Perturbations of compact foliations II

就大理 福井和彦(Kazuhiko Fukui)

Introduction. A compact foliation F is one in which every leaf is compact. The problem we wish to consider concerns foliations F' whose plane fields are close, in some Cr-topology, to the plane field tangent to the leaves of F. Such an F' is called a Cr-per-Then the following question arises: When does F' have The first result of this nature is due to a compact leaf? H.Seifert [11]. He proved that any CO-perturbation of the Hopf fibration $s^3 \longrightarrow s^2$ has a compact leaf. In the same paper, he showed that the theorem is also true for orientable S¹-bundles over surfaces B of $\chi(B) \neq 0$, where $\chi(B)$ is the euler characteristic number of B. The result was generalized by F. Fuller [5] to orientable circle bundles over arbitrary closed manifolds B with $\chi(B) \neq 0$. R.Langevin and H.Rosenberg [9] considered a fibration p: $E \rightarrow B$ with fibre L, B a closed 2-manifold, E closed. They proved that any ${ t C}^0$ -perturbation of this fibration has a compact leaf when $\pi_1({ t L})$ is isomorphic to Z, B is a sueface with $\chi(B) \not\models 0$ and $\pi_1(B)$ acts trivially on $\mathcal{R}_1(L)$. Furthermore the author[4] generalized the above result to compact codimension two foliations. of this note is to give the proofs of the results in [4] and generalize the above result to fibrations with B of general dimensions.

§1. Compact Hausdorff foliations and the generalized first return map.

Let M be a compact m-manifold without boundary and F a compact foliation of codimension q such that the leaf space M/F is Hausdorff. Such a foliation F is called a compact Hausdorff foliation. Then we have a nice picture of the local behavior of F as follows.

Proposition 1 (D.B.A.Epstein[3]). There is a generic leaf L_0 with property that there is an open dense subset of M, where the leaves have all trivial holonomy and are all diffeomorphic to L_0 . Given a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on the neighborhood as follows. There is a finite group G(L) of O(q). G(L) acts freely on L_0 on the right and $L_0/G(L)\cong L$. Let D^q be the unit q-disk. We foliate $L_0\times D^q$ with leaves of the form $L_0\times\{pt\}$. This foliation is preserved by the diagonal action of G(L), defined by $g(x,y)=(x\cdot g^{-1},g\cdot y)$ for $g\in G(L)$, $x\in L_0$ and $y\in D^q$. So we have a foliation induced on $U=L_0\longrightarrow G(L)$ The leaf corresponding to $y=0\in D^q$ is $L_0/G(L)$. Then there is a C^∞ -imbedding $\mathcal{Y}\colon U\longrightarrow M$ with $\mathcal{Y}(U)=U(L)$, which preserves leaves and $\mathcal{Y}(L_0/G(L))=L$.

Definition 2. A leaf L is called singular if G(L) is not trivial. The order of G(L) is called the order of holonomy of L.

Definition 3. A singular leaf L is called isolated if the action of G(L) has only the origin of L^q as fixed point.

From Proposition 1, we see that each isolated singular leaf is isolated, hence there are finitely many isolated singular leaves in F because of the compactness of M. Let S be the set of all non-isolated singular leaves of F. The leaf space 1/F, which we denote by B, is a compact V-manifold of dimension q and the quotient map $\pi: \mathbb{N} \longrightarrow \mathbb{B}$ is a V-bundle(for definitions see I.Satake [10]).

Let L_1, \ldots, L_n denote all the isolated singular leaves of F with holonomy of order k_1, \ldots, k_n respectively. Put $p_i = \pi(L_i)(i=1,\ldots,n)$ and $S_B = \pi(S)$. Note that $\pi \colon \mathbb{M} - SU\{L_1,\ldots,L_n\} \longrightarrow \mathbb{M} - SU\{L_1,\ldots,L_n\}/F$ $\cong B - S_BU\{p_1,\ldots,p_n\}$ is a natural fibration with generic leaf L as fibre. Thus $\pi_1(B - S_BU\{p_1,\ldots,p_n\})$ acts on $\pi_1(L)$.

We assume that F satisfies the following conditions:

- (C_1) $\widetilde{\mathcal{R}}_1(L) \cong Z$ for every leaf L of F,
- (C_2) The codimension of each component of S in M is not equal to two.

