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§1 Introduction

A large number of numerical investigations of the Navier-
Stokes equations have been done, but flows past a number of bluff
bodies remain felatively untouched mainly due to a lack of
suitable coordinate systems. The purpose of this study is to
develop a method applicable to solving problems of fluid flow
with suspended particles or droplets arranged in rows or in
random position, such as those seen 1in various engineering and

1)

physical sciences. One example is the ink-jet problem where a
liquid jet emanating from a nozzle breaks up into many droplets.
Great difficulty is encountered in solving these equations
by the finite-difference method, that is, where there is no
general coordinate system. In the case of square bodies, we can
use rectangular meshes, as done by Matida et al2). In the case
of curved bodies, however, the surface of the body does not
necessarily coincide with meshes. This requires the values of
the  physical quantities on the surface be computed by inter-
polation. Since the gradient of these functions is very large
there, we cannot expect to get accurate results by using such a
coordinate system. We can also solve this problem by using)a body
3 ). In

this case, the Navier-Stokes equations become complicated;

fitted coordinate system (for example see Thames et al

moreover, for probléms in which bodies change their relative

positions, extra computation time is needed to generate
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coordinates fitted for a number of bodies at every time step.

To avoid the above difficulties, a new method called method
of matching is developed. The idea of this method is that we
subdivide the entire flow region into smaller regions, each of
which surrounds only one body, and solve the governing equations
for each region by using suitable coordinate system. To do so,
we first take an overlap region between two adjacent ones and
solve the equations for each region in such a way that the
solutions within the overlap region coincide with each other.
The chief advantage of this method is that, if a suitable
coordinate system is found for a region surrounding each single
body, one can solve the entire flow past a number of bodies by

matching the solution in each subregion through the overlap

region.

Using this method, a number of problems are solved: a)
Flow past two square cylinders, b) ‘'Flow past two circular
cylinders. c¢) Flow past two spheres. Problems c) is also solved
.under_periodic boundary conditions.’ This provides a good model

for the ink-jet problem.
§2 Steady Flow past Two Square Cylinders in a Channel

We consider the steady two-dimensional viscous flow past two
square cylinders which are set perpendicular to a two-dimensional
Poiseuille flow between two stationary parallel walls (Fig.l).
This particular problem is studied for numerical test of our
method. The bodies are placed both at off-center positions. 1In
this case, we have to pay special attention to determining the
values of stream function on the surface of the bodies.

Let the two bodies of equal sizé be set perpendicular to é
Poiseuille flow in a channel of width 2 and the distances between
the center axis of the bodies and the plane of symmetry of the
channel be +s and -s. The motion of an incompressible viscous
fluid is governed by the Navier-Stokes equations, which can be

written in stream function-vorticity formulation as follows:

MY + w o= 0 (2.1)
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Aw + R(——”—”l——i:—) = (. (2.2)
where R 1s the Reynolds number and /A is the two-dimensional

Laplacian.

The boundary conditions are

; .
3 } at X = too (2.3)
w — 249
- 2 .
L ol ,
piv) . : at  9=1, (2.4
e

If s=0, the two bodies are both in symmetrical position and the
constant values of the stream function on the surface of the
bodies Sl and S2 are zero, but if s#0, that is, the two bodies

are 1in off-centered positions, ¥ is subjected to the boundary

condition
\'(J = ‘fjs‘ o n S l 9
¥ =¥ on S, (2.5)
af (normal derivative) = 0 on S. and S
N 1 v 2 9

where‘fs and\ys are certain constants which must be determined

based o&' the c¢ondition that the pressure be single-valued

throughout the whole fieldz). This condition is expressed by
é &F = 4P :’O3 : (2.6)
. C| Ca .
where Cl and C2 are any closed paths enclosing each body. 'When

applying the matching procedure, we need further boundary
conditions on B C and B' C' (see Fig.l) which are obtained®by
solving the equations(2.1l) and (2.2).

