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ANALYSTIS FOR THE HEAT CONVECTION PROBLEMS
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‘ThlS paper is devoted to the study of Heat convectlonilnv
an enclosed rectangular cavity, the upper and lower walls are
malntalned at dlfferent but unlform temperatures. Two alternate
boundary condltlons for temperature on s1de walls namely, a
perfect 1nsulatlon and linear varlatlon, arevcon81dered The
Nav1er—Stokes equatlons in their Vort1c1ty—stream functlon‘
formulatlon and Energy equatlon, are solved by an 1ntegral
equatlon technlque. Numerlcal results in the forms of stream
llnes, equl vort1c1ty llnes and 1sothermals are presented forl'

a varlety of Raylelgh numbers up to lO5 for flulds w1th Prandtl
number unlty, Wthh 1nclude transient and steady- state solutlons.
Steady—state ea51ly exist in 35th’for 1nsulated and 25th for

that of linear one. At Ra=lO5 for llnear type boundary condltlons,

reverse flow in the upper region near the cold wall, appear at

early time steps, Wthh decreases in size as time advances.

INTRODUCTION:
Solutions of viscous flow problems which are governed by

the Navier-Stokes equations, create such analytical difficulties
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that numerical methods seemS. to be the reasonable means to
obtain them. Further, since these equations contain non-linear
term and higher order derivatives of velocity, it is difficult
to obtain stable numerical solutions at a given parameter, and
Jif solutions of the time-dependent forms are to be achieved com-
puting times become very large. Therefore, stable numerical
schemes capable of reducing computing times are much in demand.
In contrast to the usual finite-difference or finite—element
approximation methods, which contain extensive numerical litera-
ture in them, we dlverted our attentions to develop 1ntegral
equatlon scheme. Though this scheme is not new, 1ts use in
SLmulatlng fluid flows has been llmlted. In early efforts, it
is developed and testified‘and verlfied on driven cavity flow

(2)

prOblem both for’Steady(l) and Unsteady Navier—Stokes equa-
tions. Since little’is known about its stability with time and
its valldlty in computing flowsvwnth'wnnousknumiﬂy'dxxhtlons,we
extended and applled on Heat Convectlon problem in a rectangular
cav1ty, heated from below. Both the problems of drlven cav1ty
flow and free convectlon flow in enclosed contalner, lend them—
selves to testlng and verlfylng new and 1mproved numerical
schemes. Latter 1s more attractlve as it throws llght on problem‘
Wthh arise in practlcal 31tuatlons such as double ~glazed
window and a gass filled cav1ty surroundlng a nuclear reactor
core.

A considerable attention had been (and is still being)
given to the problem of convection in a fluid confined between

two horizontal boundaries at different but uniform temperatures,

with side walls insulated. The analytical attacks on analogous
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, whose attention was

(3)

problem starts with Batchelor’s work
motivated by an interest in the thermal insulation of buildings,
in partiéular by double-~glazed windows. Convection in a horizon-
tal cylinder has been treated analytically by several authors.

(4)

For example, contains . a comprehansive bibliography of this
kind. Most of the experimental studies are concerned with the
problem of convection in a box in which side walls are at dif-
ferent temperatures and upper, lower walls are képt insulated.
Elder‘s); in a vast experimental study, presented the results
for Rayleigh number up to 108 and Prandtl number in the rangé of
lO3 with various aspect ratios. More recent experimental works
are supported by Simpkins(6) and Phillip(7). On the other hand,
a numerical study of both £wo— and three-dimensional motion in
a fluid heated from below, which appears to be the fifét detailed
solution of the full equation of -motions and energy, has been

(8)

made by Aziz . He produced transieht and steady-state solu-

tions for Rayleigh number up to 3500. A similar type of study

(9) (10) by employing finiteF

have been made by Wilkes and Pepper
difference and finite-element methods respectively. The former
presented the transient as well as steady-state solutions both

for insulated and linear typé‘of boundary conditions. This Study
was unable to producé’étable results for Grashof number greateri
than 200,000, While the latter, for tésting and verifying his
time—split finite element recursion relation, reported the steady-

state results for Ra=103,'104

and 105. He compared and correlated
his work with the previous existing finite-difference and
experimental solutions. Because of the practical utility concern-

ing this problem, many attempts are still being made and present

work is one of them.