Remark 4. From (C_1) , $G(L)(L \in F)$ is isomorphic to a finite cyclic group. Hence S is a compact submanifold of M.

By Proposition 1, for each isolated singular leaf L_i , the restriction $\pi: \partial U(L_i) \cong L_{\overline{G(L_i)}} \partial D^q \longrightarrow \partial D^q/G(L_i)$ is a fibration with compact

fibre L and
$$\widetilde{\mathcal{R}}_1(\partial D^q/G(L_i)) = \begin{cases} G(L_i) & (q \ge 3), \\ Z & (q = 2). \end{cases}$$

Thus we can see that $\mathcal{T}_1(\partial D^q/G(L_1))$ acts trivially on $\mathcal{T}_1(L)$ because that $G(L_1)$ is abelian. Furthermore we have $\mathcal{T}_1(B-S_B) \cong \mathcal{T}_1(B)$ from (C_2) , hence we may consider that $\mathcal{T}_1(B)$ also acts on $\mathcal{T}_1(L)$ under the conditions (C_1) and (C_2) .

Proposition 5. Let M be a compact manifold without boundary and F a compact Hausdorff foliation of codimension q with leaf space B, satisfying the conditions (C_1) and (C_2) . Furthermore we assume that $\mathcal{T}_1(B)$ acts trivially on $\mathcal{T}_1(L)$. Let F' be a C^0 -perturbation of F. Then there exists a vector field X on M satisfying the following;

- i) X is orthogonal to F except for singular points of X and
- ii) if there is a point $x \in M$ such that X(x) = 0, then the leaf

L' of F' through x is compact.

We shall associate to F' a diffeomorphism $f : M \longrightarrow M$ (a generalized first return map) as follows(see {1 of [9]). Riemannian metric on M so that F is a Riemannian foliation. $\epsilon>0$ so that for each $x\in\mathbb{N}$, the geodesics through x, of length ϵ , and orthogonal to L(x), form a smoothly imbedded q-disk D(x), where L(x) is a leaf through x. We can suppose that for each leaf L, the disks D(x), $x \in L$, form a tubular neighborhood T(L) of L. generic leaf L and a point $x \in L$. Let α be a loop in L at x representing a generator of $\pi_{\Gamma}(L)$. Then for F' close to F, \propto can be lifted to a path on the leaf of F' through x, to a path starting at x and ending at a point of D(x). This end point is denoted by $H(F', \alpha)$. H is the perturbed holonomy map(cf. M.W.Hirsch[6]). We define $f(x) = H(F', \propto)(x)$. Now if y is another point of L, let β be any path in L from x to y(the length of β less than the diameter of L) and define $f(y) = H(F', \beta \cdot \alpha \cdot \beta^{-1})(y)$. This definition does not depend on β and defines a smooth map $f: L \longrightarrow M$.

Next we extend f to a map f: $T(L) \longrightarrow M$ by using the product structure in T(L) and transporting \bowtie to each leaf in T(L). Since $\pi\colon M-S\cup\{L_1,\ldots,L_n\}\longrightarrow B-S_B\cup\{p_1,\ldots,p_n\}$ is a fibration with fibre L and $\pi_1(B)$ acts trivially on $\pi_1(L)$, we can extend f to a map $f: M-S\cup\{L_1,\ldots,L_n\}\longrightarrow M$. Now we shall extend to each L_i (i=1,..., n) and S. Let L be a generic leaf in $U(L_i)$ (resp. $U(L_s)$, $L_s\in S$) and \bowtie a loop at x in L representing a generator of $\pi_1(L)$. We have a natural projection $j_i: L\longrightarrow L_i$ which is a k_i -fold covering (i=1,...,n and s; $k_s=2$). Let $\overline{\bowtie}_i=j_i(\bowtie)$ be a loop at $\overline{x}=j_i(x)$ in L_i . Then we define $f(\overline{x})=H(F',\overline{\bowtie}_i)(\overline{x})$ for $\overline{x}\in L_i$. This is

well-defined since $\mathcal{R}_1(L_i)\cong Z$. Then we see that the extended map $f:M\longrightarrow M$ is a smooth diffeomorphism. We can see that if f(x)=x for some $x\in M$, then the leaf of F' through x is compact(see [8]). We associate to F a vector field X whose zero's give compact leaves. We have x and f(x) in the geodesic disk D(x) for $x\in M$. Let X(x) be the vector tangent to the geodesic in D(x) from to f(x). Note that X is orthogonal to F. We easily see that if f has no fixed point, then X is never zero. This completes the proof.