Initially, this problem was solved without using matching
procedure. The domain used in numerical computation was finite

and was divided into square meshes. The differential quotients
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are approximated by three-point central-difference quotients.

The solutions to the finite difference equations were obtained by

successive iteration. The constants g and W S were
determined as the converged values of yﬂ“ and m as m-to
S ¥s,
according to
' o m - '
W= ¥l o+ aLap, 2.7
i

L, med m < A
Yoo = Foo o+ ’\Z;AP | (-]

where )\ 1is a relaxation parameter. The sums E;Ap and Z:Ap mean
difference analogues to the integrals _ﬁ dp mﬁé ¢ dp,c%here Cl
and C2 are any rectangular paths PQRS ané P'Q'R' S?2enc1051ng the
cylinders.

Now, in applying the matching procedure, the numerical
calculations are first carried out for the front body in the
region ABCD under the boundary conditions on BC which are, at
first, those of Poiseuille flow. In‘this way, the values of
¥, on the line B'C' are obtained. Using these as the boundary
values, the numerical computations are to be done for the rear
body in the region A'B'C'D'. Then the boundary values on BC (for
the front body) are improved, and, therefore, using these
improved values, the calculations for the region ABCD are
performed again. Such processes are repeated until the boundary
values of ¢ and w on BC (therefore also on B'C') converge. The
successive iteration are brought to an end when we get

'erilf% -¥%,5/ <€t ana lw““‘l w&l,jlég
for all i,j, where £ =10"°.

The upstream and downstream boundary on which the Poiseuille
velocity profile is imposed were set at X_ =-3.0 and X, =3.0.
The mesh length h was taken to be equal to 1/10. The numerical
computation was carried out for two different overlap regions =--
one between 28th and 34th mesh lines and the other Dbetween 28th
and 31st mesh lines. The side length of the bodies is fixed to
be equal to 2/5. The front body is set at‘a streamwise distance
1.4 from O and the rear body is set at 3.9 from O. The other

parameters are R = 20, 4 = 0.2, X = 0.001 and n (nummbers of
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iteration per one matching procedure) = 1 and 100.

Fig.2 shows (a) streamlines and (b) equivorticity lines. The
following four cases are studied: 4

Case 1l: Without matching procedure.

Case 2: The overlap region was taken between 28th and 34th
mesh lines and the process of matching was done at every
iteration, i.e., n=1.

Case 3: Same as the Case 2, but n=100.

Case 4: A narrower overlap region was taken (i.e., 28th-
31lst mesh lines), n=100. 1

All four cases gave exactly the same final results, but
the efficiencies are very different. Case 3 was found to be the
best of the above four cases, even better than Case 1. In Case
2, the values of ¥ and w were found to be oscillating in the-
initial stages (for 50 or 60 iterations), and it took much
computation time to reach a converged solution. In Case 4, the
narrower overlap region makes the values on the boundary lines BC
and B'C' affect each other more strongly, thus worsening the rate
of convergence of the iteration. If we take too wide an overlap
region, the computation time becomes -‘longer due to the large
number of mesh points for each region surrounding the body.

From the above results, we can conclude that good results
can be obtained by the matching procedure, that matching through
overlap region should be performed after getting somewhat stable
values for each region, and that overlap region should neither be
too narrow nor too wide in order to minimize the computation
time.

§3 Unsteady Flow past Two Circular Cylinders

Let us consider the unsteady flow of viscous fluid past two
circular cylinders of the same radius 1. At time t=0 the fluid
is supposed to be set in motion impulsively with a constant
velocity U in the direction of the positive x-axis. In polar
coordinate (r,§), the equations of motion can be written in the

nondimensional form as

ow 1 (if oW _.if'g@) 2 Aw (3.1)
at rF \ar 46 08 or R
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where R—%g and A = aﬂ/av’+(|/fyyér+0/ﬂ)37561 Functions y,

w:and v=(vr,ve) are connected by

w = — AWV (3.2)

.
P

Q
-~

Ve =

_ oY (3.3)
Vo = “%r . |

a8/
T

Ll
Y 9

For the convenience of numerical computation,” we introduce the

disturbance stream function Y as

Y = rsinf + ¥, (3.4)
in which the first term of the right-hand side is due to the

uniform flow.

