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Quartic surfaces of elliptic ruled type

Yumiko UMEZU

§ 0. Introduction.

In this paper we shall investigate the structure of normal quartic

3 whose resolutions are birationally equivalent to elliptic

surfaces in P
ruled surfaces. In this paper Wwe call such a surface simply a quartic
surface of elliptic ruled type.

Let X Dbe a quartic surface of elliptic ruled type defined over an
algebraically closed field k of characteristic # 2, 3, and let qrzit——ﬁ-x
be the minimal resolution of X. We shll study X by studying the structure
of X and the linear system on X which defines the morpﬁimn .

Since the dualizing shaf UJX of X is trivial, we can apply the #esults
in [3]. Here we restate some of them (restricting to our present situation) .

which will play essential roles throughout this research. We use the terms

and facts cited in § 1 of ‘[3] without notice.

LEMMA 1. For any point P ‘on X, the geometric genus pg(P) of P is

not greater than 2.

Since w® there exists a unique effective anti-canonical divisor on

X X?
if'whose connecteqéomponents correspond by W to singular points with pg z-1



118

on X. We denote this divisor by D.

/“n-l7 XX% X

ces 0

: ' = ~
blow-downs obtaining a relatively minimal model X of X, and let ‘ﬁ be the

= X be a sequence of

LEMMA 2. Let T-x Mny
) n n-1

pull back of a general hyperplane section of X toli’ such that ?f is

irreducible and non-singular. Put

H o=H, H = M Mool (d) (0¢g1ign1), B =1y,
~ -
= = £ i < n- =
D =D, D, Mi+1°}"i+2"'" o,un__(an) (04 1<n-1), D Dy-

Then we have
. - (h
i) D, € ]Kxi[ ,(0 £i<n),
ii) JM; 1is a blow-up with center at q501nt on supp(Di_l)r\supp(Hi_l),
A - % _ . .
iii) D, }Ai (Di-l) E;, vhere E, is the exceptional curve of the

first kind for M, (1< 1< n).

| L W ‘
LEMMA 3. On the elliptic ruled surface X -——C, the effective anti-

canonical divisor D is one of the’folloﬁing types:

> N = +
i) D CO C,» where C

another section disjoint from C

g is a minimal section of W and C:L is

0
ii) D = 2CO'+ . f?, where C, is as above and fl's are fibreqéfﬁz
First in § 1l, we make a list of possible singularities on X with
pg 2 1, ~  After that, restricting ourselves to the case of caracteristic
0, we study the structure of X 1in detail using the sequence cf blow-ups as
in Lerma 2.
We note that M.Kato and I.Naruki are studying the singularities on normal

quartiqéurfaces too, and are getting similar results. However their method is

to analyze polynomials of degree k, and so is quite different from ours.
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§ 1. Types of singularities on X.

In this section, we assume that X is a normal quartic surface of elliptiec
ruled type, and we shall list up the possibility of the types of singularities
on X with positive geometric genus. It will be shown in §2  that every
member in our list really appears as singularities on a normal quartic surface

of elliptic ruled type in the case of characteristic O.
LEMMA 4. The multiplicity of each singular point on X 1is equal to two.

PROOF. Let P be a sigular point on X, and let p:X--->lP2 be the
projection with center at P. If multPX = L4, then X is a cone over a plane
quartic curve, and hence minimal resolution of X is a ruled surface of genus
3. If multPX = 3, then p turns‘out to be a birational map onto IP2, and
. so X 1s rational. Therefore we have multPX = 2. Q.ED.

By Lemmas in § 0, the sigu}arities on X with pg g 1 are either two
simple elliptic singularities or a singularity with pg = 2, In what follows
we use the notations in §0.

¢ |

PROPOSITION 1. If X has two simple elliptic singulérities, then they

-~ P

are both of type 7 or of type E8.
PROOF. Let P and Q TDe the two simple elliptic singular points on X.
We first show that the line £ through P and . Q in IP3 does not lie on X.