1
{52
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§1 PROBLEM STATEMENT:

The physical situation of the Heat convection problem
under consideration is illustrated in Fig.l. Consider a rec-
angular ecclosure whose lower (y=0) and upper(y=b) walls are at-
different but uniform temperatures say Tl(hot)‘and Tg(cold) re-
spectively. The fluid is initially motionless and at a given tem-
perature. Two alternate boundary conditions are considered for
temperatures on‘the side walls, namely 1) perfect insulation and

2) a linear variation T=T0+(T1—TO)—(T1—TO)y/b; It is assuméd that.

Cold walI(TO)

Insulated ’ | |Insulated

or Fluid b © or
Linear Linear

A

a

\’

Hoﬁ wall(Tl)

Fig.i. Rectahgular eﬁolosore

lhe fluid properties except density in the buoyancy term of moms:
" mentum equation , which‘is essential to the phomenon of Natural.
Convection, are considered‘to be constant. It is further assomed
that the temperature between the walls(Tl—TO),,is small compared’
with 1/0 and also dissipation and compressibility effects are
negligible. With these assumptions in mind'we‘start with the 2-
dimensional Unsteady equatiohs of mass,‘momeﬁtum and energy in

Boussinesqg approximation, which are given by:

o

e
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ou du ou _ _ 1 09p 2

U T VS S otV VU (1-2)
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dv v dv. _ _ 1 9p 2, _

§—E+ u a—§ + v _3_§ = a’o-—a—y"f' v Vo 0o g (1.3)

T 3T AT _ . y2p (1.4)

-gE-'i‘u—B-}—{'i'Vay—K

where 0=pg

= - (T-T

Po 0)

The initial and boundary conditions are:

t=0, 0 £ x < a, 0 < b: u=v=0, T=TO+(T1—TO)(l-y/b)

A

Yy
x=0 and x=a: u=v=0, T=TO+(Tl—TO)(l—y/b)

or —SE =0
* t>0
y.=0 : u=v=0‘l T:T]_' (1.5)

y=b: u=v=0, T=TO
The above equations can be reduced in the following non-.

dimensional forms:

%‘i‘*%=° : | (1.6)
%%+u%+vg§=;%§+%v2u ' (1.7)
%% + u %% f v %% = - %§.+ %ﬁ V2V + géiégé T (1.8)
%% + u %% + v %% = %ﬁ VZT ‘ : ‘ (1.9)

Xy
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with initial and boundary conditions:

t=0, 0 < x < a, 0 Ly < 1l: u=v=0, T=1l-y
T

x=0 and x=a: u=v=0,

0
=l—y
or _%g’}r{_
y=0: u=v=0, T=1 £>0 (1.10)

y=1l: u=v=o0, T=0

Introducing stream function ¥ by,

']
4T 5y (1.11)

9

v =—2¥

and vorticity w, which is the curl of a velocity vector. as given
by the following equation:

v _ 8u
ox oy

Introduction of stream function automatically satisfies the equation

Y = (1.12)

of continuity (1.1). If 't' is defined by t/v/Ra—» t, then the

above equations can easily be written in the following forms:

VY = -w (1.13)

( y2 - L 2 )u = -/Ra/pr( J + 9T (1.14)
) ot X
VPr

( V2 - VPr _ )T = -/Ra.Pr J (1.15)

ot y T .
whére J 9 (y,0) ’ JT =9(¥,T) are the Jacobians operators
anIY) .xly)

and Ra, Pr are the Rayleigh and Prandtl numbers respectively.
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§3 NUMERICAL  SCHEME:

The basic idea is to construct a solution in the integral
form through the use of Green’s theorem, Green’s functions, flow
equations and imposed boundary conditions. Equations (1.13) to
(1.15) which involve stream function, vorticity and temperature
as flow variables can conveniently be recasted into integral
equations, which in turn éontain Green’s functions, which are

defined below for a given domain.

Green's functions:
Let Gl’ G2 and G3 are the Green’s functions for the
{
operators Vz, (V2+7§f%€), (V2+/Pr%€

defined uniquely with the following conditions.

) respectively which are

V2Gl(x,x') = 62(x—x')

(v + = ¢

(X,£:X",£')= 82 (X-X") 6 (t-t")
VPr v

2

2 0 ‘.|’|_2_v )
(VS + V/Pr EE)G3(X't'X yEN)= 87 (X-X') 8 (t-t")

(3.16)

Gl(X,X') = 0 if X €D+3D, X'€3D and X # X'

1l

G, (X, tiX",t") 0 if X€ D+3D, X'edD, X # X' and t-t'—> +x

Il

G3(x;t;x',t') 0 if X€ D+3D, X'€dD 4 and t-t' —» +e

o

9 1y 1 —_ : S '
BX.G3(X,t X',t") 0 if X€ D+3D and X'é€ BDS
oD
u
where,
BDS' D ' BDS BDud=3Du+8Dd
9D _=3D__ ,+3D
D ] ud s
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Next we consider the Green’s theorem as given below in
three different forms. For convenience consider D a closed domain
with surface 9D whose outward normal is denoted by n in Fig.2.

