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1. Introduction

In this paper I will report on some new methods and results in
the stability theory for the Navier-Stokes equétions. These results
have been obtained jointly with Rolf Rannacher for applications in
numerical analysis [ 1 1. Our study begins phenomenologically, by
introducing various concepts of stability suggested by experimental
observations. 1In particular, the concepts of étability we deal with
are thought to describe the staEility of such phenomena aé Taylor
cells and von-Kirmin vortex shedding. We will also define a néwr
notion of "contractive stabiiity to a tolerance", which is useful
in numerical analysis, and is thought to describe the paréial stability
observed in some flows exhibiting slight or incipient tufbulence. Most
of the results wﬁich will be described in the present paper concern
either the principle of linearized stability or the limiting behaviour

of stable solutions as t - « . Concerning our applications to the
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numerical analysis of the Navier-Stokes problem, presented in [ 1] ,
we mention only that the results are of two general types. First,
that if the solution of the initial boundary value problem is stable,
then the error in its discrete approximation remains small uniformly
in time, as t > » , Second; that from the stability of a discrete
solution, for a single sufficiently small choice of the mesh size,

~ one can infer the global existence of a closely neighboring smooth

solution.
2. Notation
We consider the nonstationary Navier-Stokes proﬁlem
u, ; Au + u*Vu + Vp = £

€5  Veu=0, for (x,t) eQx (0,®) ,

u| = a Ulag=bs

in a bouﬁded two or three-dimensional domain £ . Here u represents
the velocity of a viscous incompressible fluid, p the pressure, £ the
prescribed external force, a the prescribed initial velocity, and
b the prescribed boundary values. The fluid's density and viscosity
have been normalized, as is always possible, by changing the scales
of space and time.

As usual, LP(Q) , or simply P , denotes the space of functions

defined and pth—power summable in @ , and H'}] its norm. We

P
. L
‘denote the inner product in L2 by (+,*) and let |-

'”Lzb'
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¢’ is the space of functions continuously differentiable any nuﬁber
of times in Q , and C: consists of those members of Coo with
compact support in Q . The Sobolev space H" is obtained by the
completion in the norm
lall = ( I Io%)AY2,
0<|o|<m
expressed in multi-index notation, of those members of C”  for which
1

1 . ©
the norm is finite. H0 is the closure of Co in H . Spaces of

R'-valued functions will be denoted with boldface type. We use

Guv) = 7 GLu.,e.v.) , |[val = (Vu,vw) /2,
© lsdi,jsm P IR

as inner product and norm for Hi . Finally, we need the spaces

2

J={¢elL” : Ve¢ =0 in 9 and ¢-nl =0 , weakly} ,

o8

- 1- - =
Jl—{¢aﬂo.v¢ 0}

of solenoidal functions.
Denoting the orthogonal projection of Lz- onto J by P, we

introduce the "Stokes operator" A = PA . The mapping A : Jlr132 > J

is one-to-omne and onto, and
Ivll, =< cllav]

holds for all vwlerwﬂz , provided the boundary 230 is sufficiently
regular. We assume this ( 3Q¢ C2 suffices ) as well as some regularity
of the prescribed dataj ﬁamely that aele and fe:Lm(O,m;LZ) . For the

sake of simplicity in our presentation, we assume that the boundary values



b =0 . All of our results remain valid in the case of inhomogeneous
boundary conditions if one assumes an appropriate degree of smoothness
of the boundary values, as well as the same conditions of spatial
and temporal invariance as may be required of f . Finally, we assume
that the strong solution u,p of problem (1) exists globally
and satisfies

sup ||vull <M,

[0,=)

for some constant M .

3. Stability and Exponential Stability

Questions about the stability of u concern the behaviour of
"perturbed solutions", by which we mean any solution v of the

Navier~-Stokes problem
Ve = Av + veVv + Vq = £ ,

(2 Vev =0 for (x,t)eqQx (to,w) s

starting at an initial time to 2 0 , with an initial value v, mnear

u(to) . We refer to w = v-u as a "perturbation" of u , and to t,

and W= vo-u(to) ~as the "initial time" and "initial wvalue" of

the perturbation w . To avoid any doubt about the global existence of

v (and hence of w )vone may consider it as a "weak solution" in the

sense of Hopf; hoﬁever, it turns out omne  can prove that small pertﬁrbations

of a stable solution are always "'strong', i.e., smooth.



The ordinary, simplest, notion of stability is the following.

