, and K2 are the average

-6-



174

3. Applications to an analysis of heaps

We now give a combinatorial interpretation of the
probability generating function. We shall study an
analysis of the data structure called a heap and apply
the relation between the identities and the probability
generating function to the analysis.

A heap is defined to be a t-ary labelled tree (t > 2)
such that the element associated with each vertex 1is smaller
than the elements associated with its sons.

Our aim is to evaluate the average number of exchanges
required to insert an element into a heap. We also
evaluate 1ts variance.

We consider heaps on complete t-ary trees with th-1
vertices (See [6,p.401] ). We call an element to be
inserted into a heap an input element. Without loss of
generality we may assume that a set of elements on a ﬁ—ary

73

tree and an input element is equal to a set {1, 2, ... ,t
We consider a set of all pairs of a heap and an input element
which satisfy the above conditions. We denote the set of-
pairs by Hn' An input element is inserted into the heap
at the shallowest and leftmost empty position in the tree.
The position is called the input position.
Fig. 3.1.
We assume that each pair of a heap and an input element

is equally likely (See [7,p.155] ).
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Let Pjn be the probability that an input element is to
be exchanged exactly j times in a heap of t™-1 elements when
the input element is inserted at . the input position.

In the case depicted in Fig. 3.1 the input element is exchanged

once.
Proposition 3.1. For any positive integer n,
p.% = (1-1/eMp MY, if 0g ) <o,
n _ n
Pn = 1/t7,
'Pjn = O, _ - 1f n < j.
Proof. It is obVious that Pjn =0 1if n < j.

Since an 1nput is exchanged n times in a heap of t"-1 elements
if and only if the input element is equal to 1, it follows

n oo™,

from the above assumption that Pn
We now note the following property‘

Let S be the subtree of a complete t-ary tree T with t"

vertices that contains a son of the root of T as the root

as well as the rightmost of the deepest elements in T. -

Then S is alse a complete f—éry~tree~with tn_1 vertices.

In the case that 0 ¢ j < n, an input element 1s not

equal to 1. Let Un be a subset of Hn consisting of
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all pairs of a. heap and an input element which is not equal

to 1. It 1s clear that for any pair in Un’ an input element

is exchanged in the subtree mentioned above. We denote the
set of pairs of a subheap on such a subtree and an input

element by Dn—l'
We now define a mapping ¢ from U, onto Hn~1 as follows.

For any pair x in Un; we can find a pair y in Dn—l naturally.
Let the set of elements of the heap and the input element

iny be {i(1), ..., i(t®™ 1)}, where i(j) < i(k) if j < k.
Substituting an integer j for. each element -i(j) in'y,’

we get a pair z in Hn—l' Then we define the mappihg ¢

by $(x) = z.

It can be easily observed that {¢_l(11)l = i¢—1(22)l,
for any z;, z, in H__,, where |S| denotes the cardinality of
aset S. Let [¢ '(2)] = c for z€ H_ . Let d; be the

number of pairs in Hn—l in which the input element is exchanged

exactly j times in the heap. ~ Then we have
n - _ n,, n-1
P.” = d.xc/|H = (1-1/t7)P. .
1= agxe/[H | = (1-1/tM)P
This completes the proof of Proposition 3.1. ]
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We consider the probability generating function ) Pjnxj.

j=0
Putting 1/t = q. in;the'funétion, we have a function
n n )
k k
6 (x, @) = [ xq I (1-97).
k=0 j=k+1
- Extending this function we now obtain a function
= v Uk k, k+1
G(x, @) = ] xq(qa Da,
k=0
which has already appeared in the previous section. We

recall that this function is a probability generating function

and that K, and K, are the average value and the variance,

1

respectively.

a .
3x0, (%, @)l _; and

Let An(q) ax n

2
3 2
5;7Gn(xa Q)‘le + AHCQJ AHCQ) .

v (a)
It can be easily proved that
log G (e¥, @) = A (@)t + V_(qQ)t?/2! + ..
n ’ n n ’
Then An(l/t) is the average number of exchanges for updating
an input element in a pair in Hn and Vn(l/t) is equal to

its variance.

Let a be a positive number such that (l+a)q < 1.

