Quartic surfaces of elliptic ruled type

Yumiko UMEZU

§ 0. Introduction.

In this paper we shall investigate the structure of normal quartic surfaces in \mathbb{P}^3 whose resolutions are birationally equivalent to elliptic ruled surfaces. In this paper we call such a surface simply a quartic surface of elliptic ruled type.

Let X be a quartic surface of elliptic ruled type defined over an algebraically closed field k of characteristic \neq 2, 3, and let $\pi: \widetilde{X} \longrightarrow X$ be the minimal resolution of X. We shll study X by studying the structure of \widetilde{X} and the linear system on \widetilde{X} which defines the morphism π .

Since the dualizing shaf W_X of X is trivial, we can apply the results in [3]. Here we restate some of them (restricting to our present situation) which will play essential roles throughout this research. We use the terms and facts cited in §1 of [3] without notice.

LEMMA 1. For any point P on X, the geometric genus $p_g(P)$ of P is not greater than 2.

Since $w_X \cong {}^0_X$, there exists a unique effective anti-canonical divisor on \widetilde{X} whose connected components correspond by $\mathfrak N$ to singular points with $p_g \geqq 1$

on X. We denote this divisor by \widetilde{D} .

LEMMA 2. Let $\widetilde{X} = X_n \xrightarrow{\mathcal{M}_n} X_{n-1} \xrightarrow{\mathcal{M}_{n-1}} \dots \xrightarrow{\mathcal{M}_1} X_0 = \overline{X}$ be a sequence of blow-downs obtaining a relatively minimal model \overline{X} of \widetilde{X} , and let \widetilde{H} be the pull back of a general hyperplane section of X to \widetilde{X} such that \widetilde{H} is irreducible and non-singular. Put

$$\begin{split} \mathbf{H}_{\mathbf{n}} &= \widetilde{\mathbf{H}}, \quad \mathbf{H}_{\mathbf{i}} &= \mathcal{M}_{\mathbf{i}+1} \cdot \mathcal{M}_{\mathbf{i}+2} \cdot \dots \circ \mathcal{M}_{\mathbf{n}} (\mathbf{H}_{\mathbf{n}}) \ (0 \leq \mathbf{i} \leq \mathbf{n}-1), \quad \overline{\mathbf{H}} = \mathbf{H}_{\mathbf{0}}, \\ \mathbf{D}_{\mathbf{n}} &= \widetilde{\mathbf{D}}, \quad \mathbf{D}_{\mathbf{i}} &= \mathcal{M}_{\mathbf{i}+1} \circ \mathcal{M}_{\mathbf{i}+2} \circ \dots \circ \mathcal{M}_{\mathbf{n}} (\mathbf{D}_{\mathbf{n}}) \ (0 \leq \mathbf{i} \leq \mathbf{n}-1), \quad \overline{\mathbf{D}} = \mathbf{D}_{\mathbf{0}}. \end{split}$$

Then we have

- i) $D_{i} \in \left[-K_{X_{i}}\right]$, $(0 \le i \le n)$,
- ii) \mathcal{M}_{i} is a blow-up with center at a point on $supp(D_{i-1}) \cap supp(H_{i-1})$,
- iii) $D_i = \mathcal{M}_i^*(D_{i-1}) E_i$ where E_i is the exceptional curve of the first kind for \mathcal{M}_i $(1 \le i \le n)$.
- LEMMA 3. On the elliptic ruled surface $\bar{X} \xrightarrow{\omega} C$, the effective anticanonical divisor \bar{D} is one of the following types:
- i) $\bar{D} = C_0 + C_1$, where $C_{\bar{O}}$ is a minimal section of \bar{W} and C_1 is another section disjoint from C_0 .
 - ii) $\bar{D} = 2C_0 + \sum f_i$, where C_0 is as above and f_1 's are fibres of \overline{w} .

First in § 1, we make a list of possible singularities on X with $p_g \ge 1$. After that, restricting ourselves to the case of caracteristic 0, we study the structure of X in detail using the sequence of blow-ups as in Lemma 2.

We note that M.Kato and I.Naruki are studying the singularities on normal quartic/surfaces too, and are getting similar results. However their method is to analyze polynomials of degree 4, and so is quite different from ours.

§ 1. Types of singularities on X.

In this section, we assume that X is a normal quartic surface of elliptic ruled type, and we shall list up the possibility of the types of singularities on X with positive geometric genus. It will be shown in §2 that every member in our list really appears as singularities on a normal quartic surface of elliptic ruled type in the case of characteristic 0.

LEMMA 4. The multiplicity of each singular point on X is equal to two.

