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Topics on finite groups of characteristic 2 type
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Finite simple groups of characteristic 2 type have been
classified by Aschbacher, Gorenstein, Lyons, G. Mason and others.
In many places of their work, Aschbacher's C(G,T)-theorem plays |
an important role. Here, C(G,T) is defined for each group G

of even order and its Sylow 2-subgroup T by
C(G,T) = < NG(C) | 1 #C char T >,

and the C(G,T)-theorem is a key to the classification of simplé

groups G of characteristic 2 type satisfying the condition
G # C(G,T).

The group G = PSLn(Zm) is a typical example of a
group of characteristic 2 type. Let us see when G satisfieé
the above condition. G 1is the central factor group of the
matrix group SLn(Zm). But I will ignore‘ﬁhe center and regard
G as SLn(Zm). We may choose as T the group of;upper tri-
angular matfices with all diagonal entries equal to 1. The

center Z(T) 1is the group of the matrices

1,0,---,0,x
1,0,---,0
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The Thompson subgroup J(T) generated by the elementary abelian
subgroups of maximal order consists of the matrices

Ik X
0 I when n = 2k,
k

Ik x Y
1 =z when n = 2k + 1.

0 Tk
NG(Z(T)) and NG(J(T)) are easily determined, and we can see
that if n > 4 then each minimal parabolic subgroup of G _
containing T 1is contained either in NG(Z(T)) or in NG(J(T)).
So if n > 4 then G = < Ny(Z(T)), Ng(J(T))> and in particular
G =CG,T). If n=2 then T 1is elementary abelian and so
C(G,T) = NG(T) # G. If n =3 then Z(T) is the only non-
trivial elementary characteristic subgroup of T and so C(G,T)
= NG(Z(T)) # G. Therefore, G # C(G,T) if and only if n = 2 or 3

Now, if n = 2 then two distinct Sylow 2-subgroups of G

3, the maximal 2-

[

intersect in the identity element. If n

local subgroups of G containing T are

x* Kk K x* % %
M = * % * and N = 0 x %
00 % 0 * %

M has a normal subgroup
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which is the extension of the 2-dimensional vector space over
GF (2™ by SLZ(Zm), and N has an analogous normal subgroup.

The notions of 2-isolated group and =~ = Aschbacher
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block are related to the phenomenon described above. Let G be
an arbitrary finite group, p a prime dividing the order of G,
and S, T be its Sylow p-subgroups. If there is a sequence °
{Si} of Sylow p-subgroups joining S and T such that

S;_1 n Si # 1, then we say that S and T are equivalent. If
G contains inequivalent Sylow p-subgroups, we say that G is p-
isolated. Next, if a subnormal subgroup K of a group M
satisfies the following conditions, we call K an Aschbacher

block of M.

K = 02(K),

K

K/0,(K) = SLZ(Zm) or Ay 1, m > 1,
[0,(M) K] < @1 (Z(0,(K))), and
U/CU(K) is a natural GF(2)K-module, i.e.

i

I
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either K = SLZ(Zm) and V 1is the 2-dimensional wvector space

over GF(2™) considered a GF(2)R-module, or K = A and V

2m-1
is the nontrivial composition factor of the (2m-1)-dimensional
permutation module over GF(2). The C(G,T)-theorem may now be

stated.

Theorem 1. If G 1is a group of characteristic 2 type

satisfying G # C(G,T), then either

(1) some maximal 2-local subgroup of G has an Aschbacher
“block, or
(2) G 1is 2-isolated.

As well known, (2) implies that G has a strongly embed-
ded subgroup and so the structure of G in the case (2) is known

by Bender's theorem. The structure of G 1in the case (1) is
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determined by Foote, Solomon, and S. K. Wong. Thus, the C(G,T)-
theorem says that with small number of exceptions, the factoriza-

tion
G = < NG(C) | 1 #Cchar T >

holds provided G 1is of characteristic 2 type. N

Now, in his talk at Santa Cruz Summer Institute (1979),

McBride announced the following theorem.

Theorem 2. Let G be a group of characteristic 2 type,

T a Sylow 2-subgroup of G, and suppose the set
N(T) = {NG(C) | 1 # C char T}

does not control the fusion in T. Then some maximal 2-local

subgroup of G has an Aschbacher block.