Statement of results for compact codimension two foliations. Let F be a compact codimension two foliation with isolated singular leaves L_1, \ldots, L_n of holonomy order k_1, \ldots, k_n respectively. Furthermore we assume that $\pi_1(L)\cong Z$ for every leaf L of F. We let F' be a small perturbation of F. Then by the result of M.W. Hirsch([6], Theorem 1.1), we have the following: For each $U(L_i)$, $F'|_{U(L_i)}$ has a compact leaf L_i' in $U(L_i)$ such that there is a diffeomorphism $h_i:L_i \longrightarrow L_i^!$. We remark that F' has at least n compact leaves. Let α be a loop in a generic leaf L representing a generator of $\overline{\pi_i}(L)$ and \forall_i (resp. $\chi_i^! = h_i(\chi_i^!)$) a loop in L_i (resp. $L_i^!$) representing a generator of $\overline{\mathcal{H}}_1(L_i)$ (resp. $\overline{\mathcal{H}}_1(L_i)$) such that $j_i(\mathcal{L})$ = $k_i \alpha_i$, where $j_i : L \longrightarrow L_i$ is the canonical projection. Let $H(\alpha_i)$ (resp. $H(\alpha_i^!)$) be the holonomy map of $\alpha_i^!$ (resp. $\alpha_i^!$) for $\alpha_i^!$ (resp. $\alpha_i^!$), which is a local diffeomorphism of (\mathbb{R}^2 ,0). Thus if $\mathbb{H}(\mathcal{V}_i)$ has no fixed point except for the origin O, we can define the fixed point index of $H(\mathcal{A}_i)$ at 0 in the usual way. We denote it by $I(H(\mathcal{A}_i), L_i)$. Now we are in a position to state our main theorem.

Theorem 6. Let 1 be a compact manifold without boundary and F

a compact codimension two foliation of M with leaf space B. We assume that the fundamental groups of all leaves of F are isomorphic to Z and $\mathcal{T}_1(B)$ acts trivially on $\mathcal{T}_1(L)$. Let F' be a C⁰-perturbation of F. If F' has exactly n isolated compact leaves, then we have a following relation;

$$\chi(B) + \sum_{i=1}^{n} (\frac{1}{k_i} - 1) = \sum_{i=1}^{n} \frac{1}{k_i} I(H(x_i^i)^{k_i}, L_i^i).$$

The following corollary is an immediate consequence of Theorem 6 and this result is an extension of results of Seifert [11] and Langevin and Rosenberg [9].

Corollary 7. Let M be a compact manifold without boundary and F a compact codimension two foliation of M with leaf space B, which has no isolated singular leaves. Suppose that

- 1) $\pi_1(L) \cong Z$ for every leaf L of F,
- 2) $\widetilde{\mathcal{H}}_1(B)$ acts trivially on $\widetilde{\mathcal{H}}_1(L)$ and
- 3) $\chi(B) \neq 0$.

Then any C^O-perturbation of F has a compact leaf.

Example 8. The Klein bottle K^2 is an S^1 -bundle over S^1 with structure group Z_2 . Then we can construct a compact codimension one foliation G of K^2 such that G is transverse to the fibres and has two isolated singular leaves. We foliate $K^2 \times S^1$ with leaves of the form $L \times \{pt\}$, $L \in G$. This foliation F is a compact codimension two foliation with no isolated singular leaves and the leaf space $K^2 \times S^1/F$ is homeomorphic to a cylinder $S^1 \times [0,1]$. Thus the euler characteristic number of $K^2 \times S^1/F$ is equal to zero. Furthermore there exists a C^0 -perturbation F' of F such that F' has no compact leaves. This example shows that the condition 3) of Corollary 7 is essential.

Corollary 9. Under the assumption of Theorem 6, we suppose that $H(\mathcal{A}_1^!)$ is expanding or contracting for i=1,...,n. If $\chi(B) \neq n$, then F' has at least n+1 compact leaves.