PROOF. Let P be a sigular point on X, and let $p:X--->\mathbb{P}^2$ be the projection with center at P. If $\operatorname{mult}_p X = 4$, then X is a cone over a plane quartic curve, and hence minimal resolution of X is a ruled surface of genus 3. If $\operatorname{mult}_p X = 3$, then p turns out to be a birational map onto \mathbb{P}^2 , and so X is rational. Therefore we have $\operatorname{mult}_p X = 2$. Q.E.D.

By Lemmas in § 0, the sigularities on X with $p_g \ge 1$ are either two simple elliptic singularities or a singularity with $p_g = 2$. In what follows we use the notations in § 0.

PROPOSITION 1. If X has two simple elliptic singularities, then they are both of type \widetilde{E}_7 or of type \widetilde{E}_8 .

PROOF. Let P and Q be the two simple elliptic singular points on X. We first show that the line $\mathcal L$ through P and Q in $\mathbb P^3$ does not lie on X. Indeed, if $\mathcal L$ was contained in X, let $\widetilde{\mathcal L}$ be the proper transformation of $\mathcal L$

on \widetilde{X} . Then $\widetilde{\mathcal{U}} \cap \widetilde{C_0} \neq \emptyset$, $\widetilde{\mathcal{U}} \cap \widetilde{C_1} \neq \emptyset$ and $\widetilde{\mathcal{U}} \cdot \widetilde{H} = 1$ where $\widetilde{\phantom{\mathcal{U}}}$ means the proper transformation of a curve into \widetilde{X} . Since $\widetilde{\mathcal{U}}$ is isomorphic to \mathbb{P}^1 , $\mathcal{U}(\widetilde{\mathcal{U}})$ must be a fibre of \overline{X} on which there is no center of the blow-ups $\mathcal{U} : \widetilde{X} \longrightarrow \overline{X}$. So $\overline{H} \cdot f = 1$ for any fibre of \overline{X} and we get a contradiction because \widetilde{H} is a curve of genus 3.

To prove the Proposition, it is enough to show that if P is of type $\widetilde{\mathbb{E}_7}$, then so is Q, since a simple elliptic singularity of multiplicity 2 is either of type $\widetilde{\mathbb{E}_7}$ or $\widetilde{\mathbb{E}_8}$. Consider the following commutative diagram:

where p is the projection from X with center at P, $\Pi_1: X' \longrightarrow X$ is the blow-up with center at P, $\Pi_2: X'' \longrightarrow X'$ is the normalization of X' and $g: Y \longrightarrow \mathbb{P}^2$ is the finite morphism of degree 2 obtained by the Stein factorization of $f \circ \Pi_2$. The degree of the branch locus of f is equal to 6 and X' is not normal since P is of type $\widetilde{\mathbb{F}}_7(\text{Laufer [2]})$. Therefore the degree of the branch locus of g is less than or equal to 4. Since $\ell \nsubseteq X$, there is a neighbourhood U of Q in X such that U is transformed by Π_1^{-1} , Π_2^{-1} and h isomorphically into Y. So Y has a simple elliptic singularity which is isomorphic to Q. Thus by the classification of plane curves of degree less than or equal to 4 (cf. Hidaka-Watanabe [1]), we prove that Q is of type $\widetilde{\mathbb{F}}_7$.

PROPOSITION 2. Suppose that X has a singular point P of geometric genus equal to two. Then the exceptional set for the minimal resolution of P is one of the following four types:

where each curved line means a non-sigular elliptic curve whose self-intersection number is equal to -1 in (i), -2 in (ii),(iii),(iv), and any straight line means a non-singular rational curve with self-intersection number equal to -2.

(The symbols of these four types of singularities are due to S.S.-T. Yau.)

PROOF. Since $p_g(P) = 2$, and P is a Gorenstein singularity, we have $p_a(P) = 1$ (Hidaka-Watanabe [1]). So we can define the elliptic sequence Z_{B_0}, \ldots, Z_{B_0} according to Yau [4]. By the definition, every Z_{B_0} is an effective divisor supported on the exceptional set $\sup(\widetilde{D})$ on \widetilde{X} . By Lemmas 2 and 3, $\sup(\widetilde{D})$ is simple normal crossings and has the non-singular elliptic curve $\widetilde{C_0}$ as a component. Therefore, by the property of elliptic sequence (Theorem 3.7 of [4], Proposition 2.1 of [5] and Corollary 2.3 of [6]), we have

1)
$$Z_{B_{\ell+1}} = \widetilde{C_0}$$
,

2)
$$Z_{B_0}^2 \leq ... \leq Z_{B_{\ell+1}}^2 < 0$$
,

3)
$$\sum_{i=0}^{l+1} Z_{B_i}^2 = K_{\overline{X}}^2 = -n$$
 (n being the number of blow-ups in $\mu: \widetilde{X} \longrightarrow \overline{X}$),

4)
$$2 \ge -\sum_{i=0}^{k} Z_{B_{i}}^{2}$$
.