Definition 1. The solution u of problem (1) is said to be stable

if, for every € > 0 , there exists a number ¢ > 0 such that every

perturbation w , with W, € J and “WOH < § , satisfies sup ”w“ < e .
[t 9°°)
o

Here, in speaking of "every perturbation'", it should be understood
that we are refering to every perturbation, starting at every initial
time to 2 0 . This simple notion of stability is too weak a
condition to be useful in the numerical analysis of the Navier-Stokes
problem. However, the following stronger condition provided the
basis, in [ 1] , for extending error estimates which are local in

time to ones which are global in time.

Definition 2. The solution u of problem (1) is said to be exponentially

stable if there exist numbers 6,T > 0. such that every perturbatibn

w o, with w e J and HWOH < § , satisfies Hw(to4-T)H < %'HWOH .

If u satisfies the conditions of either of these definitions
with 6 = , we say u is uncondifionally stable.

An example éf an exponentially stable flow is provided by simple
axially symmetric Taylor cells occurring in flow between rotating
coaxial cylinders. The situation is one in which, if the data are
steady, there exist multiple steady solutions. If the difference
between two such éolutions is considered as a perturbation, it
certainly will not decay. Thus Taylor cells are not unconditionally

stable. Further, there generally exist even small perturbations whose



decay in the Lz—norm is not monotonic. However, the cells are -certainly
stable in some sense, and intuitive considerationé of linearization
suggest that the decay of small perturbations is exponential.

Our development of a stability theory is based on several lemmas
asserting the continuous dependence of solutions on their initial

values. Below, c¢ 1is a generic constant depending only on @ .

Lemma 1. For every perturbation w of u fhere holds
4
cM (-t )
lw(e) |2+ f5 Jlww]?ar < Jlwce ) || % °,
o o

for t=>2t .
o

Lemma 2., For every T > 0 , there exists a number § > 0 such that

every perturbation w of u , with v, o€ J. and ”VWO” < § , satisfies

1

4
c(14M) (e-t )
Iva(o |12 + 5 |l&w]|%ar < [[vace) || % -,
o]

for t <t =< to + T .

Lemma 3. For every T > 0 , there exists numbers p,B >0 such that

every perturbation w of u , with Hw(to)” < p , satisfies
|va(e +D || < Bllw(e) || -
To prove these lemmas, one begins by writing the perturbation equation
(3 W, = Aw + weVw + u*Vw + weVu = -Vq ,

for the difference w = v - u of the solutions of (2) and (1). Multiplying

(3) by w and integrating leads to Lemma 1. Multiplying (3) by Aw and



integrating leads to Lemma 2. In both cases, the constants c¢ arise
from use of Sobolev's inequality. Lemma 3 is obtained by combining
Lemmas 1 and 2. All these lemmas need somewhat more precise statements
if v is understood only as a "weak solution."

Using the preceding lemmas, we can establish the equivalence of
various definitions of stability. We prove the following simple

theorem to give the flavor of our arguments.

Theorem 1. The stability condition of Definition 1 is equivalent to the

following: For every €>0 , there exists a number § > 0 such that

every perturbation w , with woezJ and ”VWOH < 6 , satisfies

1

sup ”VW” < €.
[t s°°)
o

Proof. First we check that the condition of Definition 1 implies that

of Theorem 1. According to Lemma 2, one may guarantee that ”VW(t)”

is small, for t <t <t + 1 , by taking ”VWOH‘ small. Mindful

of Poincaré's inequality ”WOH < c”VWOH;, we see that if ”VWO” is taken
small, then the condition of Definition 1 ensures that ||w(t) ||

is small for all t 2 t, s and hence Lemma 3 ensures that ||Vw(t)]||

is small for all t = t, + 1 . Thus the condition of Theorem 1 is
satisified.

Next we check that the condition of Theorem 1 implies that of Definition 1.
According to Lemma 1, one may guarantee that ||w(t)|| is small, for
t,Sts<t +1, by taking ”Wo“ small. But then, ”Vw(to+l)”
is also small, according to Lemma 3. Hence the condition of Theorem 1,
considered with starting time té + 1, implies ”Vw(t)“ is small

for t = t, + 1 . Thus, remembering Poincaré's inequality, ”w(t)“



is small for t = to + 1 . This completes the proof.
The next theorem is more complicated, but proved by a similar

type of argument.

Theorem 2. The stability condition of Definition 2 is equivalent

to any one of the following conditions:

(1) There exist numbers 6,T>0 such that every perturbation w ,

with wé € Ji and HVWOH < § , satisfies

) ‘ 1 .
lecem |l < Hw, Il -

(ii) There exist numbers §,a,A>0 such that every pérturbation w o,

with W€ J and ”WOH < § , satisfies
~a(t-

t)
[w(t) || < Ae ° HWOH , for all t 2 to .