- ~
Indeed, if £ was contained in X, let £ be the proper transformation of L
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on X. Then T(‘\’CB # 0, 7 n 61 # ¢ and Z.H5 =1 where “~ means the proper :
transformation of a curve into X. Since lf is isomorphic to Pl, jl(jr)
must be a fibre of X on which there is no center of ‘the blow-ups L(éf——?'i;
So H.f =1 for any fibr;igf X and we get a contradiction because T is a
cufve of genus 3.

To prove the Proposition, it is enough to show that if P 1is of type ﬁ;,
then so is Q, since a simple elliptic singularity of multiplicity 2 1is either’

of type ﬁ} or E%. Consider the following commutative diagram:

v

n

Y g

v

joy

H
Rt =

g

where p 1is the projection from X with center at P, 1Tl:X'——9 X 1is the
blow-up with center at P, TTE:X"——9~X' is the normalization of X'  and
g:Y—-——)IP2 is the finite morphism of degree 2 obtained by the Stein
factorization of fo'ﬂé. The degree of the branch locus of f is equal to 6
and X' is not normal since P is of type ﬁ;(Laufer [2]). Therefore the
degree of the branch locus of g .is less than or equal to 4. Since Q<¥ X,
there is a neighbourhocod U of Q din X such that U is transformed by
7r;l, qT;l and h isomof@hically into Y. So Y has a simple elliptic
singularity which is isomorphic to Q. Thus by the classification of plane
curves of degree less than or equal to 4 (ef. Hidaka-Watanabe [1]), we prove

that Q is of type ﬁ,’r ‘ Q.ED,

PROPOSITION 2. Suppose that X has a singular point P of geometric
genus equal to two. Then the exceptional set for the minimal resolution of

P is one of the following four types:

4
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1L £ I

(1) EL+A, (i1) E1+A +A) (iii) E1+D(3) (iv) E1+D(L)

where each curved line means a non—s;gular elliptic curve whose self-intersection
J

number is equal to -1 in (i), -2 in (ii),(iii),(iv), and any straight line
means a non-singular rational curve with self-intersection number equal to -2.

(The symbols of these fouy&ypes of singularities are due to S.S.-T. Yau.)

PROOF. Since pg(P) = 2, and P is a Gorenstein singularity, we have Pa(P)

= 1 (Hidaka-Watanabe [1]). So we can define the elliptic sequence Tg seees
0

B, according to Yau [4]. By the definition, every Zy is an effective
+1 1

divisor supported on the exceptional set supp(ﬁ) on X. By Lemmas 2 and 3,
supp(ﬁ) is simple normal crossings and has the non-singular elliptic curve 66
as a component. Therefore, by the property of elliptic sequence (Theorem 3.7

of [4], Proposition 2.1 of [5] and Corollary 2.3 of [6]), we have

1) c
= s
B O
2)'ZB2§...gZB 240,
o I 201
1Q+l 2 ' Vond -
3) :Z:Z =K = -n (n being the number of blow-ups in M :X —X),
2 2
by 22-> 2. °.
i=0 i

(Although Yau's proof is i the case of k = €, it is easy to check that 1)—L)
remain true in our situation for any algebraically closed field k.)

_ s - ,
From these we see that all po§ébility are as follows.
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[ N ZBoz ZBle C02 0

(a) | 1 -1 -1 -1 3

(b) | o -2 -1 3

(e) 0 -2 -2 k

(a) 0 -1 -1 2
Now we can choose a relatively minimal model X of X so that 002 = 66‘2.
Indeed, if 002 > ?1/02 for an )?, there exists a point P, on C such that

0 0
o = 1 T i
M :X —>» X factors through the blow-up ,ui:Xl——) X with center at Po.
7~ - —
Hence there is a morphism m':X — X' where X! is the image of the elementary

transformation of X with center at P., and so X' is another relatively

0
.. ~ .. . . . s 2 _ a2
minimal model of X whose minimal section CO satisfies C0 = CO - 1.

S B

(o]

With the assumption of 002 = 662, and using Lemma2 ., we can list up the

possibility of D, M and D corresponding to each case in the table above:

() and (p): D= 2Cy + £y, £, is a fibre of @:X—>C, and the centers of

NS o~ ~
the blow-ups M lie on supp(fo)\ supp(Co). Hence D = 2C) + f. ( ~ always

~
means the proper transformation on X.)