The radial coordinate is transformed as follows:

}; = log . (3.5)

Using (3.4) and (3.5), the equations (3.1) and (3.2) become

p2L W _ (99w ¥ Iw B(AW 0 W, )__ e
-t (BZ 28 aeaz) ¢ (3(9 ng E. 03¢ RA O, (3.6)
o w = —Q_ZEA\}? , (3.7)
where ;

> 2" (3.8)

L\.l - —~z2 + =
28" e
We solve the equations (3.6) and (3.7) under the following
initial and boundary conditions. The initial condition is that

of uniform flow, and the boundary conditions used are

(3.9)
(3.10)

1) Y =0, W =0 along the centerline, und At 100 .
2) 50=sin9,%—£= -sinf at £ =0

Since it is difficult to treat the problem in an infinite
domain, we restrict the computational domain within circles of

sufficiently large radius r, (=exp= ) in physical plane. As the
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flow 1s assumed to be symmetric with respect to the lines 8=O
;nd =7, only the wupper half of the flow region need be
conSidered. Actually, the numerical computations are carried out
for the domain ABCDA for the front body O and A'B'C'D'A' for the
rear body O' (see Fig.3 (é)); the overlap region is DD'C'ED.
Thus in the transformed plane, i.e., in (%,8) plane, the regions
of compﬁtation reduce to ABCDEA and A'B'C'D'E'A’ (Fig.3 (b))

Three -point central differehce for the space derivativee
and forward difference for the time derivative are used. We take
mesh cohstant ix2 =n6= %},.and take@ T (ro=expil =23.1407).

At first, the flow for region I 1is solved accordlng to the
following steps: ' ' '

1) At t= O take$ =0 andw =0 at all mesh points except on

the surface of cylinder O, where ¥ = -sin 6 and w =0.

2) Solve eq.(3.7) for Y , by successive overrelaxation
method. : |

3) Calculate the boundary values of ¥ and wW on zigzag

lines for region II (for rear body) by linear interpolation from
the values of ¢ and W already obtained in front flow regiOn.

| Next, the flow for region II is solved ecCOrdiﬁg to the
repetition of steps 1) - 3) and using the calculated boundary
values of 3) on zigzag lines D'C'. o ‘

4) Compute new boundary values of ¥ and w on Zigéag'lines
for regionAI’(for front body) inva similar way as described in
ctep 3). . T _ o

In order to match the two flows within the overlap reglon,
steps 2) to 4) are repeated until a sufficient convergence is
obtained. |

5) Calculate the vort1c1ty u)on the surface of the bodies
by using eq.(3.6). _ '

6) Calculate the vorticity at t= At using eq. (3.65 for
regions I and II, and go back to 2) for next time step. '

The computing time steps A't must be restricted to ensure

4)

numerical stability. The criterla used is



132

241 . '
¥R ag) T 4 - G-

In view of this criterion, the time steps were taken as A t=0.005
for R=10 and At=0.025 for R=40 and 100.

Numerical computation wasvcarried out forlthe cases shown in
Table 1, where d 1s the distance between the centers of the two
circular cylinders. The computed drag coefficients are summariz-
ed in this Table, where CD ’ CD and CD are pressure, frictional
and total drag coefficientsprespeCtively.

Figs.4, 5, 6 and 7 show streamlines and equivorticity
lines for R=40 at nondimensional time t=24 and d is equal to 10
and, 6. The overlap region 1is approximately betWeen twd dotted
lines, the boundary lines are taken just outside of these dotted
lines. In Fig.8, CD‘is plotted against d for various values of -
R. In Fig,9, CD is plotted against R for various values of d.
In case of low Reynolds numbers, the interaction between the™
bodies fade away rapidly when they are placed at large distance.
In case of large Reynolds numbers, the interaction is large even
when the bodies are placed at large distance. A negative value
for drag coefficient CD appears in sormie cases,\whiCh indicates
that 1f two bodies are let to move freely, the rear body moves
toward the front body againt direction of flow.