(iii) There exist numbers §,a,A>0 such that every perturbation w ,

with- w_e J, and ||vw || < 6 , satisifies
o 1 — o] —_——
—a —
lvw(t)]] < Ae ° HVWOH > forall t=¢t .

Much of the existing theory of hydrodynamic stability rests upon -
the "principle of linearized stability". This is a general assertion
that in détermining the stability of a solution u it suffices to

consider the linearized perturbation equation
(4) w}t - AW + usVw + weVu = -Vq ,

in place of the full nonlinear perturbation equation (3). In the
following theorem we give a precise statement of the principle of

linearized stability appropriate in the general context of the nonstationary



problem. The proof is a direct and simple one, entirely bypassing

spectral methods, as indeed one must in the nonstationary case.

Theorem 3. The solution u of prdblém (1) is exponentially stable

if and only if there exist numbers a,A > O , such that every solution

w of the linearized perturbation equation (4) satisfies

_ t-t ) _
(5) [|w(e)]| < Ae o ”WOH , for t=x2t .

Proof. let ¢ = Ww-w, where w and w are solutions of (4) and
(3), respectively, satisfying %(to) = w(to) =W . Subtracting (3)

from (4) gives
wt - AY +Hu-Vy + YeVu - weVw = -Vq ,

for some scalar function q . Multiplying by ¢ and integrating,

this leads to

Loll? + fiwoll? < cllwal*loll? + cliwall® .

Using Gronwall's inequality now yields

4. t +T
loce +ml1* < ce™ T [0 |luw]%ar
v [o] .
iy t +T
M 2 2
<ce™T sup w10 |lwwll%ax ,
[to,to_,T] o : .

for any fixed T > 0 . Thus, if IIVwoll is sufficiently small, -

depending on T , Lemmas 2 and 1 imply

c (Mg+l) T

‘ 2 : 2 2 |
(6) loce )12 < ce v [ 21w 12

Now suppose the condition of Theorem 3 holds. Choose T above
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such that (5) implies
- 1
(e D < Zllw I -
Then, also, provided [IVwb‘I is sufficientiy small, (6) implies
. . 1
loce sl < 2w |l -
Combining these gives
- N 1
w4 < [[w(e DI + loce || < Sllw Il »

showing that condition (i) of Theorem 2 is satisfied, implying the
exponential stability of u .
To show that exponential stability implies linearized stability,

we argue similarly, starting again with (6). This completes the proof.

In [ 11, we proved the following result as a consequence of

Theorem 3. If, for some given initial value a , the solution u of

problem (1) is exponentially stable and satisfies sup HVuH < o , then
£0,%)
so are all other solutions u starting with initial values a near

a . Here near is meant in the sense that HV(E-—a)H should be
sufficiently small. Concerning the behaviour of exponentially stable

solutions'as t -+ » , we proved the following result.

Theorem 4. If wu is exponentially stable and f is time periodic

with period T , there exists a time periodic solution u_, with period

T = kT for some integer k , such that
Juce) = u ()l = 0™ , as t>e .

If f is time independent, then u_ is a steady state solution.
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4. Quasi-exponential Stability

Before giving a formal definition, let us point to some physical
examples to explain what we mean by "quasi-exponential stability."

A simple example occurs in the Taylor experiment. At certain
rotational speeds of the cylinders, the convection celis loose rotational
symmetry, taking on a wavy appearance in the angulaf variable. Clearly,
if the boundary values and forces are rotationally symmetric, a small
angular shift in the pattern of waves will constitute an admissiBle
perturbation with no tendency to decay. However, the same reasoning
that leads one to believe simple Taylor cells are exponentially stable
leads to the conclusion that wavy Taylor cells are 'quasi-exponentially
stable modulo spatial rotations', meaning that there is a fixed
lengfh of time during which the difference between a slightly disturbed
flow and a slightly rotatéd image of the original undisturbed flow
will decay to half the size of the initial perturbation, and further
that the redﬁired rotation should be less than a fixed constant
times the size of the initial perturbation.

Similarly, we consider "quasi-exponential stability modulo time
shifts", provided the forces and boundary values are time independént.
An important example is von-Kirmin vortex shedding behind a cylinder.
Another example is provided again by wavy Taylor cells, if the waves are
precessing about the axis of symmetry. For suﬁh motions, perturbations
which consist initially of the différence in the states of the motion
at two slightly different times will have no tendency to-decayf Yet
all small perturbations may be expected to decay modulo slight shifts

in the time phase.
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Quasi-exponential stability is also considered modulo both time
shifts and spatial rotations simultaneously. An example occurs in the
Taylor experiment, when at certain rotational speeds of the cylinders
wavy cells are observed to undergo a further time periodic oscillation,
oad and even numbered cells alternately expanding and contracting. Though
these cells are sometimes referred to as doubly time periodic, it
seems clear that the second time periodicity is possible only because
the first one is equivalent to a spatial periodicity. Our formal
definition of quasi-exponential stability covers all the various
possibilities at once.

