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Theory of Measurable Correspondences

and Calculus of Variation

by
Toru Maruyama

(Keio University)

I. Introduction

The purpoée df)this paper is to summarize, in a unified and
systematic way, a part of my recent contributions to the existence
theory for several variational problems arising in economic analysis.
In particular, the Aumann-Perles' problem, the Arkin-Levin's problem
and the optimal economic growth problem are our main concerns in
this paper. Detailed proofs will be omitted, and the presentations
will be made as simply as possible. The readers can find more rigorous
and general treatments of the problem as well as detailed proofs in my

related articles or my monograph ([9] ~ [17]).

II. Measurable Correspondences

The existence theorem of measurable selections for certain
correspondences (= multi-valued mappings), the first successful proof
" of which was obtained by J.von Neumann, has gradually been acquiring a

wider range of applications. The proof of this theorem is based upon
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a deep insight into the topological properties of Polish or Souslin
spaces. Although the idea involved in the proof deserves close
attentions on its own, the theorem also provides indispensable
foundations for certain problems in functional analysis, optimization
theory and probability theory. (For detailed analysis, see Castaing-

Valadier [6] and Maruyama [13], Chapter 6.)
1. Measurable Selections

DEFINITION Let (X, EX) and (Y, Ey) be two measurable spaces
and consider a correspondence I' : X > Y. If there exists a measurable

(single-valued) mapping v : X - Y such that
Yy(x) € T(x) for all x ¢ X,

then ¥ is called a measurable selection of T.
Let Y be a topological space and B(Y) the Borel o-field on Y.
If there exists a sequence of measurable selections Yn : X»> Y

(n=1,2,...) such that
cl. {y,(®); n=1,2,...} =T(®) for all x e X,
then {Yn} is called a Castaing representation of T.
DEFINITION Let (X, E) be a measurable space and Y a topological
space. A correspondence I' : X > Y is said to be measurable if

F—W(U) e E for every open set U in Y, where F_W(U) ={xeX l I'(x) (ﬁ\ U
# @}.
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[A] Let (X, E) be a measurable space and Y a Polish space.
Then the following two statements are equivalent for any closed-
valued correspondence I' : X > Y.
(i) T is measurable.

(i) T has a Castaing representation.
DEFINITION Let | be a positive finite measure on a measurable
space (X, E). We designate by EU the u-completion of E. The o-field
E defined by

E = /ﬂ\ {EU | W is a positive finite measure on (X, E)}
u

is called the universal completion of E. 1f E =-E, then E is said to

be universally complete.
[B] Let (X, E) be a universally complete measurable space and
Y a Souslin space. If the graph G(I') of the correspondence ' : X »> Y

‘belongs to E® B(Y), then T has a (E, B(Y)) - measurable selection.

REMARK Let (X, E) be a measurable space and Y a Polish space.

If T :!X - Y is a closed-valued measurable correspondence, then
G(T) ¢ E® B(Y).
2. Filippov's Implicit Function Theorem

[c] Let (X, EX) and (Z, EZ) be measurable spaces and let Y pe
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a Souslin space. Assume. the following (i) and (i) .

(1)  The correspondences T : X »> Y and T : X > Z satisfy
GG)5%®BWLG@)€%®ET

(i) MWWW@Q:XXY+Z%(%®BM,Q)—

measurable and satisfies
gx, Tx) N ) #¢ for all x € X.

Then there exists a (%X’ B(Y)) - measurable selection y of T

such that
gx, y(x)) € Z(x) for all x € X,
where gxstands for the universal completion of EX’
3. Integratioﬁ of Correspondences

DEFINITION Let (X, E, 1) be a measure space and let I' : X ~> R’

be a measurable correspondence. Then we define the Aumann-integral of

I by
J\ Tdu = { ydu | Y is an integrable selection of T}.
X X

DEFINITION Let (X, E, pY) be a measure space. We designate

by FF the set of all the measurable selections of a measurable
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correspondence I' : X > R®. T is said to be integrably bounded if

there exists an integrable function ¢ : X - R such that

sup || Y(x) || < ¥(x) a.e.
YSFF
Using this concept, we are able to give a striking condition
which assures the compactness of the integral. The basic idea behina
the following Theorem E is motivated by the Dunford-Pettis' Theorem

(c.f. Maruyama [13] pp.378-380).