(Although Yau's proof is in the case of k = C, it is easy to check that 1)—4) remain true in our situation for any algebraically closed field k.)

From these we see that all posibility are as follows.

	l	Z _B 0	z _B l	Ĉ ₀ 2	n
(a)	1	-1	-1	-1	3
(b)	0	- 2		- 1	3
(c)	0	- 2		- 2	岸
(a)	0	-1		-1	2

Now we can choose a relatively minimal model \overline{X} of \widetilde{X} so that $C_0^2 = \widetilde{C_0}^2$. Indeed, if $C_0^2 > \widetilde{C_0}^2$ for an \overline{X} , there exists a point P_0 on C_0 such that $\mu:\widetilde{X} \longrightarrow \overline{X}$ factors through the blow-up $\mu_1':X_1' \longrightarrow \overline{X}$ with center at P_0 . Hence there is a morphism $\mu':\widetilde{X} \longrightarrow \overline{X}'$ where \overline{X}' is the image of the elementary transformation of \overline{X} with center at P_0 , and so \overline{X}' is another relatively minimal model of \widetilde{X} whose minimal section C_0' satisfies $C_0'^2 = C_0^2 - 1$.

With the assumption of $C_0^2 = \widetilde{C_0}^2$, and using Lemma2, we can list up the possibility of \overline{D} , \mathcal{M} and \widetilde{D} corresponding to each case in the table above:

(a) and (b): $\overline{D} = 2C_0 + f_0$, f_0 is a fibre of $\widetilde{w}: \overline{X} \longrightarrow C$, and the centers of the blow-ups \mathcal{M} lie on $\operatorname{supp}(f_0) \sim \operatorname{supp}(C_0)$. Hence $\widetilde{D} = 2\widetilde{C_0} + \widetilde{f_0}$. (\sim always means the proper transformation on \widetilde{X} .)

(c-1)—(c-3): $\overline{D} = 2C_0 + f_1 + f_2$, f_1 and f_2 are disjoint fibres of \widetilde{W} . (c-4) and (c-5): $\overline{D} = 2C_0 + 2f_1$, f_1 is a fibre of \widetilde{W} .

In (c-1)—(c-5), M and \widetilde{D} are as described in the following figures:

where P_i is the center of \mathcal{M}_i (the order of the blow-ups may be changed), the bold lines mean the support of the effective anti-canonical divisor D_i on each step, and the dotted lines mean the exceptional curves of the blow-ups which do not appear in D_i .

It remains to show that the cases (a) and (b) do not occur. For (a), since $\mathcal{L} = 1$, \widetilde{D} must have at least three irreducible components by a property of the elliptic sequence; $\operatorname{supp}(\widetilde{C}_0) = \operatorname{supp}(\mathbb{Z}_2) \subseteq \operatorname{supp}(\mathbb{Z}_1) \subseteq \operatorname{supp}(\mathbb{Z}_2) = \operatorname{supp}(\widetilde{D})$. Hence a contradiction. For (b), let \mathbf{r}_i be the multiplicity of \mathbf{H}_i at \mathbf{P}_i ($1 \le i \le 3$) and let $\widetilde{\mathbf{H}} = \mathbf{mC}_0 + \mathbf{mf}$ (f denotes a fibre and $\mathbf{m} \in \mathbb{Z}$). Then we have

$$4 = \hat{H}^2 = \bar{H}^2 - \sum_{i} r_i^2 = m^2 - \sum_{i} r_i^2$$

and

$$0 = \widetilde{H}.\widetilde{r}_0 = \overline{H}.r_0 - \Sigma r_i = m - \Sigma r_i.$$
Hence
$$4 = (\Sigma r_i)^2 - \Sigma r_i^2 = 2(r_1r_2 + r_2r_3 + r_3r_1).$$
Since $r_i \ge 1$ ($1 \le i \le 3$), we get a contradiction. Q.E.D.

(d): $\overline{D} = 2C_0 + f_0$, f_0 is a fibre of \overline{W} , the center of M lie on $\left|\sup_{C_0}(f_0)\right| = 2C_0$, and hence $\overline{D} = 2C_0 + \widetilde{f_0}$.

§ 2. Statements of the main results.

In this section, we assume that the ground field k is algebraically closed and of characteristic 0.