Below, ¢ will represent the angular variable about an axis

of symmetry common to both § and f , if there is one. For simplicity,

~we will write u = u(¢,t) , suppressing in our notation the usually

nontrivial dependence of u on the other spatial variables. The
symbol w will also denote an angle about the axis of symmetry,
thought of as a rotation. If f and Q  do not possess a common gxis
of symmetry, it will be understood that w = 0 . Further, for any § ,
if £ is time independent we will consider time shifts denoted by s .

If f dis not time independent, it will be understood that s = 0 .

Definition 3. We say u 1is quasi-exponentially stable if there are

numbers §,T,B > 0 such that for every perturbation w , with Wbs.]

and ”Wo“ <6 ,» there exist a time shift s and a spatial rotation w

satisfying
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@ sl + Jol = il
8) -9 e+ |f < 5l Il s

where v 1is the solution of the perturbed problem (2) corresponding

to the perturbation w , and u(x,t) = u(¢+w,t+s) .

In [ 1], the theory of quasi-exponential stability has been
developed like that of exponential stability, beginning with an
analogue of Theorem 2 giving a number of equivalent definitions. We
omit these here, but would like to state the corresponding principle
of linearized stability. To understand the modification needed in
Theorem 3, note that if f is independent of time, and/or Q and f
possess a common axis of rotational symmetry with the corresponding
angular variable ¢ , then the derivatives u, énd/or u¢ are“necessarily

solutions of the linearized perturbation equation (4).

Theorem 5. The solution u of problem (1) is quasi-exponentially stable

if and only if there exist numbers 0,A,B > 0 , such that every solution

%(t) of the linearized perturbation equation (4) satisfies

_ —a(t-to) _
(9) lw(e) - ou (t) - p_ucb(.t)H < Ae llwce ) I

for t = t0 + 1 , where ¢ and ¢ are scalar multipliers satisfying -

(10) max(]ql,[p{) S-BHQO(t)H .

Nonzero multipliers o and p are required in (9) if and only if nonzero

time shifts s and nontrivial rotations w , respectively, are required

in (8).
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Corresponding to Theorem 4, we have the following result on

the behaviour of quasi-exponentially stable solutions as t -+ = .

Theorem 6. Suppose that u is quasi-exponentially stable and that

f is time independent. Then
w-u) @]l = 0™ , a8 t+w,

where u_ is a solution of the Navier-Stokes equations, also correspond-

ing to f , with the following property: There exists an angle w

such that the function uw(¢+wt,t) is time periodic. One may take

w =0 if rotations are not required in (8). If time shifts are

not required in (8), there exists .w such that uw(¢+wt,t) is time

independent.

5. Contractive Stability to a Tolerance.

We think that many unstable flows possess the following type of
partial stability, which provided a basis for error estimates to a
- tolerance in our study of the numerical analysis of the Navier-Stokes

problem.

Definition 3. The solution u of problem (1) is said to be

"contractively Jl—stable to a tolerance" if there exist positive

numbers p , § , A and T, with p < § , such that for every perturbation.

w of u satisfying ”VWOH <§ , there holds

llw(to+T)ll <p, sup |lvw|| <A .
[t ,t +T]

To understand this concept in terms of an example, imagine that

B Ao SO G i 5

edibisatiti
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Q 1is a section of pipe or tubing and let smooth boundary values be
prescribed for a flow entering across an upstream section and exiting
across a downstream section. Adjusting the rate of flow and the
length of the pipe, one may expect to observe incipient turbulence

in a flow which is yet, in some sense, stable to larger disturbances.
Small perturbations in the nearly uniform upstream flow begin to grow.
However, before they grow very large they pass out of Q across the
downstream boundary. Yet, their effect may not decay to zero. Even
as they pass downstream they influence the upstream flow; the flow

is analytic after all. Their effect might be likened to the introduction
of new perturbations upstream, which in their turn will grow, pass
downstream, and‘again create new perturbations upstream. If a

larger disturbance is introdﬁced, its effect will decay to the same
ambient level of minor disturbances. Another type of example occurs
in von-Karmian vortex shedding, if there are slight instabilities

in the vortices. Sﬁill another occurs in the Taylor experiment,

when wavy cells appear with slightly turbulent cores.
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