(c=1)—(c=3): D = 2C, + £, + f,, £, and f, are disjoint fibres of w.

(c-b)-and-(e¢-5): D = 2C, + 2f,, f; 1isa fibre of @.

N M -
In (c-1)—~(c-5), M and D are as described in the following figures:
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ra
% f1 %2
Pl;g ~—t- ——— )LP3 U ORI
Pl
Py B : R D -t -
(=) ¢ " M M M &%
0 e of j’ﬁ. At 2 T 3 P s ) A
X = XO Xl X2 X3 Xh =X
P P \ P N
l}‘ - A - s\‘—'— * 3 t;\___ - _.\.—-. -~ ——
b wfem
— & < .
(c-2) A1 e /\J - A1 s B
Z P
X = XO Xl X2 X3 X,4 =X
P]_ X P AN ‘ P3 N P)-L N ’
—_Dc ek 3L . Vd
--ZT ~ ) \ * -\-\-N - /-.
(c-3) ¢ < — <
A~ T T T T7T A~
X = XO Xl X2 X3 Xh =X
1 ' F3 1/ ) /
* o % ~ e
1 Ph Y
— —t
(c-1) — Fof e T —_|
C ’ : C
0 1T —T /\/ 0/\/
1 ~,
X = XO Xl X2 X3 X,4 =X
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|

» supp(fo)\supp(co), and hence D = 20
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f
1 P
Pl>. -—-72‘—-_.. —_ P
(c=5)
c® — “—
T=X X X

where Pi is the center of /Ml (the order of the blow-ups may be changed),
the bold lines mean the support of the effective anti—canoni;:al divisor Di
on each step, and the dotted lines mean the exceptional curves of the blow-ups
which do not appear in Di'

\'It remains to show that the cases (a) and (b) do not occur. For (a),

since L = 1, ﬁ, must have at least three irreducible components by a

property of the elliptic sequence; supp(CO) = supp(Z%) % supp(Zzﬁ_) g

supp(Zao) = supp(D). Hence a contradiction. For (p), let r; be the

miltiplicity of H, -at P, (1£1£3) andlet H=munC,+mnf (f denotesa

fibre and m € Z). Then we have

b =H =8 - Fr? = nf- Yr?

i i
and . v
~n o~ C - .
0=Htf =Hey- Fr,=m~- Fr,.
N2 2
= - = +

Hence b= (20r;) Zri 2(1']’.r2 * Ty r3rl).
Simce r, 21 (1 £1 £3), ve get a contradiction. Q.E.D.

(a&): D= 2Cy + £, T, is a fibre of W , the centewof A lie on
Pad -~/

+ .
0 fO
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§ 2. Statements of the main results.

In this section, we assume that the ground field k is algebraically

closed and of characteristic O.

Let Yn M Yn_l—d—u—g—-—% —'(—A—]-'e YO = Y Dbe a sequence of blow-ups
where Y ' is a non-singular surface. Let Pi c Yi-l denote the center of

, Mi and E, C Yi the exceptional curve for M 5 (1<1i<n). Then we

call (P Pn)- a sequence of points on Y admitting infinitely near

1200
points, and the sequence above of blow-ups is called the blow-up of

( Pl,...,Pn) . For a divisor D on Y and non-negative integers m

(1 £ i4 n), we denote by [D - mlPl - ee = mnPn\ the linear subsystem of
I DI consisting of elements D' € [D| such that- Mi(}knfl ...(M*{(D')

- mlEl).. ) - mn-lEn—l);; - mnEn’ remain effective on Yn. When ther»e is no

danger of confusion, we. denote also by' Pi the image on Y of the point Pi
€Y1

Let C ©be a non-singular curve and let E ©be a vector bundle of rank
2on C. Assume that & is the direct sum of two line bundles on C.
Then the ruled surface P(E )—=> C has a section which is disjoint from a-

minimal section . We.denote by Cl such a section, and by C » as before,

0

a minimal section. In general these sections are not uniquely determined,

but we fix a pair (CO,Cl) once and for all on P{E) ‘unless otherwise

[N

mentioned.
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THEOREM 1. Let C be a non-singular elliptic curvev and let L be an
invertible sheaf of degree 2 on C. Let X =ZP(Qd$L)Ez;C be the induced
ruled surface. Fix an effective divisor D ¢ I—K)-{\ and take a sequence of.
points (Pl’PZ’P3) on X admitting infinitely near points such that:
if D=cC  + C.' where C,' is a section of W , then P, is infinitely

0 "1 X
. (for each i: _
near a point on C,'; and if D = 200 + fl + f2 where fi's are fibres,

then the position of Pl’PZ’P3 is one of the types (e-1)—(c-5) in § 1.