Let $Y_n \xrightarrow{Mn} Y_{n-1} \xrightarrow{Mn-1} \dots \xrightarrow{M1} Y_0 = Y$ be a sequence of blow-ups where Y is a non-singular surface. Let $P_i \in Y_{i-1}$ denote the center of \mathcal{M}_i and $E_i \subset Y_i$ the exceptional curve for \mathcal{M}_i $(1 \leq i \leq n)$. Then we call (P_1, \dots, P_n) a sequence of points on Y admitting infinitely near points, and the sequence above of blow-ups is called the blow-up of (P_1, \dots, P_n) . For a divisor D on Y and non-negative integers m_i $(1 \leq i \leq n)$, we denote by $|D - m_1 P_1 - \dots - m_n P_n|$ the linear subsystem of |D| consisting of elements $|D| \in |D|$ such that $|\mathcal{M}_n^*(\mathcal{M}_{n-1}) - (\mathcal{M}_1^*(D))| - m_1 E_1 - (1) - m_n E_n$ remain effective on $|Y_n|$. When there is no danger of confusion, we denote also by $|P_i|$ the image on Y of the point $|P_i| \in Y_{i-1}$.

Let C be a non-singular curve and let E be a vector bundle of rank 2 on C. Assume that E is the direct sum of two line bundles on C. Then the ruled surface $\mathbb{P}(E) \longrightarrow \mathbb{C}$ has a section which is disjoint from a minimal section. We denote by C_1 such a section, and by C_0 , as before, a minimal section. In general these sections are not uniquely determined, but we fix a pair (C_0,C_1) once and for all on $\mathbb{P}(E)$ unless otherwise mentioned.

THEOREM 1. Let C be a non-singular elliptic curve and let L be an invertible sheaf of degree 2 on C. Let $\overline{X} = \mathbb{P}(O_{\overline{C}} \oplus L) \xrightarrow{\infty} C$ be the induced ruled surface. Fix an effective divisor $\overline{D} \in \left| -K_{\overline{X}} \right|$ and take a sequence of points (P_1, P_2, P_3) on \overline{X} admitting infinitely near points such that:

if $\bar{\mathbb{D}} = \mathbb{C}_0 + \mathbb{C}_1$ where \mathbb{C}_1 is a section of $\widetilde{\mathcal{W}}$, then P_i is infinitely near a point on \mathbb{C}_1 ; and if $\bar{\mathbb{D}} = 2\mathbb{C}_0 + f_1 + f_2$ where f_i 's are fibres, then the position of P_1, P_2, P_3 is one of the types (c-1)-(c-5) in § 1. And in each cases, (*) there is no section \mathbb{C}' of $\widetilde{\mathcal{W}}$ such that $\mathbb{C}' \sim \mathbb{C}_1$, $\mathbb{C}' \not \in \bar{\mathbb{D}}$ and $\mathbb{C}' \ni P_i, P_j$ for some i, j $(1 \le i < j \le 3)$.

Then

- 1) there exists a unique point $P_{\downarrow\downarrow}$ infinitely near a point on \overline{X} such that $|2C_1 P_1 P_2 P_3| = |2C_1 P_1 P_2 P_3 P_{\downarrow\downarrow}|$. Moreover let $\mu: \widetilde{X} \longrightarrow \overline{X}$ denote the blow-up of $(P_1, \ldots, P_{\downarrow\downarrow})$ and let \widetilde{H} be the proper transformation by μ of a general member in $|2C_1 P_1 \ldots P_{\downarrow\downarrow}|$. Then we have
 - 2) Bs $|\widetilde{H}| = \emptyset$,
 - 3) dim $|\widetilde{H}| = 3$, $\widetilde{H}^2 = 4$,
 - 4) \widetilde{H} is a non-hyperelliptic curve.

Therefore \widetilde{H} defines a birational morphism from \widetilde{X} to a normal quartic surface $X \subset \mathbb{R}^3$ with singularities of type $2\widetilde{E}_7$, $El+A_1+A_1$, El+D(3) or El+D(4). Conversely, any quartic surface of elliptic ruled type with at least one of these four types of singularities is obtained by the construction above.

REMARK. Unless the condition (*), 1)—3) of the Theorem 1 hold true. But in this case, \widetilde{H} turnes out to be a hyperelliptic curve so that \widetilde{H} defines a morphism of degree 2 onto a normal quadric surface in \mathbb{P}^3 . (cf. Lemmas 6 and 7 in § 3.)

THEOREM 2. Let C be a non-singular elliptic curve and let L be an invertible sheaf of degree 1 on C. Let $\overline{X} = \mathbb{P}(0_{\mathbb{C}} \oplus \mathbb{L}) \xrightarrow{\omega} \mathbb{C}$ be the induced ruled surface. Fix an effective divisor $\overline{\mathbb{D}} \leftarrow \sqrt{-K_{\overline{X}}}$ and take a point P_1 on \overline{X} such that:

if $\overline{D} = C_0 + C_1$ ' where C_1 ' is a section of \overline{w} , then $P_1 \in \text{supp}(C_1')$ with $O_{C_1}(2P_1) \ngeq L^2$ (identifying C_1 ' with C via \overline{w}); and if $\overline{D} = 2C_0 + f_0$ where f_0 is a fibre of \overline{w} , then $P_1 \in \text{supp}(f_0) \setminus \text{supp}(C_0 + C_1)$.