Proof. We assume that F' has exactly n compact leaves. If $H(\alpha_i^!)$ is expanding or contracting, we have $I(H(\alpha_i^!), L_i^!) = 1$. Thus from Theorem 6, we have $\chi(B) \neq n$, which contradicts the assumption. Corollary 10. Under the assumption of Theorem 6, we suppose that 1 is not an eigenvalue of the linear holonomy $LH(\alpha_i^!) \stackrel{k_i}{\leftarrow} GL(2,R)$ for $i=1,\ldots,n$. If $\chi(B) < 0$, then F' has at least n+1 compact leaves.

Proof. We assume that F' has exactly n compact leaves. From the assumption, we can easily see that $I(H(\alpha_i^!)^{k_i}, L_i^!)$ is equal to l or -1. Thus from Theorem 6, we have $\chi(B) \ge 0$, which is a contradiction.

Remark ll. Let \mathbb{M}^3 be a closed manifold and F a foliation induced from a non-trivial S^1 -action on \mathbb{M}^3 with leaf space B. Then every leaf L of F is homeomorphic to S^1 and $\mathcal{T}_{\Gamma}(B)$ acts trivially on $\mathcal{T}_{\Gamma}(L)$.

Proof of Theorem 6. By the results of D.B.A.Epstein [2] and R.Edwards, K.Millett and D.Sullivan [1], every compact codimension two foliation is Hausdorff. S is a codimension one submanifold of M. Hence we can apply Proposition 5 for a small perturbation F' of F and the vector field X is defined. Note that S may be empty, but now we consider the case $S \neq \emptyset$. For simplicity, we assume that S is connected. It is proved similarly when S is not connected.

Let $U(L_1)$ be the saturated neighborhood of L_1 (as in Proposition 2) and $V_{\gamma}(S)$ the total space of the normal disk bundle of S in M.

Put $V_i = \pi(U(L_i))(i=1,...,n)$ which is a neighborhood of p_i and $V_0 = \pi(V_1(S))$ which is a neighborhood of $S_B = \partial B$. Let D be a 2-disk in B such that π is trivial over and $D \cap \left\{ \sum_{i=0}^n V_i \right\} = \emptyset$. We identify D with

the unit disk $D^2 \subset \mathbb{R}^2$ and $\pi^{-1}(D) = T \cong D \times L$. Let k be the least common multiple of $2, k_1, \ldots, k_n$. Noting that $U(L_i)$ is the total space of the normal disk bundle of L_i in M, choose disjoint k/k_i disk fibres $W_i^j(j=1,\ldots,k/k_i)$ for $i=1,\ldots,n$. Then the restriction

 $\pi : \bigcup_{j=1}^{k/k} \partial \mathbb{W}_{i}^{j} \longrightarrow \partial \mathbb{V}_{i} \cong S^{1} \text{ is a k-fold covering for $i=1,\ldots,n$.} \quad \text{Take}$ $\text{a point } \overline{b}_{i} \in \partial \mathbb{V}_{i} \text{ for each i. Put } \pi^{-1}(\overline{b}_{i}) = \left\{b_{i}^{1},\ldots,b_{i}^{k}\right\}, \ b_{i}^{l} \in \mathbb{W}_{i}^{j(l)}$ $\text{for some } j(l)(1 \leq j(l) \leq k/k_{i}). \quad \text{On the other hand, the restriction}$ $\pi : S \longrightarrow \partial \mathbb{B} = S^{1} \text{ is a fibration.} \quad \text{Thus we can construct $k/2$ disjoint}$

..., $T_{k/2}$, which are identified with those images. The restricted bundle of $V_1(S)$ to T_i is denoted by $\overline{T}_i(i=1,\ldots,k/2)$. Then the

sections of this fibration. We let these sections denote by \mathbf{T}_1 ,

restriction $\mathcal{T}: \bigvee_{i=1}^{k/2} \partial \overline{\mathbf{T}}_i \longrightarrow \partial \mathbf{V}_0 \cong S^1$ is also a k-fold covering.