And in each cases, (*) there is no section C' of ‘@ such that C'~C

c! éi D and,cC' aPi,.PJ for some 1i,j (L¢i<j ¢ 3).
that
Then

l’

1) there exists a unique point P, infinitely near a point on X such

that |2¢, - P - P, -P;| = |2¢, - P -P, -P  -P| .

Moreover let M :X -—— X denote the blow-up of (p Ph) and let Aﬁ be

1200
the proper transformation by M of a general member in l 2Cl - Pl Y Ph\'
Then we have

2) Bs |H| =g,

3) aim |B] =3, ®° =i,

V) H is a non-hyperelliptic curve.
Therefore 1 defines a birational morphism from ,)\(’ to a normal quartic
surface XCP° with singularities of type 2@:7, E1+A1+Al,E1+D(3) or E1+D(h);

Conversely, any qua.rtidsurface of elliptic ruled type with at least one

of these four types of singularitiies is obtained by the construction above.

REMARK. Unless the condition (*), 1)—3) of the Theorem 1 hold true.
But in this case, 'ff turnes out to be a hyperelliptic curve so that” Aﬁ
defines a morphism of degree 2 'onto a normal quadric surface in IP3. (cf.

Lemmas 6 and T in § 3.)
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THEOREM 2. Let C be a non-singular elliptic curve and let L be an
- "1
invertible sheaf of degree 1 on C. Let X = ]P(OCQL)——a C %be the induced

ruled surface. Fix an effective divisor D ¢ \-K}—(‘ and take a point Pl

on X such that:
if D = Cy * Cl' where Cl' is a section of W , then P.€ supp(cl') with
2 L X =
0, ,(2P.) A L° (identifying C with C via W ); and if D = 2¢ +f
Cl 1 1 00

where fo is a fibre of W , then PIe supp(fo)\ supp(CO + Cl).

Then

1) there exists a unique point P infinitely near a .point on X such .

2

that 3¢, - 2P | = |[3c, - 2P -, |..

Moreover let M :X — X denote the blow-up of (Pl’PZ) and let H be the
proper transformation by M of a general member in l3Cl - 2Pl - P2\ .
Then we have

2) Bs |H| =9,

3) aim|®| =3, B =1,

k) H is a non-hyperelliptic curve.

. r~
Therefore rﬁ’ defines a birational morphism from X to a normal quartic

N
surface XC]P3 “with singularities of type 2E8 or E1+Al.

Conversely, any quartic surface of elliptic ruled type with at least one

of these two types of singularities is obtained by the construction above.

COROLLARY. Let X be a quartic surface of elliptic ruled type. Then

the singular set of X 1is one of the following types,and each of them

-

really oc curs.

{2@,}, a subgraph of" A } . {E1+A +A., a subgraph of Al\ .

3 1A
{3}, (mom) , (&), {=a) .

11
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§ 3 Proof of Theorem 1.

We start with X, D, Pl,PQ, and P3 as in the Theorem, but at first we do

not assume the condition (¥*).