Then

- 1) there exists a unique point P_2 infinitely near a point on \overline{X} such that $\left|3C_1-2P_1\right|=\left|3C_1-2P_1-P_2\right|$. Moreover let $\mu:\widetilde{X}\longrightarrow\overline{X}$ denote the blow-up of (P_1,P_2) and let \widetilde{H} be the proper transformation by μ of a general member in $\left|3C_1-2P_1-P_2\right|$. Then we have
 - 2) Bs $|\widetilde{H}| = \emptyset$,
 - 3) $\dim \left[\widetilde{H}\right] = 3$, $\widetilde{H}^2 = 4$,
 - 4) H is a non-hyperelliptic curve.

Therefore \widetilde{H} defines a birational morphism from \widetilde{X} to a normal quartic surface $X \subset \mathbb{P}^3$ with singularities of type $2\widetilde{E}_8$ or $El+A_1$.

Conversely, any quartic surface of elliptic ruled type with at least one of these two types of singularities is obtained by the construction above.

COROLLARY. Let X be a quartic surface of elliptic ruled type. Then the singular set of X is one of the following types, and each of them really occurs.

 $\left\{2\widetilde{E_7}, \text{ a subgraph of } A_3\right\}$, $\left\{\text{El+A}_1+A_1, \text{ a subgraph of } A_1\right\}$, $\left\{\text{El+D}(3)\right\}$, $\left\{\text{El+D}(4)\right\}$, $\left\{2\widetilde{E}_8\right\}$, $\left\{\text{El+A}_1\right\}$.

§ 3 Proof of Theorem 1.

We start with \bar{X} , \bar{D} , P_1 , P_2 , and P_3 as in the Theorem, but at first we do not assume the condition (*).

Proof of 1), 2) and 3): We will prove only in the case of $\bar{D} = C_0 + C_1$ where C1'is a section, since the proofs in other cases are similar. By C1' $\sim C_1$, we may assumu that $\bar{D} = C_0 + C_1$. Since $2C_1 \cdot C_1 = 4$ and since C_1 is an elliptic curve, we see dim $\left(2C_1 - P_1 - P_2 - P_3\right) | c_1 = 0$. Hence we can define a unique point P₁ lying on the proper transformation of C₁ on the blow-up of (P_1, P_2, P_3) of \bar{X} such that $|2C_1 - P_1 - P_2 - P_3 - P_4| = |2C_1|$ $-P_1 - P_2 - P_3$. Set $\Lambda = |2C_1 - P_1 - P_2 - P_3 - P_4|$ and let f_i denote the fibre on \bar{X} through P_i ($1 \le i \le 4$). Since $O_{C_1}(P_1 + P_2 + P_3 + P_4) =$ $O_{C_1}(2C_1) = L^2$ identifying C_1 and C via W, we find the following four elements of Λ : $2C_0 + \sum_{i=1}^{3} f_i$, $C_0 + f_5 + f_6 + C_1$, $C_0 + f_7 + f_8 + C_1$ and 2C₁, where f_j 's $(5 \le j \le 8)$ are distinct fibres of \mathfrak{W} such that $f_5 + f_6$, $f_7 + f_8 \in |\mathfrak{V}^*L|$. Let $s_1, \dots, s_4 \in H^0(\bar{X}, O_{\bar{X}}(2C_1))$ denote the defining equations of above four divisors. Obviously si's are linearly independent. $\dim \left| 2C_1 \right| = 6$, s_i 's form a basis of Λ . Therefore, letting \bar{H} be a general member of \bigwedge and letting us define $M: \widetilde{X} \longrightarrow \overline{X}$ and \widetilde{H} as in the Theorem, we deduce that:

the base points of Λ are exactly P_1, \dots, P_{μ} , Bs $|\widetilde{H}| = \emptyset$,

dim $|\widetilde{H}| = \dim \Lambda = 3$ and \widetilde{H} is non-sigular at P_1, \dots, P_4 . Thus 1),2) and 3) follow.

Let X denote the image of \widetilde{X} under the morphism $\Phi_{\widetilde{H}}$ defined by \widetilde{H}

Then X is a hypersurface in \mathbb{P}^3 of degree 4 or 2 by 3),and X is normal because the pull back of a general hyperplane section of X is a non-singular curve \widetilde{H} . It is clear by our construction that there is a unique effective anti-canonical divisor \widetilde{D} on \widetilde{X} , and that the configuration of \widetilde{D} is $2\widetilde{E}_7$, $\mathbb{E}1+A_1+A_1$, $\mathbb{E}1+D(3)$ or $\mathbb{E}1+D(4)$ according to our choice of \widetilde{D} , P_1 , P_2 and P_3 . Moreover, by a direct computation, we see that $\sup_{\widetilde{D}}(\widetilde{D})$ is one of the connected components of the exceptional set for $\overline{P}_{\widetilde{M}}$. By $\widetilde{H}.K_{\widetilde{X}}=0$, the restriction of $\overline{\Phi}_{\widetilde{M}}$ to \widetilde{H} is the canonical map of \widetilde{H} , therefore X is a quartic surface if and only if \widetilde{H} is non-hyperelliptic. We will show a criterion for this property in a little generalized situation.