The rate of convergence was found to be small for low
Reynolds numbers or for narrow overlap region, but large for
large Reynolds numbers. At low Reynolds numbers, viscous effects
are predominant in the flow field; this means values of ¥ and W
on the downstream boundary of the overlap region strongly affect

those on the upstream boundary because of viscous dissipation.
Also, when the overlap region 1s narrow, the improved but
unstable boundary values affect each other strongly. This
interaction between the two boundaries of the overlap region
causes the slow rate of convergencé. For large Reynolds numbers,
convection terms are predominant and values on dowh—stream
boundary of the overlap region do not affect strongly those on
the up-stream boundary.‘ This is the reason of good convergence
at large Reynolds numbers.

The above results show that the present method is effective
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even 1f one must have recourse to interpolation in the process of

matching.
§4 Unsteady Axisjmmetrical Flow past Two Spheres

Let us consider the unsteady three-dimensional axisymmetric
flow past two spheres of the same radius 1. Let (Y,5,¢) be the
spherical polar coordinates. We shall assume the axial symmetry:
§%=O and Vg =0. The vorticity equation can be written in terms
of the spherical polar coordinates in conservation form:

W23 b L2 (Ve LWV

>t + BY_(W\/»\,) + 3 lw Vo) + -
S 2 dw 1w 22w W _ |
= R(D'ﬁ iy =3 * rlCo, @39 : Y"SIH’EI), (4.1)

where R 1is the Reynolds number based on Sphere diameter:
R=2U/yp (U is the velocity of uniform flow at infinity). The
vort1c1ty has only the @& —component and 1is connected by Stokes

stream function %’as follows

= = L - = 4.2
\/e rsind 9 ) \/r r2sin® 20 > ( , )
: 3? Sthf.9 P) i 23 . '
- - , A v 4z (4.3)
Wv 51N [ arr T rr a@(sme 96)]\}/“; ~
In’order to solve (4.1) and (4.3), we take the same type of

transformation as in the case of circular cylinder:

Z

¢ o= —;rlsmze + ¥, (4.5)

i

log 1, - (4.4)

where Y is the disturbance stream functien.

The boundary conditions are taken to be similar to the
cylindrical problems. The numerical computations are carried out
in exactly the same way.as in the problem of circular cylinders.
The convergence criteria, step size and Reynolds numbers are the

same.



134

Figs.1l0-13 show the flow patterns at Reynolds number 40.
Drag coefficients @alculated by our methods are listed in Table ﬁ
2. In Fig.l4, the total drag coefficient CD is plotted against
d. In Fig.l5, CD is plotted against R for various values of d.
For all Reynolds numbers, the front and the rear bodies have

decreasing values of C_ when the two bodies are placed closer.

D
The change of CD versus d for low Reynolds number is especially
large for the rear body as in the two-dimensional case. When the ;

spheres are separated far away from each other, there is little

interaction between them for low Reynolds number, but in the case
of high Reynolds numbers some interaction remains.

We shall now compare the results for spheres with those for
circular cylinders. The trend of elongation of vorticity ands
wake region in downstream direction 1is much smaller for spheres%
than for cylinders. In spherical problems, the frictional force?

1s greater than the pressure force. The difference is larger at

lower Reynolds number whereas their ratio decreases with an -

increase 1in Reynolds numbers. On the contrary, in cylindricali

problem, we find that the pressure force is larger than the
frictional force and their difference increases with increasing :

Reynolds numbers.