Proof of 1), 2) and 3): We will prove only in the case of D =¢C_ + Cl'

0]

where Cl'is a/section, since the proofs in other cases are similar. By Ci'
NCl, we may assumu that D = C0 + Cl . Since 2Cl Cl 4 and ’s1nce Cl v
is an elliptic curve, we see dim (20 - P - P, - P3}| C . Hence we can
define & unique point Ph lying. ox/the proper transforma‘blon of C ~on the
biow-up of (PysP,,Py) of ¥ such that [:acl -P -P,-Py- P, | = [ecl
-P -Py-P . set A=]ac, -P -P,-P,-P,| andlet £, denote

i X < i< V i . + + + =
the fibre on X through P, (1 ¢ i< 4). Since OCl(Pl P, + Py + P))

Oa (2Cl) = 12 identifying C, and C via W, we find the following four

1 Y
elements of A : 2c, + ‘5;’,1 Co* fg + £+ Cpy Co+ f, + fg+C) and
2Cl, where fj's (5 $J J S__ 8) are distinet fibres of OF such that ‘f‘5 + f6,
O - N
* _ ‘ ..
f7 + f8£-,- [1;: L\ . Let 813+ +258) ¢ H (X, OX(ZCl)) denote the defining

equations of above four divisors. Obviously si's are linearly independent.
Since /\_g |2C -P Pg\ % 120 1‘ l2Ci' as is shown easily and since
d:'Lin l2€l(= 6, s'i's form a basis of A . Therefore, letting H be a general
member of A and letting us define M :X—> % and H as in the Theorem,
we deduce that: |

the base points of A are exactly Pl”""’Ph’

Bs |H|=9, |

dim |F|=aim A =3 ana & is non-sigular at I X
Thus 1),2) and 3) follow.

Let X denote the image of X under the morphisfn é}ﬁ( defined by ?I,

12 : -
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Then X is a hypersurface in ]P3 of degree 4 or 2 by 3),and X is normal
because the pull back of a general hyperplane section of X 1is a non-singular
~
curve H. It is clear by our construction that there is a unique effective
. ~ ~ I~ ~
anti-canonical divisor D on X, and that the configuration of D 1is 2E7,
1 P2 and P3.

Moreover, by a direct computation, we see that supp("ﬁ) is one of the

E1+A +A, , E1+D(3) or E1+D(4) according to our choice of D, P

connected components of the exceptional set for zl'ﬁ( By 'ﬂ'Kﬁ = 0, the
res“.criction of Zﬁ[jto /ﬁ/ is the canonical map of ?1’, therefore X is a
quartic surface if and only if A}f is non-hyperelliptic. We will show a
criterion for this property in a little generalized situation.

3 and a

Let 2’0 and Zg denote a non—-singular quadric surface in P
cone over a non—siﬁgular conie in ]P3 respectively, and let v -denote the
vertex of Zg. Let Y De a non-singular surface birationally equivalent
to an elliptic ruled surface. Suppose that there is an effective anti--
canonical divisor D of Y such that every irreducible component of D has
self-intersection number greater than -li. - Moreover suppose that there exists
on 'Y a non-singular curve H of genus 3 such that Bs |H| = @, dim|H|
= 3 and that H.D = 0 s:b that wé have a morphism & = le from Y onto a
normal quartic ~sﬁrface in ]P3 or a Zb or aZg. Since H.D = 0, A@(D) is

finite poin‘ts.
LEMMA 5. Assume -that &(Y) =Zg Then v & 3 (D).

PROOF. Let y: 2'2 =TP(0 ,®0 1(‘2))‘-9 Zg be the blow-up with center
' PP

at v, and let ]"0 be the exceptional rational curveLf‘or) i Let [ be a

1
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general hyperplane section of Zg "and let [ 1 denote .the proper
transformation of [’ on Zg. We may assume that & (H) = [°. Consider

the following commutative diagram:

" > l"l
S s 7
?\)ZA) 2QP0
t : —>Zogv
R ? > Vv

O

H
N . 3 -
where ’ﬂ'le — Y is a minimal sequence of blow-ups such that the induced
—~
map Y h}Z'Z becomes a morphism, Z is the Stein factorization of
o~ ~ -
Y — 0? and H 1is the proper transformation of * H. Let. B -denote the
branch locus of g. Then B~ 2(n FO + mf) for some n,m € Z where f
denotes a/f'ibre of the ruling on Zz. Since /I\'{ — Pl is a morphism of
degree 2  between non-singular curves of genus 3 and O respectively, we
have B. r'l =8 and hence B~ 2n l"0 + 8f. Furthermore, since B is
reduced,
c2 4 R W
-2 = - B = - + 0.
2=Ty £ Ty3B bn + 8 |
If n=0, then Z is a ruled surface of genus 3, and hence a contradiction.
Therefore we have n =1 or 2.
Assume that &(D) > v. Then there exists a non-singular elliptic curve
- » ~ )
C g D such that § (C) =v by Lemmas 2 and 3. Let C denote the proper
transformation of C on Y. If- £(¢) is a curve, then clearly Y = Y, and
g-l(r'o) = £(%) '_;_"E), = C (consider the configuration of D). Hence we get a
contradiction because C° = 2‘r'02 =-4. Thus f£(C) is a point, and so Z