LEMMA 5. Assume that $\Phi(Y) = \sum_{2}^{0}$. Then $v \notin \overline{\Phi}(D)$.

PROOF. Let $\pi_1: \Sigma_2 = \mathbb{P}(0, \mathbb{P}^0(-2)) \longrightarrow \Sigma_2^0$ be the blow-up with center at v, and let Γ_0 be the exceptional rational curve for π_1 . Let Γ be a

general hyperplane section of Σ_2^0 and let Γ_1 denote the proper transformation of Γ on Σ_2 . We may assume that $\Phi(H) = \Gamma$. Consider the following commutative diagram:

where $\pi_2: \widetilde{Y} \longrightarrow Y$ is a minimal sequence of blow-ups such that the induced map $\widetilde{Y} \longrightarrow \Sigma_2$ becomes a morphism, Z is the Stein factorization of $\widetilde{Y} \longrightarrow \Sigma_2$, and \widetilde{Y} is the proper transformation of Y. Let Y denote the branch locus of Y. Then Y denotes a fibre of the ruling on Y since Y is a morphism of degree 2 between non-singular curves of genus 3 and 0 respectively, we have Y and Y and hence Y and Y for some Y and Y is a morphism of degree 2 between non-singular curves of genus 3 and 0 respectively, we have Y and Y and hence Y and Y and hence Y are Y for Y and Y are Y and Y are Y and Y and Y are Y are Y and Y are Y and Y are Y and Y are Y and Y are Y are Y and Y are Y and Y are Y are Y and Y are Y are Y are Y and Y are Y and Y are Y and Y are Y and Y are Y are Y are Y and Y are Y and Y are Y and Y are Y are Y a

$$-2 = \Gamma_0^2 \le \Gamma_0 \cdot B = -4n + 8.$$

If n = 0, then Z is a ruled surface of genus 3, and hence a contradiction. Therefore we have n = 1 or 2.

Assume that $\Phi(D) \ni v$. Then there exists a non-singular elliptic curve $C \subseteq D$ such that $\Phi(C) = v$ by Lemmas 2 and 3. Let \widetilde{C} denote the proper transformation of C on \widetilde{Y} . If $f(\widetilde{C})$ is a curve, then clearly $\widetilde{Y} = Y$, and $g^{-1}(\Gamma_0) = f(\widetilde{C}) \cong \widetilde{C} = C$ (consider the configuration of D). Hence we get a contradiction because $C^2 = 2 \cdot \Gamma_0^2 = -4$. Thus $f(\widetilde{C})$ is a point, and so Z has a singular point on $g^{-1}(\Gamma_0)$ which is not a rational double point.

Suppose n=1. Then B.f=2. From this we see easily that Z has at most rational bouble points. Suppose n=2, then $B \sim 4 \Gamma_0 + 8f$. If $\Gamma_0 \nleq B$, then Z is smooth over Γ_0 since $\Gamma_0.B=0$. Hence $B=\Gamma_0+B_0$ for some reduced effective divisor B_0 not containing Γ_0 . But since $B_0 \cdot \Gamma_0 = 2$, also in this case Z has at most rational bouble double points over Γ_0 . Hence a contradiction. Q.E.D.

LEMMA. 6. $\Phi(Y)$ is a normal quartic surface if and only if there is no curve C on Y satisfying:

(**) C is non-singular, elliptic, C.H = 2, and $supp(C) \cap supp(D) = \emptyset$.

FROOF. Suppose that $\Phi(Y)$ is a quartic surface and that there were a curve C on Y which satisfies (**). Then $\Phi(C)$ is a curve and is birationally equivalent to C, because C.H>0 and Φ is a birational morphism. But by $\Phi(C)$.h = C.H = 2 for a hyperplane/section h of $\Phi(Y)$, $\Phi(C)$ must be a rational curve, and hence a contradiction. Next suppose $\Phi(Y) = \sum_0$. Let us take a general fibre ℓ of one of the two rulings on ℓ 0. Then it is easy to verify that the proper transformation of ℓ 0 on Y satisfies (**). Finally suppose ℓ 1 = ℓ 2 and let ℓ 3 be a general generating line of ℓ 2. Then, by Lemma 5, ℓ 3 and ℓ 4 and ℓ 5 are disjoint. It follows that the proper transformation of ℓ 3 on Y satisfies (**). Q.E.D.