[E] If (X, E, W) is a finite measure space and T : X - e
18 a compact-convex-valued measurable correspondence which is integrably

bounded, then the integral of T is compact in R’

The following two theorems can be derived from the Ljapunov's
convexity theorem concerning to the range of a non-atomic finite

dimensional vector measure.

[F] If (X, E, W) is a finite, non-atomic measure space and

I : X +> R’ is measurable, then the integral of T is convex.
[G] If (X, E, W is a finite, non-atomic measure spaeevand

n .. . .
[ : X > R <8 a compact-valued measurable correspondence which is

integrably bounded, then

Fay = Tdu = co T'dy,
X X X
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where T is the correspondence which associates to each x € X the

profile of T(x).

In order to prove [F] and [G], we have to make use of the following
crucial fact.
Let 6 : X » R’ be any (single-valued) integrable mapping. And

‘define an R’-valued measure Y by

¥(E) = 6 (x)du
E

for each E € E. It can be proved that the range Y(E) of Y is convex

provided that u is finite and non-atomic.

M. Aumann-Perles' Problem

Let us begin by the simplest problem which frequently appears in
mathematical economics or game theory.
First, the following items are assumed to be given.

u s+ [0, 1] x RZ - R,

g : [0, 1] x RZ -+ RZ,

[0, 1] + &,

o

w € RZ.

And consider the problem:
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1
Maximize j‘ u(t, x(t)) dt (1)
x 0
subject to
A-P
( ) 1
g(t, x(t)) dt < w (2)
0
k‘ x € FT; i.e. & is a measurable selection of T - (3)

(dt denotes the Lebesgue measure.)

We shall assume the following conditions.

<1> u and g are Carathéodory mappings; i.e. both of these

mappings are measurable on [0, 1] and continuous on R” separately.

<2> I' is a compact-valued measurable correépondence.
<3> % () = sup I u(t, x) | < =
xel' (t)
g () =suwp |lglt, x| < =
xel' (t)

are integrable.

Our aim is to show the existence of a measurable mapping x* : [0, 1]
-+ R which maximizes the integral functional (1) under the constraints (2)

and (3).



Define a mapping f : [0, 1] x RZ > RZ+1 by

£t x) = (u(e, x) , g(t, x)).

Then f is a Carathéodory mapping because of the assumption <1>.

we define the correspondence A : [0, 1] - RZ+1 by

A(t) = f(&, T(v)),

then A is compact-valued and measurable. It should be noted that

Fpo= 1 (e, z(t)] = € Fro b

according to the Filippov's implicit fumnction theorem (I-[C]).

By the definition of the Aumann-integral,

1 1
Adt = { S At)de | A e Fpd
a 0 ‘

1
{ S f(t, x(t))dt | x € Fr }
0

1 1
{(S u(t, x(t))dt,g g(t, z(t))dt) |z € Fr }.
0 0

This is the set of all the combinations of

1 . 1
S u(t, x(t))dt and S g(t, x(t))dt
0 JQ

such that x satisfies the constraint (3).

65
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Since A is integrably bounded by <3>, we must have

1 1
S A(t)de = co A(t) dt
0 0

and this integral is compact and convex in Rl+gy I-[G].
However, this set is too big because it may contain those elements
which do not satisfy the constraint (2). Thus the set of all the

really admissible combinations is given by

1
K={ (a, b) € R x RZ | (a, b) €.§ A(t)dt, b <w 1.
0
. . L oltl s . .
Since K is clearly compact in R , 1ts projection on the first axis

is also compact. Hence it has the greatest element a*. Let b* be

any element in RZ such that

1 :
(a*, b*) € j\ A(t)dt.
0

Then by the definition of the Aumann-integral, there exists some

x* € FF such that

1
(a*, b*) j f(t, x*(t))dt
0

1 1
(j- u(t, x*(t))de, g(t, x*(t))dt) .
0 0

Clearly, this x* is an optimal solution for the problem (A - P).

The existence conditions for the variational problem of this kind
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have been studied by Arkin-Levin [1], Artstein [2], Aumann-Perles {3]
and Berliocchi-Lasry [5]. Furthermore, Maruyama [9], [12] examined

a somewhat sophisticated problem as follows.