Here, the statement "N(T) controls the fusion in T"
meéns-that if ’A and B are two subsets of T which are conju-
gate»in G then there exist members Ni of N(T), L < i < n, and
elements X4 of N; such that

A =B and A * L T.

It is apparent that there is some relation between the
above two theorems. What will it really be? 'An answer to this
‘question will be obtained by the following consideration.

Lét G be a group, p a prime dividing the order of G,

all

and # the set ofAnonidentity p-subgroups H such that

0
No(H)/H 1is p-isolated. Let ¥, be the set of the normalizers

of the members of HO and for S in Sylp(G) let

Wp(S) = N €5y | SO N €58yl (M)}
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The fusion theorem of Alperin and Goldschmidt may be stated as

follows.
Theorem 3. Ny controls the p-fusion in G.

Namely, if A and B are subsets of a Sylow p-subgroup
S of G and are conjugate in G, then there exist members Ni
of NO(S), 1 < i <n, elements Xs of Ni’ and an element vy

of NG(S) such that

XX X Y X Xn- - -X
A L2 =B and A L2 5N N,.

A

(In the above, S N Ni may be replaced by Op(Ni))
There are two theorems which relate N with factoriza-

tions and Sylow intersections.

Theorem 4. Unless G is p-isolated,
G =< NO(S), NG(S) >

Theorem 5. Ny controls Sylow p-intersections in G.

Namely, if two distinct Sylow p-subgroups S and T
intersect nontrivially, then there exist members Ni of >N0,
1 < i< n, and Sylow p-subgroups Sj of G, 0 < j £ n, such that
Sg = S ~and s, =T,
N, € NO(Si_l) n NO(Si),
S;.1 = S?i for some x, € N;, and

SNT<s; NN,.

(In the above, Si N Ni may be replaced by OP(Ni))
What should be noticed here is that both Theorems 3 and 4

are easy consequences of Theorem 5. It goes without saying that
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Theorems 1 and 2 are analogues of Theorems 4 and 3, respectively.
If this analogy is not accidental, there should be an unknown
theorem from which Theorems 1 and 2 are easily deriﬁed. And the

unknown theorem should be as follows.

Theorem 6. Let G be a group of characteristic 2 type:

and suppose the set
N = {NG(C) | 1 #Cchar T, T € Sylz(G)}

does not control Sylow 2-intersections in G. Then some maximal

2-loca1'subgroup of G has an Aschbacher block.

1"

The meanihg of "control" here is exactly the same as in
Theorem 5; we just replace p and my by 2 and ¥, respectively.
It turns out that Theorem 6 is really true and may be
sharpened considerably. Let us consider the following general
situation. Let G be a group, p a prime dividing the order

of G, and F a normal set of subgroups of G (i.e. F 1is closed

under conjugation). For Sylow p-subgroups S. of G, let
F(S) = {X €F | SN X ¢ Sylp(X)}

If the conclusion of Theorem 5 is true with‘ my replacgd by F,
we say that F controls Sylow p-intersections in G. %f the
conclusion of Theorem 3 is true with Ny replaced by F, we
say that F controls the p-fusion in G. The following result

"

correlates these two kinds of '"control' and "'factorization".

Proposition 1. If F controls Sylow p-intersections in G,
then F controls the p-fusion in G and, unless G 1is p-iso-

lated, G = < F(S), NG(S) >,

(2N
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Typical examples of F are found in the following situation.

Hypothesis 1. To each nonidentity p-subgroup P of G
there is associated a set £(P) of subgroups of P such that
Ng(®) < Ng(F) for each F in £(P) and £(P)® = £(P®) for

each g in G.

For each subgroup H of order divisible by p, let
Fg = {Ny(F) | F € £(P), P € Sylp(H)}

Fy is a normal set of subgroups of H. Let F = Fa and denote
by F' the set of all maximal p-local subgroups M such that

F does not control Sylow p-intersections in M. F' 1is also

M
a normal set. Then we have the following result.

Proposition 2. Under Hypothesis 1, if {1} ¢ £(P) for

each P, then F U F' controls Sylow p-intersections in G.
Let us specialize to the following situation.

