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Low Reynolds Number Shear Flow

along an Elliptic Hole in a Wall

Hidenori HASIMOTO

Department of Physics, University of Tokyo,

The influenceiof an elliptic hole (of semi-axes al and az;!
t=ay/a; £ 1) on the shear flow along a thin solid plane wall
is investigated on the basis of the Stokes equation. Exact
solution is obtained in terms of ellipsoidal coordinates. If the
flow is parallel to the major or minor axis, a radial incoming
flow induced upstream along * 7/4 direction to the wall moves

almost parallel to the axis in the neighbourhood of the hall and.

is reflected into a radial outgoing flow. The total flux  of this

flow is found to bé %ka2t2a13/c , where ¢ = t2K + (1-42t2)E or
(2 - t2)E - t K, K and E being the complete elliptic integrals

with the modﬁlus k = (l-—tz)l/z.

(1)



§1. Introduction

The effect of a hole in a wall upon the stream along the
wall is of interest from many view points. However, even with
the case of solid thin screen and with the low Reynolds number
approximation, details seem to have missed study except the flows

- . 1,2
due to pressure differencel 4) across a circular hole,™’ ) an

elliptic hole and general holes.3’4)

In a previous paper the authoé”investigated the shear flow
along a circular hole on the basis of the exact solution of the
Stokes equation. Essential feature is the appearance of a radial
incoming flow of flux 4(xa3/(9ﬂ) induced upstream reflecting into a
radial outgoing flow of the same flux, where o is the rate of
shear and a is the radius of the hole. 1In this paper this study

is extended to the case of an elliptic hole in order to study the

effect of ellipticity of the hole.

§2. Fundamental Equations and Solutions

We consider a viscoﬁs fluid separated by the‘plane X4 with
an elliptic hole of semi axes a, and a, directed parallel to the
X) and x, axes. in the cartesian coordinates (x,, X,, X3) whose

origin is at the centre of the hole. The unit vector parallel to §

each axis is denoted by §j(j = 1, 2, 3) respectively. (Fig. 1) ?th

Let us assume a uniform shear flow V = a x3§l far from thei

hole in the upper domain x

3 > 0 in contrast to the lower one

(x3 < 0) where the fluid is at rest far from the hole. The pres-
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sure difference as well as the flux through the hole is assumed
to be zero, since the solution is alread& knowﬁ4gnd is additive to
ours owing to the linearity, on the assumption that the Stokes
approximation is valid in the domain under study. Then, it is

convenient to subtract the uniform shear flow in the whole field
1 i~ ‘
v —-2—OLX X 7 ) (2.1)

and solve the boundary value problém-for the Stokes  equation which -

is symmetric with respect to X5 = 0 (Fig. 2)

l A~ .
v =V - vy > E4XIX3|X ' as r » » , (2.2)
and
v=0 onthewall z=0 and 0 < 0 (2.3)

where r is the distance from the origin and
c =1 - -5 . (2.4)

The pressure p may be assumed to be 0 at infinity. If we,take‘

into account the symmetry with respect to x., = 0 and continuity

3

of the velocity and pressure on the hole, we have only to solve

‘the problem only in the upper half plane x3 > 0.

Owing to the symmetry, the velocity v and the pressure p

are represented in terms of three harmonic functions @l; @2 and
@0 as follows :6’7)
y/u = x3grad¢3 - ®3x3 + xlgradd)1 - @lxl+ grad@o , (2.5)
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00 00
i (2.6)
1 3
with
A(I’, = 2.7
5 ' ( ‘)
where ®3 is antisymmetric with respect to X3 in contrast to @l
and ®0 which are symmetric :
9] = - -
3 (g %50 %5) Oy (xys Xy =%3)
] =0 -
l(xll le x3) l(XlI le X3) 14
o = : -
o (¥qr Xgr X3) 0o (xyr Xy =x5) . ‘ (2.8)

These functions can be determined from the boundary conditions at

~infinity in the upper half domain :

i.e. A, =A, +A_ , A'-—--ﬁ-, (2.9)

]
o

as well as the condition at X3

o, = 8@1/8x3 = 8@0/833 =0

on the hole x, =0 , >0, (2.10)

3
@l = @O = 0 on the wall Xy = 0, g < 0 (2.11)
and
B@l 8@0
b, = X, =—— + — on the wall x, =0, o<0,. (2.12)
3 ; lax3 ax3 , 3

(4)
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where the constant A3 is to be determined later. The condition
(2.9) yields the shear flow (2.2) at infinity, (2.10) guarantees
the symmetry and continuity on the hole and (2.11) as well as

(2.12) corresponds to vanishing of the tangential and’the normal

velocity on the wall.