Maximize j‘ u(t, x(t))dt
x, E E

subject to

g(t, z(t))dt < w
E
x is measurable selection of T
E is a measurable set in [0, 1].
In order to solve this problem in a general space, the disintegration

theory of Radon measures was effectively used. (See also Maruyama [10].)

V. Arkin-Levin's Problem

The following four mappings are assumed to be given.

u : [0, l]2 X RZ + R,

l l

2 )
g : [0, 1] xR >R,

: [0, 1] = RZ,

|

w : [0, 1] » RZ.

- 10 -
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And consider the problem:

1 1
{’Mamimize J u(s, t, x(s, t))dsdt . (1)
0 0
subject to
(A -1)
1
j‘ g(s, t, z(s, t))ds < w(t) (2)
0 =
x € FT

(ds and dt denote the Lebesgue measures.)
We shall assume the following conditioms.

<1> u and g are Carathéodory mappings; i.e. both of these

2
mappings are measurable on [0, 1] and continuous on RZ separately.

<2> I' is a compact-valued measurable correspondence.
<3> (s, t) = sup | u(s, t, x) | <+
xel (s,t) ' :
g(s, t) = sup lg(s, t, x) || <+
, xel" (s,t)

are integrable.
. . 2 l l
Define a mapping f : [0, 1] X R™ >+ R x R by

f(s, t, x) = (u(s, t, x) , g(s, t, x)).

- 11 -~
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Then f is a Carathéodory mapping because of the Assumption <1>.

If we define
A(s, t) = f(s, t, T'(s, t)),

then A is a compact-valued measurable correspondence. It should be

noted that
Fp={ 7@, t, 06, t)) | xefp}
according to the Filippov's implicit function theorem (I-[C]).

Since the correspondence A may not be convex-valued, it is

sometimes very convenient to consider the correspondence A : [0, 112

o> R defined by

A(s, t) = co A(s, t).

A is clearly compact-convex-valued measurable correspondence. Since A
is integrably bounded by <3>, we can prove one of our cruc¢ial results

as follows.
[AlF) s weakly compact and convex.

Define a bounded linear operator H on ! ([o, 1]2, RZ+1) into

R x L' ([0, 1], rY) by

1 (1 1
CH i (@(s, t), B(s, t)) ~ (K l a(s, t) ds dt,g B(s, t) ds)
_ 0 Jo , 0

- 12 -
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where o & L' ([0, 11%, R) and 8 € L' ([0, 112, RD).
[B] H(FA) 18 convex and weakly compact.

Since FA C FA’ it is apparent that

H(FA) C H(FA) .

However the converse inclusion, which is not obvious, is also true,

and we can establish the following result.
[c]  H(F = H(F).

In order to establish this result, we effectively make use of the
infinite dimensional version of the Ljapunov's convexity theorem
concerning the range of non-atomic vector measures. Let me explain

more concretely. Suppose that

6, : [0, 112 > R

0, : [0, 112 > R

are any integrable mappings. And define

Y(E) = ( ‘g‘ eldsdt, g B,ds)
E E

for each measurable set E ( [0, 1]%. Then vy is an R x L' ([0, 1], RZ)

-valued measure. Through a somewhat complicated argument, we can prove

- 13 -
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that the range of y is convex. This result is the key in the proof of

[c]. (c.f. Maruyama [16].)
H(FA) represents the set of all the combination of

1(1 f1
g u(s, t, x(s, t)) ds dt and | g(s, t, x(s, t)) ds
0/0 Jo
taking account of the constraint (3). But the set H(FA) is too big
because it may contain those elements which do not satisfy the
constraint (2). Thus the set of all the really admissible combi-

nations is given by

K =1{(a, b(t)) ¢ H(F) | b(t) < w(t) a.e.}.

7

Since K is weakly compact and convex, its projection on R is compact
and hence it has the greatest element a*. Pick up any
b(t) e L' ([0, 1] , R%) such that
(a*, b*(t)) ¢ K.
Then there exists a measurable selection A% of A such that

HOW) = (a%, b*(t)).