has a singular point on g—l(r'o) which is not a rational double point.
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Suppose n = 1. Then B.f = 2. From this we see easily that Z has at

most rational bouble points. Suppose n = 2, then B ~h ("O + 8f. If
% 0 § B, then Z is smooth over \"O since r'o,B = 0. Hence B = ["0 + BO
for some reduced effective divisor BO not containing PO' But since

BO' ['10 = 2, also in this case Z has at most rational bouble double points

over FO' Hence a contradiction. Q.E.D.

LEMMA. 6. @(Y) 1is a normal quartic surface if and only if there is no

curve C on Y satisfying:
(**) ¢ is non-singular , elliptic,

C.H=2, and supp(C)n supp(D) = §.

FROOF. Suppose that D(Y) 1is a quartic surface and that there were a
curve C on Y which satisfies (*¥*). Then &(C) is a curve and is
birationally equivalent to C, because C.H»0 and & is a birational .
morphism. But by &(C).h =C.H=2 for a hyperplangsection h of &(Y),
$ (C) must be a rational curve, and hence a contradiction. Next suppose
$(Y) = ZO Let us take a general fibre L of one of the two rulings on
ZO.Then it is easy to verify that the proper transformation of ,Q, on Y
satisfies (**). Finally suppose P (Y) = Zg and let § ©be a general
generating line of Zg Then, by Lemma 5, {, and 3 (D) are disjoint. It

follows that the proper transformation of & on Y satisfies (¥*). Q.E.D.

Now returning. to the proof. of Theorem 1, we only have to show the following

Lemma, which is proved by a direct computation (omitted).

LEMMA 7. The non-existence of cueves satisfying (** ) is equivalent to

the condition (%),
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In the end, we prove the second part of the Theorem. So let X be a

quartic surface of elliptic ruled type with at least 2E., E1+A1+Al, E1+D(3),

or E1+D(L) as singularities. Let T ‘X —> X be the minimal resolution

of X. Then from the proof of Proposition 2, there is a ruled surface

X= ]P(E)ﬁ.;c over an elliptic curve C such that CO2 = -2 , in

particular E splits (the notations are the same as before ), and that

there exists a sequence of points (Pl ,P2,P3,Ph) on X admitting infinitely

near points such that by the blowing-up of them we obtain I)‘CJ Note thaifthis map
o~ -

X-45X is a sequence of Lemma 2., We have already shown that (Pl’PQ’P3’PH)
must satisfy the conditions i)=—iii) in the Theorem, and hence we only

have to show the following
LEMMA 8. Let HcX be as in Lemma 2. Then H € {zcl] .

PROOF. We use the notations in Lemma2. We.first prove that # = 2C

1

Since H.C, = 0, wehave H.C_ = 0. Hence H =mC, + 2nf for some m € Z, and

0] 0 0]
we want to show that m = 2.

Case 1. X has a singula.r':ity of* pg = 2: We may assume that the order

of P, P2, P3, P, 1is the same as one of the figures (c=1)==(c-5) in § 2,

and we use the notations there. Put r, =mult, H, for 1¢1ig b

e

other hand , since the propér transformation of H and f, must be disjoint

1
after blowing-up (Pl” P2), we get

+ =v_. = .
r1 r2 Hfl m

Then we have

| &
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Replacing {Pl, Py, fl\ with {P3, Ph,'fE} if necessary in the case of
(c=1)~=(c-3), we can assume that

>
rl +r2 Zr +rh.