§3. Determination of Unknown Functions

Let us introduce the ellipsoidal coordinates (Ayr Ayr A3)

(Fig. Q) : 744 .

v
o
v
>
v
|
)

with 0, and A 2> 2 -a % . (3.1

o)
i

Here the hole (0 > 0) and the wall 0 < 0 at 'x3 = 0 correspond
j A = A - . F .

respectively to 1" 0 and P 0 ; ‘the surfaces Al, Xz, KB

(=const.) being ellipsoids, hyperboloids of one sheet and

hyperboloids of two sheets, respectively. We may also note the

relations
3 -3 ;
2 =7 %2 =2 (A, +a,2) ' (3.2)
i=1 1 j=1 3 J .
90X, X.
i 1 i ‘
== (3.3)
Aj 2 a.2-+k '
1 J
OX. 23x .
__J_= h_ ————l _ (3'4)
0X ., j 9
i J

with

(5)
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2 2,
h.” = 4[A (), . o= AL (3.5)
5 BOPIT/ IOy = Ay)
and
3 1
BAy =T (A, + a.)2 (3.6)
J i= J i

which yield

-1/2 8}\1 ‘%
' — = = .7
Ay T, T 20 for A, =0 (3.7)
i.e. on the hole and
. OA. S(A.)
1 1 1 '
= T = 2 for A, =0 (3.8)
X 8x3 Xl - XB , 2
i.e. on the wall, where
1 1 ‘
S(A) = (X o+ af)z(k + a§)2 . (3.9)

The result of the previous paper with reference to Lamb's
treatiéé”suggests the following fact :
i) ®3 is the electric potential due to the conducting elliptic
disk A, = 0 placed in the uniform field parallel to the x, axis.
ii) ¢, is the velocity potential due to the disk A, = 0 placed
in the uniform flow of a perfect fluid parallel to the x, axis.
iii) ¢, is related to the velocity potential due to the disk
Al = 0 rotating about the X, axis.

It is fortunate to notice that such harmonic functions are

given in Lamb's treatise.s) Rearranging them so as to satisfy

the conditions (2.8)-(2.11), we have

(6)
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A3xl[l - B3¢l(kl)] (3.10)

®3 =
®l = Alx3[l - 81¢3(Al)] (3.11)
®O = onlX3[l - BO{¢1(X1) - ¢3(Al)}] - (3.12)
where
°° A
¢. (1) = f > d (3.13)
J A (aj +A)A ()
and Bj (j = 3, 1, 0) are constants:
1 1 1
B, = — , B, = = ———, B. = s——— (3.14)
3 Yl 1 Y1+Y2 0 ,2Y1+Y2 (
with
Y. = ¢.(0) . ' 3.15
3 i ( )
We have made use of the relations at Al =0
1/2

- _ ogl/2
X405 (A) = 20777/6(0) = 20777/ (a;a,)
and I (x503) /0%y = = vy v, (3.16)

as well as (3.7). It should be noted that Yj are reduced to the

complete elliptic integrals :
2 1 | ‘
Y1 73 32 [RK(k) - E(k)] o (3.17)
ay k

and

(7)
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v, = 25 ;{711:—5 [E(k) - k'’K(K)] | (3.18)

with

k2 =1-t%, x2=¢? (3.19)

where t is the thickness ratio of the ellipse :

t = a2/al . (3.20)
The constant Al can be determined by the remaining boundary’
condition (2.12) for A2 = 0 by noting (3.8). We have

A, (1 - B3¢l) =a,( - B195) + ALIL - By (9 —¢3)1] (3f21)

3

with (2.9), which yields

B Y
0 4 1
A, = A == A
3 B‘3' 0 2y, +v, 0
and
B Yo+ Y,
0 1 2 ‘
A, = s— A = = 00 . (3.22)
1 Bl 0 2yl-+y2
Introducing into (3.10)-(3.12), we have fihally :
cp3 = B[Y1 ~ ¢l(ll)]xl
¢l ="B[Yl + Yo + ¢3(Kl)]x3
and
@0 = B[2Yl + Y, - {¢1(X1) - ¢3(X1)}]xlx3
i 1
with B = o and A, = 7 (3.23)