§5 Flows past Spheres Periodically Arranged in a Row

In the preceding chapters, the method of matching wasi
applied to flows past two bodies. This method can be used in.
principle to compute flows past any number of bodies; the only
problem is large computing time necessary for convergence owing

to the increase of the number of subdomains in which the

solutions are to be matched with each other. However, when the
bodies are arranged periodically in the streamwise direction, it
is not difficult to compute‘the field if one replaces one of the
matching conditions by that of periodicity. 1In this way one can
analyze the flow problems which are important in engineering;
science, e.g., unsteady flow past infinitely many spheres
periodically arranged in a line -- a realistic model of a row of

small spherical drops appearing in an ink jet.
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In this section, flows past a row of spheres are computed,
where periodic boundary conditions are imposed. Keeping the
ink-jet phenomenon in mind, we carried out numerical computation
for the following three cases (see Fig.16). '

1) \ Spheres of different sizes are placed at équal
intervals (d=8.25). v

2) The larger sphere is at a distance 5.5 in front of the
~smaller one. ' ' :

3) The'smaller‘sphere is at a distance 5.5 in front of the
larger one. . - ' -

In all these cases, the raaius of the larger sphere is 2.5
times larger than that of the smaller one. Reynoldsv number,
based on the’ diameter of the larger sphere, is 75 in all the
cases. This Reynolds number is within the rangév where the
droplet formation of two different sizes were observed in an ink
jetl). The other parameters are taken to be thé‘ééme’as‘in the
previéus case. | ‘ o

‘The flow patterns are shown in Figs.l17-18 for Case 1, in
Figstl9?20'for.CaSe‘ 2 and in Figs.21-22 for Case 3. Figs.23—25
stantaneous accelaration’CD/a of the two bodies.P The experimen-

‘show the changes of drag coefficients C

tal results due to Chaudhary et al. are cited in'Fig;ZG:fof the
sake of comparison. In Case 1, the instantané&Us acééiératién
is almost the same for both ‘bodies after some time, and the two
bodies will not change their relative positions if set in free
motion (see also Fig.26(a)). "In- Case 2, the rear body enters
the wake of the front body and the acceleration ‘is. retarded by
the influence of the wake of the front body. Due: to ‘the larger
acceleration, the front body: will merge rapidly with the rear
~body (see also Fig.26(f)). In Case 3, thé,larger rear body
enters the wake region of the front body, and both are influenced
by each other (see also Fig.26(i)). Due to greater acceleration
of the front body, it may approach the rear ‘body, but it will
take longer time to merge with the rear body. Thus, the

experimental results are well-confirmed qualitatively.

* — '
If the sphere of radius a is: set -free at some instant,- it will

begin to move with the acceleration proportional to CD/a.

- 11 -



136

§6 Conclusion

The method of matching has been developed for the numerical
solution of the finite-difference form of the Navier-Stokes
equations for unsteady flows past a number of -bluff bodies. The
essential feature of this method is that if one can find a;i
suitable coordinate system for solving the equations for each
region around a single body, it is possible to solve them for the
entire region surrounding a number of bodieé irrespeétive of
shape and size , by matching individual single-body solutions
through overlap regions. Computational time for numerical ?
solutions of two-body problems by this method.is not much ldnger~é
than twice that for a single-body problem, especially at higherf
Reynolds numbers where inertia terms predominate and the change
of state occurring at a point in the fluid is transmitted mainly
in the downstream direction. |

Using this method, we solved a number of flow problems,G
i.e., a) flow past two square cylinders, b) flow past two f
circular cylinders and c) flow past two spheres. The numerical -
calculations have also been carried out forrflow past spheres
arranged periodically in a row. The results of the sphere
problems provided a good qualitative confirmation of the work ofz
Chaudhary et al.
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Fig. 4. Streamlines for R - 40,d = 10,1 =24 - Fig. 5. Equi-vorticity lines for R = 40,d = 10,
(two circular cylinders). = 24 (two circular cylinders).