2 2 2 2
& v - - + ; > .
(rl +r, rs r), ) hrlrz > hrlrg
It follows that  r; & r,=1 and so m =2,
Case 2. X has ZEVT: Let r, = multy H, (L ¢ig k), then we have
i =

b =% = 8 - ’Zrie = 2u° - Zriz,
b r, = H'Cl = 2m. | |
Therefore we get m # 3, because the above equations have no positive integralv
solution (rl, s r3,'rh) if m= 3. VNext, since Pl,Q..,Ph lie on supp(Cl),
~ ' - =
we can find another relatively minimal model X-%»X' such that X' = JP(OCGL')
where L' 1is an invertible sheaf of degree 0 on C. Then there are two
disjoint sections C.', Cl' of w':X'—>C and four points Pl" P2' € CO',
P3§ Ph' € Cl' admitting infinitely near points such that M’ is the blow—tip
1 ] 1 ] 1 t N
of (Py's P)s PJ, P)') and that g (c + cl) Cy' +C)'.  We may assume
that 0g.(cy")| ¢y L' end o (o) ot & L't set H' = W(H). Then

H' = mCO' + nf for some _n €7Z where f is a fibre of W', By 'ﬁ,(ff; =
~ ~
H. Cl 0, we get
t 1~ Tt " 1 1 = [t | -
ry + T, H .CO fn,r3 + r) H .Cl n..
' 2 2 2 2
1 t 1 1 1 1 > 1 ]
We may assume that ry Z r3 2 r), Z r2 so that ;'l | + ry' 2 r3 + r),
and equality holds if and only if rl' = r3' . Then we obtain
~2 _ 2
= > L 1y 12 '
Ly =§ zr 2m(r T, ) 2(r +r, )
2 1 - t ' - 1 - %%
i.e. 0 Zrl (m r, ) + r, (m r, ) -2 (%)
and equality holds if and only, if rl' = r3'. Since m > g.r > rl' =z r2' z1,
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the right hand side of (¥%¥¥) is either i)-2, ii) -1 or iii) O. Iq&he case

of i), we have m - rl' =m —-r2’=0 and so rl' = r3' which implies a
contradiction. In case ii), we get m - rl' = 0, r2' =m - r2' =1 and
hence m = 2. (But it follows that rl' = r3' because rl‘ = 2 and r2' =1,

, h
hence this case is impossible.) In iii), there are ygee possibilities:
[ - - 1 = 1 = - t = - ' = LI - I
a)r;'=m-r'=r =m-r, 1, b)m r, 0, 1, 1,m-r, 2,
]

and c)m - rl' =0, r2' =2,m-r, =1. 1In a) we get m =2., and so.
we have done. In b) and c¢), we get m = 3, but this value has been
already excluded.

Tﬁerefore we conclude that H EvZC'l, and hence ﬁuszCl + w*(D) for some

divisor D on C of degree 0. Since X =ZP(0C®L) for some invertible sheaf

L of degree 2 on C, we have

ain B)(X, 0g(H)) = aim K°(c, (0018L?)®0,(D))

{7 if D~O0
6 if D&o
and ’

aim 10X, Og(H - C;)) = ain B%(c, (112)@0,(D)) = 6.

Since H i§ﬁrreducible, H  has no fixed component, hence we prove that

-

D~0, i.e. ﬁxvzcl. ‘ , Q.E.D.
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8 4., Proof of Theorem 2.

We proceed in several steps which is almost parallel in the proof of

Theorem 1. The detail is omitted here.

§ 5. Proof of Corollary.

Let 35-———>x denote the minimal resolution of X. Looking at the
construction of X described in Theorems 1 and 2, we can list up the
configuration of curveées on 'i’ which is disjoint from ?f (notations are
those in Theorems 1 and 2) as follows:

{2%}, a subgraph of A,Y , iE1+A1+Al, a subgraph of Alfgl} ,
{Es0(3)] , {Ee(M)} , EATIRE:LZASE

P P as

1’ 72* 73

(¢-3) in Theorem 1. But it is easy to show that in this case the

The possibilty of ﬁEﬂ+Al+A1, Al’ Al} arises when we take P

section of =y through Pl must pass fhrough P3. From this the Corollary

»

follows. - Q.E.D.
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