Hypothesis 2. Hypothesis 1 with £(P) = {Fl, F,, F3},
Fi # 1, and for j = 2, 3, F1 < CP(Fj) and NG(CP(Fj)) < NG(FI)'
Let '

B = {N;(F1(8)), C,(F,y(S) N Fy(S)) | s € Sylp(G)},

where £(S) = {Fi(S) | i =1, 2, 3}.
The following result is a consequence of Proposition 2.

Proposition 3. Under Hypothesis 2, ¢ = F U F' controls

Sylow p-intersections in G.

By Proposition 1, G controls the p-fusion in G and,
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unless G 1is p-isolated, G = < G(S) > fof each Sylow p-subgroup
S of G. Hence, if we can find a mapping f which satisfies
Hypothesis 2 with F' small, we get good information about the
Sylow p-intersection, p-fusion, and p-factorization. The follow-
ing result guarantees the existence of such £ for p =2 and -

groups of characteristic 2 type.

Theorem 7. Each nonidentity 2-group P has nonidentity
characteristic subgroups Ap and BP satisfying the following

conditions.

(1) A, char Cp(Bp),

P
(2) 1If a group M satisfies CM(OZ(M)) < OZ(M) and

if the set
- (Ny(Ag), Ny(Bg), Ny(2,(Z(8))) | S € Syl,(M)}

does not control Sylow 2-intersections in M, then M has an

Aschbacher block.

The mapping
£(P) = {Ap, Bp, 9,(Z(B)}

satisfies Hypothesis 2 and so if
E = {No(Ap), Co(Bp M 9,(Z(T)) | T ¢ Syly(G)},

then G = E U F' controls Sylbw 2-intersections in G by Pro-
~ position 3. F' is the set of all maximal 2-local subgroups M
of G such that FM
M. Hence if G 1is of characteristic 2 type, each member of F'

does not control Sylow 2-intersections in

has an Aschbacher block by (2) of Theorem 7. This proves the

following.
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Corollary 1. If G 1is a group of characteristic 2 type,
then Sylow 2-intersections and the 2-fusion in G are controlled
by E and maximal 2-local subgroups having Aschbacher blocks.

In particular, Theorems 2 and 6 hold.

Corollary 2. Let G be a group of characteristic 2 type,
T a Sylow 2-subgroup of G, and suppose G 1is not 2-isolated.

Then G 1is generated by NG(A CG(BT n Ql(Z(T))L and maximal

T)’
2-local subgroups M having Aschbacher blocks with T N M €

Syl,(M). In particular, Theorem 1 holds.

This corollary also contains as a special case a variant
of Theorem 1 obtained by Aschbacher. I can not at present ex-

plicitly give AP and BP in general. However, if the nilpo-

tence class of
R(P) = Cp(8q(Z(J(P))))

is at most 2, then we may choose as AP and BP.

nonidentity characteristic subgroup-of K(P) and an arbitrary

an arbitrary

nonidentity characteristic subgroup of K(P) contained in

Ql(Z(K(P))) = Ql(Z(J(P))). Therefore, the following holds.

Corollary 3. Let G be a group of characteristic 2 type

and suppose, for T ¢ Sylz(G), K(T) has class at most 2. Let
E = {NG(K(T)), CG(Ql(Z(T))) | T € Sylz(G)}

Then Sylow 2-intersections and the 2-fusion in G are controlled

by £ and maximal 2-local subgroups having Aschbacher blocks.

Corollary 4. Uﬁder the hypothesis of Corollary 3, if T ¢
Sylz(G){'then G 1is generated by NG(K(I)), CG(QlQZ(T))), and
maximal 2-local subgroups M having Aschbacher blocks with T N M
€ Sylz(M).
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and if n > 4 then there are no Aschbacher blocks in maximal
2-local subgroups. Moreover, K(T) = J(T) and Ql(Z(T)) = Z(T)
for T in Sylz(G). Hence if n > 4 then Sylow 2-intersections
and the 2-fusion in G are controlled by NG(J(T)) and NG(Z(T));
Also, G = < NG(J(T)), NG(Z(T)) > 1if n > 4. These facts are
also verified by using the fact that each minimal parabolic sub-
group containing T 1is contéined in NG(J(T)) or ‘NG(Z(T)).