t
A

t
0 < Fig.2

,X
ff(u'V'zv'—v'V’zu')d2X'= [(u" %;’T -v g ,)ds'! (3.17)
D 3D
?ff(U'(V'z- L 2oy (V'zﬂ;—l 9 jun)a®xrat' =
to D ) VPr ot? VPr 3t
t . ae!
r BV' ou 2 ]
[ (u's=,= v'==}dS' + -~vff(u v' da™x : (3.18)
tbgD on n /Pr D t
t 2
t{)fl'){ (u' (V'°- VPr Bt')v -v'(V /)rg?)u )d X'dt' =
€. BV' ou' 2
[Jargo- vigoods'at’ + verff(u'v') a°x’ (3.19)
tooD D

INTEGRAL EQUATIONS OF FLOW VARIABLES:
Stream function:
Substitute u'=Gl(X',X) and v'=sPXX',t")in (3.17), use (1.13),

and the imposed boundary conditions of y=0 and G,=0 and simplify,

1
we get the fdllowing integral equation for V¥.

~
i.
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p(x,t) = ] w(x',t)Gl(x',x)dzx' (3.20)
D

(3.20) can be applied to solve stream function values at every
point of the domain D if w .is known:at that points; which can be
"obtained in the following way.
Vorticity:
In a similar way associating u'=G2(X',t';X,t) and v'=
w(X',t') and putting in (3.18). After using (1.14), (3.16) and

simplifying we get the following form.

BT (] 1] '. 2 1 ?
w(X,t) = -/Ra/Prt{ff(J(X £') + 52)) G, (X!, EX,E)dTX
- 9 | 2
+ [fu(s', ") 2=,G. (S',t";X,t)ds'dt' - - [[u(x', t0) G, (X', to;X,t)A"X
todD an'72 /Pr
(3.21)

Equation (3.21) can provide vorticity informations provided, the
boundary vorticities which appeaf in the second integral and
%%, are known. From now ownward after constructing the integral
equation for temperature, we proceed for the determination of
boundary vorticities.

Temperature:

~ Substituting u'=G3(X',t';X,t) and v'=T(X',t") in (3.19)

and adopting the similar procedure yields the eguation,

T (X,t)=-V/Ra. PrfffJ (x',t")G,(x", t':X, t)d%x'at’
to D

t
t
[]oT ((S',£")G5 (8", t" X, t)ds dt " +[] T(S',t" )a G,(S',t';X,t)ds'dt’
t3D3Jn 3 - e
S toaD ud on'

-V/Pr jfT(x',to)G3(x',to;x,t)d X! (3.22)
D
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Boundary vorticity: (Integral expression)
Differentiating (3.20) both sides with respect to n, the

outward normal derivative we get,

2 .
(S, t G, (X', =0 (G )
Bi( ) _ _fé w(X,t)gnl(X s)d“X (Given

and putting (3.21) in place of w yields the following integral

expression for the boundary vorticity.

t ~ _
I w(s',t')H (S',t";8,t)ds'at’
to9D .

- t' [ 'RY oT ' v 2 ] [l
= VRa/Pr[[(J(X',t"') + 53, ))H (X', £"58.£)a"x'at

toD
l [] ] 2 ]
+ =— [ w(x o) Hy (X', t05S,8)d"X (3.23)
vRa
1 0 v v n aG (xn S) »2'/i|’
where Hl(s',t ;S,t) = jé 51Gy (ST, X", 8) 51T T d
a'al ' . v n 9 " 2 n
and Hy (X',t';S,t) = fé Gy (X', t" X", £) 556G (X",8)a"X

w(s,t) appearihg under the surface integral of left hand side, is
an unknown quantity. Its determination in (3.23) requires the
evaluations of Hl(S',t';S,t) and HZ(X',t';S,t),'Which in turn
need Green'’s functions and its derivatives. If ¢, w at to(initial
value) and Hl and H, are supposed to be known then (3.23) allows
to give boundary vorticities informations directly at each time
step with the use of Gauss elimination method. Once these are

known, (3.21) gives vorticity informations insde the field.
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CONSTRUCTIONS OF GREEN’S FUNCTIONS:
Image method:
Constructions of the Green’s functions Gl and G2 by image

method are given in reference (1) only the outlines and important

points for G, are discuss here. Consider the illustrations shown

3
in Fig.3. 'abcd' is the physical domain with a positive charge.
If the domain has mirrors walls then its amages will be formed
in all directions. If we consider the four images as shown, we
can satisfy the conditions described in (3.16). Considering only

the periodic domain 'ABCD' and use the fundamental solutions, G3

can easily be constructed in a similar way as described in

reference (1). N
L — a —s
* * * *
D | d | <
i T i
-+ - *X A4 T
- + + |+ + |
—® € Y — 3 x>
-X! X
* * % *
1. i
| ]
A B
* * * *
+ + |+ +

hé
-—00 .