2Yl’+Y2 0

(8)
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The velocity V = %cxx3 1 + v , in conjunction with (2.5), (2.8) and

(3.23) forms the solution of our problem. We may notice that the

expression for the pressure (2.6) is simple ; we find

36 90
-3 L. 88 0y) * %] (3.24)
quo 9xy 9x) A A=A ) (A Ay g 2
] 1 1
which is positive for Xy > 0 and is negative for Xq < 0 (see

(3.1), (3.6) and (3.23)).

§4. Several Features of the Flow
Let us consider the behaviour of the induced velocity v-
and pressure for z = 0 and r > ®,
i) Velocity and pressure on the hole |
Putting A, = 0 in. (2.5), (3.23) and (3.24), we have on the

1
hole (z = 0, o > 0)

A

V = X grad(bl - d.x o+ grad ¢, = (4B0l

1

171 0 /Z/aa );“

IS Rev s )

o ) R 3 1/2
p/Sua _'B}H_/(al a,o

) (4.2)
where use has been made of (3.13), (3.16) and (3.1).

The veldcity on the hole is parallel to the direction X of
the main flow and is maximum at the centre where o = 1 , the
isovels being similar ellipses to the hole. The pressure is

infinite but integrable on the rim where ¢ = 0 . The isobars

are ellipses inscribed in the hole with the common major axis

(9)
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along xl = 0 . The tagential stress 1J8v/3z is found to be

zero except the stress ua§ due to the unperturbed flow.

1i) Shear stress on the wall

On the wall Ay =0, o £ 0 we have (3.8) and
2
Bhy A, +ad | 3y
== =2 L x (5=1, 2; i¥j, 3), === =0 (4.3)
7% IS | 5%, |
and
20, /0% = =Bly, +v, + 65 (h))] (4.4)

The velocity and the pressure (3.24) are zero there. The tangen-

tial stress udv/ox expressed by

3

8®3 8@1 8®3

1 8x3 8x2

vields a usual singularity 211B(—05_l/2 on the rim ¢ = 0 and

tends monotonically to % pa/2 due to the external flow a]x3]§1/2.
iii) The field at infinity |

Letting Al +> we»can.find the asymptotic flow at infinity
Y > <(see (3.1) and (3.2)). For this-purpose, the following

expressions are useful

3 -2
_ 2,2 _ 2 2 2,5 2 ...
¢1(K) =35 X §(2al + az)
3 _5
_2-‘5__2_2 2}\ 2+...
¢3(K)‘— 3 A 5(al + a-)

(10)
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and
2

A =+ o(l) (4.6)

Introducing (4.6) into (3.23), (2.5) and (3.24) we have
_ l . ~ .

v = 2(»lz[x + v,
with

- X IX ‘ ~ : A S

R e | sin26] cosw (4.7)

o r r r2
and

x|%4 |
P _ g 3 1

where © is the radialAunit vector from the origin, and (r, 0, w)

are the polar coordinates with x, as the polar axis.

3
It is interest to notice that (4.7) and (4.8) are in perfect
accordnace to those in the case of a circular hole of radius a.

Except the external flow v = %cx|x3{§l , the induced velocity

v is radial and its magnitude is just 2rp/u.. As to the angular

dependence we have an incoming flow with maximum along 6 = * /4,
w=m (i.e. x,= 0, x;= -[x3]) and an outgoing one with maximum
along 0 = *7n/4, w=o0 (x2 = 0, X, = JXBI) (Fig. 4).