I think this a good supporting evidence for Theorem 7.

The theorems 2, 6, 7, and the corollaries are, in féct,
proved under the hypothesis that each proper simple section of
the group under consideration is of known type; that is, isomor-
phic to one of the alternating groups, the Lie type groups, and
the sporadic groups. I have ignored the hypothesis in this é%-
position because finite simple groups have been classified and,
in the classification program, the above theorems are designed
to be applied to minimal unknown simple groups.

I will conclude this expository article by a rough sketch
of the proof of Theorem 7. For each nonidentity 2-group S;
let &(S) denote the collection of all finite groups G satis-

fying the following conditions.

(1) s € Syl,(6),

(2)  C4(0,(6)) < 0,(G),

(3) T = 6/Cg(a1(Z(0,(6)))) = SL, (2™,

(4) when V = Ql(Z(Oz(G))) is regarded as a GF(2)G-
module, [V,ﬁ]/C[V,gj(é) is a natural module,

(5) 0,(G) € Syl,(Ch(M)),

(6) [0,(®, 0*(@ 12V,

\
G
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(7) S 1is contained in a unique maximal subgroup of G,

8) G =< k()% >.

The conditions (4) and (5) are derived from other condi-
tions; I have listed them for informational purposes. Also,
if &(S) 1is nonempty then S = K(S) and the nilpotence class
of S 1is at least 3.

A characteristic pair for the 2-group S 1is a pair S1»

S,y of characteristic subgroups of S such that whenever G €
&(S), either Sl or S2 is normal in G. The characteristic
pair is said to be nontrivial if S; # 1 # S,. A work of Camp-
bell shows that for each nonidentity 2-group S there exists
a nontrivial characteristic pair satisfying S1 ;4@1(2(8)).
I say such a pair is of Glauberman-Niles type.

Now, for each nonidentity 2-group S satisfying S =
K(S), fix a characteristic pair Sl’ 82 of Glauberman-Niles

type. For an arbitrary nonidentity 2-group P, define
Ap = (K(P))l and By = (K(P))2

Then AP and B, satisfy the condition (1) of Theorem 7, and
our aim is to prove (2) of Theorem 7 with this choice of AP
and BP'

Let M be a minimal counterexample to (2) of Theorem 7.
Let us first consider the special case where M/OZ(M) is a non-

abelian simple group Let Q = OZ(M) and V = Ql(Z(Q)). Then
Cy(V) = Q
If CM(V) # Q, then CM(V) = M by the simplicity of M/Q, and

so M= NM(Ql(Z(S))) for S € Sylz(M) as Ql(Z(S)) < CM(Q) < Q.

But this contradicts our assumption that the set

/!
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F o= {Ny(Ag), Ny(Bg), Ny(e,(2(5))) | S € syl, (D}

does not control Sylow 2-intersections in M. Next, we have

J(S) £ Q

If J(S) = Q, then V < 2,(Z(J(8))), K(S) < Cyu(V) = Q, and so
K(S) = K(Q). But then M =‘NM(AS) = NM(BS), a contradiction.
Let M = M/Q. Then M is faithfully represented on the GF(2)-
v As J(S) £ Q, there is an elementary abelian 2-sub-
group A of maximal order such that A # 1. The maximality
of * |A| yields that |A| > iV : CV(K)]. A work of Aschbacher
on GF(2)-representations with this property shows that M is
either an alternafing group or a group of Lie type and even
characteristic but not Sz(Zm). or PSU3(2m). Suppose for ins-
tance that M is a Lie type group of rank at least 2. The BN-
pair structure of M shows that Sylow 2-intersections in M
are controlled by minimal parabolic subgroups. Hence there must
exist a minimal parabolic subgroup X = X/Q such that Sylow

2-intersections in X are not controlled by the set

Ny (Ag), Ny(Bg), Ne(2(Z(8))) | S € Syl (0}
Since M is a minimal counterexample, it follows that X has
an Aschbacher block K. But since Cu(Q) £ Q and Cg(0,(X))<
OZ(X), OZ(X) has at least two nontrivial K-chief factors, cont-
- rary to the definition of the Aschbacher block. Therefore, if
M is of Lie type then M = SLZ(Zm). Moreover, thé presence
of A shows that [V,ﬁ]/C[V,M](ﬂb is a natural module. As M

cannot be an Aschbacher block of M, we must have

[Q, 0%2aD] ¢ V.