Fig.3. Schematic diagram for the construction

| of G3
Derivatives of the Green’s functions can conveniently be
obtained by simply taking the derivatives with respect to x and y

and considering the propoer signs for each wall.
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§4. COMPUTATIONAL PROCEDURE:

Integral equations (3.20) to (3.22) are transformed into
Algebric equations and Integral expression for the vorticity on
the boundary into Sum form: by discritization. Physical domain
as shown in Fig.4. is devided into meshes, the subscript (£,m)

shows a mesh point in the field and that of p a boundary one.

S .
! 2L+M /SL+M
X 1<A<L-1
le = =
1<m<M-1
X
sp: L,..,L+M,.., £,m
2L4+M, .. ..,
/ ~
21+2M 0 L S,
S0=S2n+2M

Fig.4 Configuration of -field and

boundary points
With these notations (3.23) can be written in the following sum

form:

2L+2M N  2L+2M
v
N I, O+ n A™ A )
/_"p'p "p' Z__ >___ (Hlp o £ A )up
p'=1 n=1 p'=1l '

/Ra/Pr ( 2" AT Ax Ay ) JM (e, m")
; } (¢7m")p
n= l

L-1 M-1
1 N N
S —— ? .
Jor o ( H2 (7im')p Ax Ay ). w o
‘=] m'=1 ,

Here wg. is unknown at the p' boundary points, n, the number of

14

time steps. The calculation of Ip o' at P=p' is done by analyti-

cal procedure as given below.



Ax/2 Ay/2 Ay/2
1 Wty 2y n2
- =Ax/2 0 ~-Ax/2 ) 5
(X"—X') +y"
26, (x",5)a*x"ax’
on_1 !
(if p¥p')
and Ax/2Ay/2 Ax/2
o 2 —_ _]_‘_(Xll_xl)2+ "2)
]_: _ —g—- y" e 2 t y
P/P 2 2 Z
m2 AX/Z 0] AX/2 (x“+y")2(x"—x')2+y"2)
dx"dy"dxl
(if p=p')

With space mesh 1/10 and
are computed first and then Hl
(n=n') and preserved for actual

calculated from the expressions

are stored for some fixed number -of time stéps say N

READ IN DATAl«

time mesh 0.002,'Green's functions
and H, are computed for t=t',i.e.
computations. Hl for n=n' is

given above. These computed data

1°

GIVE INITIAL VALUES (n=0)

P=0, w=0, T=l-y
1

COMPUTE TEMPERATURE FOR

g

FIELD+BOUNDARY POINTS

PRESERVED COMPUTED DATA
161+G5sG4,96G,/3n" , 3G,/ dn"

and H,,H, (for Ny steps) |. -

Basic steps of actual computa-

[ COMPUTE BOUNDARY VORTICITY] tions are as follows. With known

[[COMPUTE FIELD VORTICITY

| values of ¢, w and T, temperature

—

[ COMPUTE STREAM FUNCTION

b

NG n > n1

JYES

| is computed first from (3.22) for
both field and boundary points.

For linear boundary conditions

1 NO STEADY-STATE ESTABLISHED| G

3 is not used and the values are

JYES

| .PRINT OUT y,w,T, and n

i calculated only for the field. .

Fig.5 Flow chart
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Boundary vorticities are then calculated from (3.23) by uéing
Gauss elimination method. Later these values are used in (3.21)
to evaluate field values of vorticity. Finally (3.20) is employed
fo give stream function values with the use of boundary and field
vorticities. These steps constitute a complete loop of computa-
tion for each time step. Since ¥, w and T are now known for all
field and boundary points at a certain time step, the computation
can be repeated for subsequent time steps.