Fig. 6. Streamlines for R = 40, d = 6, ¢ = 24 Fig. 7. Equi-vorticity lines for R'=40, d =6,
(two circular cylinders). t = 24 (two circular cylinders).
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Fig. 9. Cp versus R for various d (two circular cylinders)'.
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Fig. 15. C,, versus R for various d (two spheres)..
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Fig. 16. Two spheres of unequal size placed periodically in three
cases.

Fig. 17. Streamlines for R= 175, + =24 in

Fig. 18. Equi-vorticity lines for R = 75,t = 24 -
Case 1. '

in Case I.

Fig. 19. Streamlines for R =75, 1 = 24 in Fig. 20. Equi-vorticity lines for R=175, t = ‘
Case 2. 24 in Case 2. |

Fig. 21. Streamlines for R =75, =24 in Fig. 22. Equi-vorticity lines for R = 75,1 = 24
Case 3. in Case 3.
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Table 1
Reynolds Front cylinder Rear cylinder
number d CDP C/l?f Cp C,,‘, Chy Cp
3.0 1.745 1.274 3.019 0.318 0.557 0.875
4.0 1.740 1.274 3.014 0.438 0.602 1.040
5.0 1.751 1.281 3.032 0.560 0.705 1.265
10.0 6.0 1.756 1.287 3.043 0.728 0.754 1.482
7.0 1.772 1.300 3.072 0.912 0.861 1.773
10.0 1.797 1.316 3.113 1.266 1.043 2.309
20.0 1.903 1.378 3.281 1.868 - 1.361 3.229
3.0 1.158 0.540 1.698 —0.007 0.125 0.124
4.0 1.145 0.533 1.678 0.040 0.128 0.168
) 5.0 1.138 0.530 1.668 0.083 0.136 0.219
40.0 6.0 1.130 0.528 1.658 0.118 0.144 0.262
7.0 1.128 0.527 1.655 0.155 0.154 0.309
10.0 1.132 0.529 1.661 0.260 0.188 0.448
20.0 1.150 0.535 1.685 0.535 0.322 0.857
3.0 1.042 0.316 1.358 —0.126 0.029 —0.097
4.0 1.028 0.312 1.340 —0.116 0.028 —0.088
5.0 1.013 0.308 1.321 —0.105 0.027 —0.078
100.0 6.0 1.005 - 0.306 1.311 —0.062 0.036 —0.026
7.0 0.992 0.303 1.295 —0.055 0.036 —0.019
10.0 0.966 0.299 1.265 —0.003 0.040 0.037
20.0 0.943 0.287 1.230 0.474 0.181 0.655
Table 2
Reynolds - Front sphere Rear sphere
number d CDP C'Df Cyp CDP Cnf C,
3 1.074 2.572 - 3.646 0.684 ~1.187 2,471
4 1.141 2.657 3.798 0.824 1.991 2.815
5 1.219 2.700 3.919 0.989 2.150 3.139
10 6 1.237 2.753 - 3.990 1.102 2.319 3421
7 1.248 2.805 4,053 1.125 2,538 13.663
10 1.284 2.836 4.120 1.221 2.799° 4.020
20 1294 2.869 4,163 1.291 .2.867 - 4.158
3 0.530 0.987 1.517 0.261 0.469 0.730
4 0.540 0.999 1.539 0.274 0.564 0.838
5 0.559 1.018 1.577 0.312 0.608 0.920
40 6 0.579 1.025 1.604 0.335 0.647 0.982
7 0.583 1.104 1.623 0.355 0.672 1.027
10 0.602 1.051 1.653 0.450 0.705 1.155
20 0.605 1.061 1.666 0.4¢4 0.844 1.308
3 0.410 0.540 0.950 0.137 0.215 0.352
4 0.410 0.541 0.951 - 0.163 0.262 0.425
5 - 0.418 0.547 0.965 0.196 0.285 0.481
100 6 0.439 0.549 0.988 0.230 0.311 0.541
7 0.440 0.562 1.002 0.234 0.327 0.561
10 0.455 0.596 1.024 0.278 0.381 0.659
20 0.574 . 1.030 0.312 0.732

0.456

0.420