Now returning to the proof of Theorem 1, we only have to show the following Lemma, which is proved by a direct computation (omitted).

LEMMA 7. The non-existence of cueves satisfying (**) is equivalent to the condition (*).

132

In the end, we prove the second part of the Theorem. So let X be a quartic surface of elliptic ruled type with at least $2\widetilde{\mathbb{E}}_7$, $\mathbb{E}1+A_1+A_1$, $\mathbb{E}1+D(3)$, or $\mathbb{E}1+D(4)$ as singularities. Let $\pi:\widetilde{X}\longrightarrow X$ be the minimal resolution of X. Then from the proof of Proposition 2, there is a ruled surface $\overline{X}=\mathbb{P}(\mathbb{E})\xrightarrow{\otimes}\mathbb{C}$ over an elliptic curve C such that $C_0^2=-2$, in particular \mathbb{E} splits (the notations are the same as before), and that there exists a sequence of points (P_1,P_2,P_3,P_4) on \overline{X} admitting infinitely near points such that by the blowing-up of them we obtain \widetilde{X} . Note that this map $\widetilde{X}\xrightarrow{\wedge}\overline{X}$ is a sequence of Lemma 2. We have already shown that (P_1,P_2,P_3,P_4) must satisfy the conditions i)—iii) in the Theorem, and hence we only have to show the following

LEMMA 8. Let $\overline{H} \subset \overline{X}$ be as in Lemma 2. Then $\overline{H} \in \left\{ 2C_1 \right\}$.

PROOF. We use the notations in Lemma2. We first prove that $\overline{H} \cong 2C_1$. Since $\widetilde{H}.\widetilde{C_0} = 0$, we have $\overline{H}.C_0 = 0$. Hence $\overline{H} = mC_0 + 2mf$ for some $m \in \mathbb{Z}$, and we want to show that m = 2.

Case 1. X has a singular ity of $p_g = 2$: We may assume that the order of P_1 , P_2 , P_3 , P_4 is the same as one of the figures (c-1)-(c-5) in § 2, and we use the notations there. Put $r_1 = \text{mult}_{P_1} H_1$ for $1 \le i \le 4$. On the other hand, since the proper transformation of H and H_1 must be disjoint after blowing-up (P_1, P_2) , we get

Then we have
$$4 = \widetilde{H}^2 = \overline{H} \cdot f_1 = m.$$

$$4 = \widetilde{H}^2 = \overline{H}^2 - \sum_i r_i^2 = 2m^2 - \sum_i r_i^2.$$

Replacing $\{P_1, P_2, f_1\}$ with $\{P_3, P_4, f_2\}$ if necessary in the case of (c-1)—(c-3), we can assume that

$$r_1^2 + r_2^2 \ge r_3^2 + r_4^2$$
.

Therefore we have

$$4 = 2(r_1 + r_2)^2 - Z r_1^2$$

$$= (r_1^2 + r_2^2 - r_3^2 - r_4^2) + 4r_1 r_2 \ge 4r_1 r_2.$$

It follows that $r_1 = r_2 = 1$ and so m = 2.

Case 2. X has $2\widetilde{E}_{7}$: Let $r_{i} = \text{mult}_{P_{i}} H_{i}$ $(1 \le i \le 4)$, then we have $4 = \widetilde{H}^{2} = \overline{H}^{2} - \sum r_{i}^{2} = 2m^{2} - \sum r_{i}^{2},$ $\sum r_{i} = \overline{H} \cdot C_{1} = 2m.$

Therefore we get $m \neq 3$, because the above equations have no positive integral solution (r_1, r_2, r_3, r_4) if m = 3. Next, since P_1, \ldots, P_k lie on $\operatorname{supp}(C_1)$, we can find another relatively minimal model $\widetilde{X} \xrightarrow{\mathcal{L}'} \overline{X}'$ such that $\overline{X}' = \mathbb{P}(O_{\mathbb{C}} \oplus L')$ where L' is an invertible sheaf of degree 0 on C. Then there are two disjoint sections C_0' , C_1' of $w':\overline{X}' \longrightarrow C$ and four points P_1' , $P_2' \in C_0'$, P_3' , $P_k' \in C_1'$ admitting infinitely near points such that \mathcal{L}' is the blow-up of (P_1', P_2', P_3', P_k') and that $\mathcal{L}'(\widehat{C_0} + \widehat{C_1}) = C_0' + C_1'$. We may assume that $O_{\overline{X}'}(C_1') \mid_{C_1'} \cong L'$ and $O_{\overline{X}'}(C_0') \mid_{C_0'} \cong L'^{-1}$. Set $\overline{H}' = \mathcal{L}'(\widehat{H})$. Then $\overline{H}' \cong mC_0' + nf$ for some $n \in \mathbb{Z}$ where f is a fibre of \overline{w}' . By $\overline{H}.\widetilde{C_0} = \overline{H}.\widetilde{C_1} = 0$, we get

$$r_1' + r_2' = \overline{H}' \cdot C_0' = \eta_1 r_2' + r_h' = \overline{H}' \cdot C_1' = n.$$