The above mentioned procedure is repeated upto Nl time

steps, since preserved data contain N, informations only. To

1
proceed the n=Nl+l time step, initial step '0' is shifted to

step 'l' so that the difference of final and initial step is
always Nl steps. Consequently the informations at steps preceed-
to initial step do not enter the computational procedure and

are discarded. In this manner we could get transient solutions

at each time step directly without iterating the process in
(x,y) plane, as is required in Finite-differece approximations.
For convergence we repeat the process till the values of stream
function, vorticity and temperature satisfy the following condi-
tions.

n+l| ' ot 0t N+l
r

n .
voo— <€ and‘Tn—T"

<g
where n is the time step and n+l is the number advanced by one

step. Flow chart is given in Fig.5 for reference.

/ f}?
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§5 NUMERICAL ILLUSTRATIONS:

Heat convection in a rectangular box with upper cold wall
and heated from below is studied, and flow equations of non-steady
Navier-Stokes in their stream function-vorticity forms (1.13),
(1.14) and Energy (1.15) are solved with the application of an
integral equation scheme, modified in the previous section.
Results in the forms of stream lines, equi-vorticity lines and
isothermals for a square domain (aspect . ratio 1l:1), with space
mesh 1/10, time mesh 0.002 and €=10_3, are presented as numerical
illustrations for Rayleigh number up to 105, P;=l. Two alternate
boundary conditions for temperature on side walls namely, perfect
insulation and linear variation (T=1l-y), are considered. In all
the cases initial values of ¥, w and T are taken to be 0,0 and
l-y respectively.

Fig.6 shows transient solutions at Ra=105, Pr=1 with perfect
insulation on the side walls. At t=0.008(n=4) and 0.014(n=7), a
symmetric flow along the vertical center line of the box is obtain-
ed. At early times very weak flow in the botﬁom near the heated
wall is obtained which accelerate in the later time steps. Fig.7
show steady-state solutions for Ra=103 and 105. This state easily
exists in n=35th step (t=0.07). This tendency is found to be same
for the two cases. Isothermals at low Ra are found to be parallel
in the uppef region near the cold wall. But as Ra increases this
pattern is affected by Rayleigh number. Fig.8 and Fig.9 show

4 and 105 respectively for linear

transient solutions at Ra=10
type boundary conditions. For Ra=105 reverse flow in the upper
region near cold wall is obtained at early time whose size de-

creases as time advances and finally at steady-state very weak
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reverse flow is retained. For linear case steady-state establised
at n=25th (t=0.025) step. In this study computation time to reach
steady-state does not effect the Rayleigh number.

The principal advantage of this scheme is that it does not
require a convergence iterative process in the xy-plane, befofe
advancing a time step. Therefore a considerable reduction of com-
puting time is possible for time-dependent problems. The main
analytical difficulty in the present approach is however, the
determination of Green’s function for a general domain. If the
Green's function is known for a certain domain, this scheme can
be compared with any of the standared methods in computational
efficiency, speed and accuracy.

At present we have tried the problem for a square domain
with coarse mesh ~.1/10 and prandtl number unity. Further study.:
such as effect Qf Prandtl number and aspect ratios are in progress

and successful results are expected.
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LINEAR

wmuHOA‘ Pr=1

AX=AY=1/10,At=0.002
-3
e=10

Fig.8
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EQUI~VORTICITY LINES —»
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85 0-+5 -
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0 ———— ] <3.0 sl 1/\
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Fig.9
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. n=25 (t=0.025)

n=4 (t=0.04) , n=7 (t=0.014)
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NOTATION:

X = Dimensionless horizontal coordinate, = x/L

y = | ] ¢ wvertical coordinate, = y/L

T = o - temperature, =T -T, / Tl_TO(Té and T,

are temperatures at cold(upper) and hot (lower) walls

respeétively.
t = Dimensionless time, = tL/U
p = " pressure, = p/pOU2
a = Length of the upper wall, =a/b
b = Length of the side wall , L=b
g = Acceleration due to gravity
U = Reference velocity, = YogAT.b
Ra = Rayleigh number, = agAT.b3/vK
Pr = Prandtl number, = V/K
X, X' = (x,y), (x',¥y")

GREEK LETTERS:

Ax = Grid spacing in x direction

Ay = Grid spacing in y direction

At = time mesh or increment

V2' = Laplacian operator, = 82/8x2 + 82/8y2

w = Dimensionless vorticity, = —Vzw

U] = " ' stream funétion, such that ﬁ=aw/ax and
v==0y/9y

o = Density

o = Constant density

o = Co-efficient of thermal expension of the fluid.

K = Thermal conductivity

) = Kinematic viscosity

€ = Convergence parameter

PR

-
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SUBSCRIPTS:

£ ,m = Space subscripts of mesh points in x and y directions
n = time subscript (step)
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