Then we have

-10-
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Proposition 3.2. There exist a positive integer

N and positive numbgnsCl and C2 such that

L ' n
'a (@) - K (@) | g € ((A+a)q) and
V@ - K@) | g 6 ()", for any n > N.
Proof. It is clear that
Aj(@) = ] kqo T (1-q7).
k=1 j—"—k"‘l :
n(n+1)/2 k
Let A (q) = a, q .
| m k=1 X
We recall that Kl = ] Go(k)qk = 3 qu(qk+1)m.
_ k=1 k=1
Clearly a, = oo(k) if 'k £ n,([10, Theorem 1 ]). (3.1)

Now we consider a function

=] k @ R
B(q) = ] kq' I (1+q7).
k=1 " j=1
ot k
Let B(a) = [ bq
k=1
Then ]akl < !bkl for any k. (3.2)

It is clear that the radius of convergence of B(q) is equal

to 1. It is known [§5, p. 260] that

~11-
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O(oo(k)) = k5 for all positive &. Therefore for the

positive number o there exists a positive integer N such that
k k :

fbk| < +a) 7, Oo[k) < (1+a) for any k > N.

Hence it follows from (3.1) and (3.2) that
n

A (@) - X (@) | 2 ¢((1+a)a) ™ .

By the similar way we get the second inequality since
we have from [S5, p. 266],

Ol(k) = Q[nl+6) for all pdsitive §,
and from (2.4) .and (2.8),

_!v ) 2
K, =6 (1, @ +X -K°. O

We now consider the higher monents.

Let Mr,n be the r-th monent defined by Gn(x, q) . Then
n n .
- T k
Mr’n - Z kKiq o - (l"qJ)'-

k=1 . j=k+1
On the other hand, the r-th monent M. defined by G(x, q) is

e .r ke J
] K'q"m  (1-q7)..
k=1 3=k+1

Thus there exist «, N and C such that (1+a)q < 1, and

P R o} -
IMr Mr,ni < C((1+a)q) for n > N

We note that the r-th monents Mr 0 satisfy the following recurrence

>

' T n n ,
Mr =nq + (1l-q )Mr,n-l .

Therefore the sequence {M_ n} is monotone increasing.

3

~12~-
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Theorem 2.1 tells us that

Mr - Yr(Kl’ Tt Kr)'
In order to evaluate the monents Mr’ it suffices to evaluate
the cumulants X.. For the purpose, we use the formula

on Lambert series,

k
l(an+an+k)x n?‘

to~18"

I 11 2
a x"/(1-x") = ] «" (2 +
1 B n=1 =~ T x

e~ §

n
Then we can compute the values Kj(q) rapidly.
The values Kl(q) and Kz(q) for q =1/2, 1/3, 1/4, 1/5,

are shown in the following table.

Table 3.1

Remartks When t;E,ZQ“PerQéiLion;S;l is essentially the same
as Theorem 1 in [8] and also ;s Proposition in (3]

But it 15 well known that heaps on t-ary trees (t=2'3) :are
useful data structures_'. So we note the propositioﬁ.

Doberkat shows in [3] that
M ~.21![(log2) T 1 + 2Re(2wi) T lo(r+1,1-ilog2/(2m))],.
r -

where t(n,a) = .V (k+a) ",
15 0
as T ». .o - -

And he expects the readers to have estimates for Mr 0

b

in [3].

In this paper we give an answer to his problem.

Acknowledgement

The author thanks Professor G. E. Andrews for showing

the author the identity (2.6) in [2].

-13-



(1]

(2]

(4]

(5]

(61"

[7]

(8]

9]

[10]

181

References
G. E. Andrews, The Theory of Partitilons
(Addison-Wesley, Reading, Mass., 1976)
G. E. Andrews, Private communication, (1981).
E. -E. Doberkat, Inserting a new element into a heap,
BIT 21 (1981) 255-269.
W. Feller, An Introduction to Probability Theory
and its Application, vol. 1 (John Wiley and Sons,
New York, 1968)
G. H. Hardy and E. M. Wright, An Introduction
to the Theory of Numbers (Oxford Univ. Press,
London / New York, 1960) |
D. E. Knuth, Fundamental Algorithms (Addison
Wesley, Reading, Mass., 1968)
D. E. Knuth, Sorting and Searching (Addison
-Wesley, Reading, Mass., 1973)
T. Porter and I. Simon, Random insertion into a
priority queue structure, IEEE Trans. Software
Engineering, SE-1 (197S5) 292-298.
J. Riordan, Combinatorial Identities
(John Wiley and Sons, New York,. 1968)
K. Uchimura, An identity for the divisor generating
function arising from sorting theory,

J. Combinatorial Theory (A) 31 (1981) 131-135.

~14-



Pt
O
ro

O O O ©

an input element

Average values and variances

q K, (a) K, (a)
1/2 1.60669 2.74403
1/3 0.68215 ' 0.94943
1/4 ©0.42109 0.53692
/s - 0.30173 0.36603

Table 3.1
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