These two flows are connected by the flow parallel to §1

near the hole as shown by (4.1) and the velocity v = {iﬁl (i > 0)
at the plane Xq =0 (A3 = - alz) where
a = 2B[¢3(Xl) - ¢1(Xl)]x3 (4.9)

and

(11)
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2
2 )

o
Il

2
Ay +a,%) (1, +a22)/(a12 -a

2 2
X3 = A (=X,)/a;a,

1A%
(=)
v
>
v
1
o
N

(A

The total flux of induced flow u through the upper XX plane is
given by
ooeo~ 8
Q = 2a udx,dx., = = Ba (4.10)
2773 3
0’0 ,
which is in accordance with the total incoming (outgoing) flux
in the upper (x5 > 0) domain calculated from (4.7) for vV.r .5)

Fig. 3 shows the value of important parameter B/al3 as the

function of thickness t (upper curve).

e

§5. The Case for the Flow Parallel to the Minér Axis

The case for the flow parallel to §2 can be obtained perfect-
ly in the same manner. We have only to adopt @2 in place of @l
in (2:5)

v/a = x3gra§®3 - O0uxg 4 ngrad®2 - ®2x2 +_grad©0 (5.1)

corresponding to the undisturbed flow

1 o |
= = .2
v, 5 0 XX, (5.2)

We have finally

(12)
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¢y = Byly, - 9,000 1x,

®2 = "BZ[Yl t oy, + ¢3(A1)]x

and

®0 = BZ[Y1 + 2Y2 - {¢2(Al) - ¢
with

AO
B. = — — (5.3)
2 Yl-+2y2
instead :of (3.23).

For the pressure in (3.24) we have ohly té replace Bél/axl,
xi, a;”y and a22 by 8@2/8x2, Xyr @, and-a‘l respectively.

Other interesting values corresponding to those in 84 are
given as follows |

_ _ s _ 1/2 o
vV = ngrad®2‘ ©2x2 + grad®0 = (4B26 /alaz)x

5t (4.1)"

_ .3 .1/2
p/8uo = B2X2/(ala2

ot/ %) (4.2)"
23 -3
= 2 2 _ 2,2 2., 2 '
¢2(k) = 3 A 5(al -+2a2 YA + (4.6)
~ x| x| 2B,|sin26|sinw
Vo_oyp, 2 3 2 4ot =2 t (4.7)"
o "2 4 4 2
: r r r
D x,| %51 1
o= 8B, ——3— + 0 (=) (4.8)"
H ' r r i
~_ - N o - B . '
v = 2B2[¢3(Al) ¢2(Al)] x3X, for X 0 i.e. (4.9)

(13)
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It is easily seen that the essential features are the same

as those in §4, within the numerical factor B, given by (5.3).

2
The isovels in the hole are ellipses whose major axes coincide
with that of the hole in this case. The values of Bz/al3 as a
function of t are given in Fig.3 (lower curve), showing that the

. | | 3, .
general effect of the hole is smaller than that of (B/al ) in th

previous case parrallel to the major axis.

§6. General and Special Cases
On account of the linearity of the problem, the general cas
of the shear flow parallel to the plane can be derived easily by

superposition. If we let k2 + 0 and make use of the expansion

. 1.2, 9 4, ...
K—2(l+-4—k+64k+ ) .
(6.1)
= T - 12 3 44 ...
E = 2(1 4}< 64]< + )
we have from (3.17) and (3.18)
3. 32, ...
Ylal = 2(1 + 8]< + ; )
(6.2)
and vya;” = (14 2k%4 -e)
which yield for B in (3.23) and (4.1)
3 1 5,2
B/al _-6_7?(1 -8—k+ ) o«
and (6.3)
301, _ 7.2, .
By/ay” =gl - gk * o)

(14)



al = a
3
- - a_ = 4a 3
B=B, =% + ©Or Q=gra . (6.4)
in accordance with the previous paper.S) If we let k2 - 1,
i.e. k'2 = t2 -+ 0 and make use of the expansion
K=L+%(L-l)t2+ .
and (6.5)
L=1+ %(L - —lz—)t2 + .
with
L = log(4/t)
we have
3,2
a, t
_ 1 - L3~ 5y¢2
B = 5 {1 2(3L f)t + ---]
3.2 (6.6)
ay t 1,2
By = —gg L -ge+ 1

In the extreme case of narrow hole B, is found to be just half

2
of B.

The value of limiting value of the flux in the second case

divided by the transversal length 2al tends to
4B, 0 a 2
é _ 2 - 2
2 Bal 12

which is not in accordance with the corresponding value a22/8
for the case of a narrow transversal slit of width 2a2 to be

reported in a subsequent paper or calculated by use of Wakiya's

(15)
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studyg) for the shear flow past a ditch in a plane wall. It may
be interesting to notice that the same ratio 2/3 is also found
in the case of the flux due to the pressure difference thought

an elliptic hole and that through a slit in a plane wall.
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