In this way, the structure of the minimal counterexample M is

)2
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highly restricted, and we can eventually show that M € &(S) and
S = K(S). But then either AS or BS is normal in M, which
contradicts our assumption that F doesnotcontrol Sylow 2-inter-
sections in M. This completes the proof when M 1is of Lie

type and even characteristic. I will not discuss the case where
M is an alternating group. Difficulties arise when M/0,(M)

is not simple. However, the basic idea of the proof is simple

as illustrated above. ‘ |

In the general case, we have 0o (M/Cy(V)) =1 and
and so the previous argument shows

J(s) £ CM(V).
Then M = M/CM(V) is faithfully represented on the GF(2)-space
V, and M contains an elementary abelian 2—subgroup(»K #1 h
such that |A]| > |V : CV(ZJI. The theory of GF(2)-representation
with this property and the minimality of M show that M has
a normal subgroupv N = N/CM(V) such that either N is a direct
product of SL2(2)'s or N is a central product of the conjﬁ-
gates of a subgroun L which is a perfect central extension of
an alternatinggroup or a group of Lie type and even character-
istic but not Sz(2™) or PSU3(2m) and such that \M]N is a
2-group. Moreover, if L/Z(L) = PSLB(Zm) or Sp4(2m) then each
element of Nﬁ(f) induces an inner or graph or field automor-
phism on L. ©Now, the previous argument and the minimality of
M show that Sylow 2-intersections in M are not controlled
by proper subgroups X of odd index satisfying CK(OZ(i)) <

OZ(X)Z(N)f Thus, we are led to the following situation.

S~
o
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Hypothesis 3. G 1is a finite group, N 1is a normal sub-
group, G/N is a 2-group, N is a central product of the groups
L=1L L

L which are all conjugate in G, and L is

12 72 " Ttk
a perfect central extension of either an alternating group or

a group of Lie type and even characteristic.

We wish to know when Sylow 2-intersections in G are
controlled by proper subgroups X of odd’index such that
CX(OZ(X)) < OZ(X)Z(N). An answer tb this question may be
obtained by the following consideration. Let G be an arbirtary
finite group, and Hy the set defined before for a prime p.

For each H in 'HO, NG(H)/H has a unique minimal subnormal

subgroup Né(H)/H of order divisible by p. Then we have

Proposition 4. A normal set F of subgroups of G cont-
rols Sylow p-intersections in G provided that for each H in

Hy» Né(H) is contained in some member of F.

Therefore, given a group G satisfying Hypothesis 3,
we need to know when each Né(H) for p = 2 1is contained in
some subgroup X of odd index satisfying CX(OZ(X)) < 02(X)Z(N).
Let us consider the case where L/Z(L) 1is a group of Lie type
and even characteristic. Using the knowlédge about the 2-local
subgroups of L, we can show that if some NE(H) is not con-
tained in any such subgroup then either L/Z(L) 1is of rank 1
“or L/Z(L) 1is PSL3(2m) or Sp4(2m) and some element of NG(L)
induces a graph or graph-field automorphism on L.

Returning to the previous notation, we can see now that
if TLT/Z(L) 1is a group of Lie type and even characteristic then
L= SLZ(Zm). The next step in the proof of (2) is to show

) L4

¢
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M= < k(ST > ‘
using the minimality of M. This is technically the most diffi-
cult partof the proof, but I will not discuss it. Let us assume
L= SLZ(Zm). Then the theory of GF(2)-representations show that
R(S) normalizes L and if N =T then RK(S) < L. Therefore,
M=T

A short argument now shows that M € @G(S) and S = K(S). This
completes the proof when L/Z(L) 1is a group of Lie type and
even characteristic. The argument for the alternating groups
is essentialiy the same but is longer because the 2-local struc-
ture of the alternating groups is more complicated than the groups
of Lie type and even characteristic.

Finally, I emphasize that the wbrk of M. Aschbacher and
P. McBride have had a great influence on my work described above.

Particularly, I have learned much from a series of papers by

M. Aschbacher listed below.
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