Finally, thanks to the Filippov's measurable implicit function
A

theorem, we can find out a measurable mapping x* : [O, 11> >+ R

such that

- 14 -



12
f(s, t, x*(s, t)) = A*(s, t)

x*(s, t) € I'(s, t) a.e.
Clearly x* is .an optimal solution of our problem.
In 1972, V.I.Arkin and V.L.Levin, excellent Russian mathematicians
in this field, rigorously proved the existence of optimal solutions
for a similar variational problem. Maruyama [11], [16] recapitulated

this problem in a much more general setting and gave an existence

proof through a modern reformulation of the Arkin-Levin's method.

V. Optimal Economic Growth

First a couple of mappings y and f is assumed to be given.

u R+ X R+ > R+ , u(t, x),

FiR xR >R, flt, k.
Here u(t, x) is interpreted as the utility of some representative
economic agent at time t when his consumption is x, and f(t, k)

is interpreted as an output produced at time t when the quantity

of capital stock is k.

Furthermore we have a couple of variable mappings to be opti-

mized.

- 15 -
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k : R+ - R+ , k(t)’

s 3 R+_> [0’ 1] s S(t)'

k(t) is the quantity of capital stock at time t, and s(t) is the

saving rate at time t.

Then our problem is formulated as follows:

Maximize
J(k, 8) = S ult, (1 - s(t)) f(t, k(t))] e_‘St dt
0
= % w(t, k(t), s(t)) e °F at
. ]
subject to
k(t) = s(t) Flt, k(t)) - Ak(t).
= g(t, k(t), s(r))
k(0) = k.

Here § is the discount rate for the utility in the future, and X
is the depreciation rate of capital stock. Both of § and A are

assumed to be positive.
Since the underlying measure space is [0,~ ), it is naturally
anticipated that some technical difficulties will arise. In order

to avoid such difficulties, we introduce a finite measure Vv on R+

- 16 -
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defined by
=St
V(E) = e dt. for every measurable set E.
E

Then our problem can be rewritten in the following form:

Maximize
J(k, 8) = g w(t, k(t), s(t)) dv (1)
- 0
subject to
k(t) = g(t, k(t), s(t)) | (2)
k(0) = k. (3)

We denote by S the set of all the measurable functions s : R~
[0, 1], and by Wé’z the weighted Sobolev space with the weight function
ehét. A pair (k, s) in Wé’z x S is said to be an admissible pair if
it satisfies (2) and (3). The set.of all the admissible pairs is

denoted by A and its projection on Wé’z is denoted by Ak'

We shall assume the following conditions.

<1> 1 is measurable in (t, x). Furthermore u is upper

semi-continuous and concave in x.
<2> f is continuous in (t, k).

<3> There exists some positive number C > 0 such that

- 17 -



k > C implies sup f(t, k) < Ak.
t€R+

<4> There exists a couple .of positive constants ¢ and B

such that

0 <B<§/2
fle, ) <a |k| P*

for all t € R+ and k € R+.

<5> There exists a non-negative v-integrable function

: R_‘_‘> R and a number b such that

w(t’ ka S) - m(ts k, S) i e(t)

for every (t, k, s).
Thanks to our Assumption <3> and <4>, we can prove that

[A] Ak 18 weakly sequentially compact in Wé,z .

If we take account of Assumption <5> together,
[B] Y = sup J(k, 8) < o,

(k, s)eA

LetA{(kn, Sn)} be a sequence in A such that

- 18 -
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%jm,J(kn, Sn) = Y.

Since Ak is weakly sequentially compact by [Al, {kn} has a weakly
convergent subsequence. Hence we can assume, without loss of

generality, that

* in Wi,2
kn > k weakly in W6 .

The most important and difficult step in the proof is to show

the following proposition.

[C] There exists an v-integrable function [ : R >R

such that
(1) g z(t) dv >y
0
(i) for every t € R, , there exists s*(t) ¢ [0, 1]
such that
k() = g, x*(t), &*(t))

o
A

< g(t) < wlt, k*(t), s*(t)) .
(s*(t) may not be measurable so far.)

Finally we have to show that we can choose g*(t) so as to be

measurable. 1In order to achieve this object, the Filippov's

- 19 -
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implicit function theorem is quite effective. Clearly (k*(t),
s%(t)) is an optimal pair in A.

The detailed analysis can be found in Maruyama [14], [15],
.[17]. The author is indebted to Berkovitz [4] and Chichilniski

[7] for various ideas embodied in the proof.
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