We may assume that $r_1' \ge r_3' \ge r_4' \ge r_2'$ so that $r_1'^2 + r_2'^2 \ge r_3'^2 + r_4'^2$ and equality holds if and only if $r_1' = r_3'$. Then we obtain

$$4 = \widetilde{H}^{2} = \overline{H}^{2} - \sum_{i}^{2} = 2m(r_{1}' + r_{2}') - 2(r_{1}'^{2} + r_{2}'^{2})$$

$$0 \ge r_{1}'(m - r_{1}') + r_{2}'(m - r_{2}') - 2 \qquad (***)$$

and equality holds if and only if $r_1' = r_3'$. Since $m \ge \overline{H}' \cdot f \ge r_1' \ge r_2' \ge 1$,

the right hand side of (***) is either i)-2, ii) -1 or iii) 0. In the case of i), we have $m-r_1'=m-r_2'=0$ and so $r_1'=r_3'$ which implies a contradiction. In case ii), we get $m-r_1'=0$, $r_2'=m-r_2'=1$ and hence m=2. (But it follows that $r_1'=r_3'$ because $r_1'=2$ and $r_2'=1$, hence this case is impossible.) In iii), there are the possibilities: a) $r_1'=m-r_1'=r_2'=m-r_2'=1$, b) $m-r_1'=0$, $r_2'=1$, $m-r_2'=2$, and c) $m-r_1'=0$, $r_2'=2$, $m-r_2'=1$. In a) we get m=2, and so we have done. In b) and c), we get m=3, but this value has been already excluded.

Therefore we conclude that $\overline{H} = 2C_1$, and hence $\overline{H} \sim 2C_1 + w^*(D)$ for some divisor D on C of degree O. Since $\overline{X} = \mathbb{P}(O_C \oplus L)$ for some invertible sheaf L of degree 2 on C, we have

$$\begin{array}{l} \dim \ \operatorname{H}^0(\overline{\mathbf{X}}, \ \operatorname{O}_{\overline{\mathbf{X}}}(\overline{\mathbf{H}})) = \dim \ \operatorname{H}^0(\mathbf{C}, \ (\operatorname{O}_{\mathbf{C}} \oplus \operatorname{Le} \mathbf{L}^2) \otimes \operatorname{O}_{\mathbf{C}}(\mathbf{D})) \\ \\ = \begin{cases} 7 & \text{if } \mathbf{D} \sim \mathbf{0} \\ 6 & \text{if } \mathbf{D} \searrow \mathbf{0} \end{cases} \end{array}$$

and

$$\dim H^{0}(\overline{X}, O_{\overline{X}}(\overline{H} - C_{0})) = \dim H^{0}(C, (L\Theta L^{2}) \otimes O_{C}(D)) = 6.$$

Since \bar{H} is irreducible, \bar{H} has no fixed component, hence we prove that $D \sim 0$, i.e. $\bar{H} \sim 2C_1$. Q.E.D.

§ 4. Proof of Theorem 2.

We proceed in several steps which is almost parallel in the proof of Theorem 1. The detail is omitted here.

§ 5. Proof of Corollary.

Let $\widetilde{X} \longrightarrow X$ denote the minimal resolution of X. Looking at the construction of \widetilde{X} described in Theorems 1 and 2, we can list up the configuration of curves on \widetilde{X} which is disjoint from \widetilde{H} (notations are those in Theorems 1 and 2) as follows:

The possibility of $\{E_1+A_1+A_1, A_1, A_1\}$ arises when we take P_1, P_2, P_3 as (c-3) in Theorem 1. But it is easy to show that in this case the section of P_1 must pass through P_3 . From this the Corollary follows.

Q.E.D.

REFERENCES

- 1. F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anticanonical divisor, Tokyo J. Math., 4 (1981), 319-330.
- 2. H. Laufer, On minimally elliptic singularities, Amer. J. Math.,99(1977), 1259-1295.
- 3. Y. Umezu, On nomal projective surfaces with trivial dualizing sheaf, Tokyo J. Math., 4 (1981), 343-354.
- Stephen S.T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc., 257 (1980), 269-329.
- 5. Hypersurface weighted dual graphs of normal singularities of surfaces, Amer. J. Math., 101(1979), 761-812.
- 6 ———, Gorenstein singularities with geometric genus equal to two,
 Amer. J, Math., 101(1979), 813-854.

Department of Mathematics

Faculty of Sciences

Tokyo Metropolitan University

Fukazawa, Setagaya-ku, Tokyo 158