Take a point $\overline{b}_0 \in \partial V_0$. Put $\mathcal{R}^{-1}(\overline{b}_0) = \{b_0^1, \dots, b_0^k\}$, $b_0 \in \overline{T}_{r(\ell)}$ for some $r(\ell)(1 \le r(\ell) \le k/2)$. Since B is a compact topological 2-manifold with boundary, there is a cell complex K of B - $\bigcup_{i=0}^n \operatorname{int}(V_i)$

such that 1) D is contained in a 2-cell of K, 2) $\{\partial V_i\}$, $\{\overline{b}_i\}$ (i=0,1, ...,k) are 1-cells, 0-cells of K respectively and 3) B $-\bigcup_{i=1}^{n} int(V_i) - int(D)$

is homotopy equivalent to $|K^{(1)}|$, where $|K^{(1)}|$ is the geometric realization of the 1-skeleton of K. Remark that $Int(V_0)$ is homeomorphic to $\partial B \times [0,1)$. Then we can construct disjoint k sections

 s_1, \ldots, s_k over $|K^{(1)}|$ such that $s_\ell(\overline{b}_i) = b_i^\ell \ (\ell=1,\ldots,k;i=0,1,\ldots,n)$. In fact, for the case of dim $L \ge 2$, it is trivial. For the case of dim L = 1, that is, $L = S^1$, orienting $\{b_i^\ell\}$ $(\ell=1,\ldots,k;i=0,1,\ldots,n)$ along the orientations of the fibres, we can construct disjoint k sections. Furthermore we extend these sections s_1,\ldots,s_k to a tubular neighborhood N of $|K^{(1)}|$ in $B - \bigcup_{i=0}^n \operatorname{int}(V_i)$. We denote these sections by the same letters. Then we may assume, modifying s_1,\ldots,s_k if necessary, that each $s_\ell(N)$ meets $W_i^{(\ell)}$ and $\overline{T}_{r(\ell)}$ along a segment in $\partial W_i^{(\ell)}$ and $\partial \overline{T}_{r(\ell)}$ respectively. Thus the union $\bigcup_{i=0}^{\infty} \{s_\ell(N) \bigcup_{i=0}^{\infty} W_i^{(\ell)} \bigcup_{i=0}^{\infty} T_{r(\ell)}\}$ is a compact 2-manifold, transverse to F

 $\bigvee_{i,\ell} \left\{ s_{\ell}(N) \cup W_{i}^{j(\ell)} \cup \overline{T}_{r(\ell)} \right\} \text{ is a compact 2-manifold, transverse to } F$ over $N \cup \bigcup_{i=0}^{n} V_{i} \right\}$. Since B - int(D) is homotopy equivalent to $N \cup \left\{ \bigcup_{i=0}^{n} V_{i} \right\}, \text{ we have the following proposition.}$

Proposition 12. There exists a compact connected 2-manifold B*, transverse to F over B - int(D) such that 1) $\pi: E^* \longrightarrow B$ - int(D) is a k-fold covering except for p_1, \ldots, p_n and $\partial B(if \partial B \neq \emptyset)$ and 2) B* meets ∂T in simple closed curves $C_i(i=1,\ldots,r)$, where r is a divisor of k.

The vector field X projects naturally a vector field X* tangent to B* since X and B* are transverse to F. If F' has exactly n compact leaves, X* has $k\sum_{i=1}^{n}1/k_i$ isolated singular points in $B^* \cap (\bigcup_{i=1}^{n}U(L_i))$ and X* is never zero outside of $B^* \cap (\bigcup_{i=1}^{n}U(L_i))$. Note that the sum of indices of singular points of X* is equal to $k\sum_{i=1}^{n}\frac{1}{k_i}$ $I(H(x_i^*)^{k_i},L_i^*)$ since $H(F^*,x_i^*)=H(x_i^*)$ on $D(\overline{x})(\overline{x}\in L_i)$.

Let $L_0 = \pi^{-1}(0)$, $0 \in D$ and \emptyset be a loop in L_0 representing a generator of $\pi_1(L_0) \cong Z$. R.Langevin and H.Rosenberg have proved the following proposition which is essentially due to Seifert[11].

Proposition 13. I(F', α) = 0 (for definition and proof, see [9]). We construct a closed 2-manifold \overline{E}^* pasting r disks D_l^2 ($l=1,\ldots,r$) to B^* along $\partial B^* = l=1 \cdot C_l : \overline{B}^* = B^* \vee D_l^2 \vee \ldots \vee D_r^2$. The vector field $\mathcal{T}_*(X(C_1))$ on ∂D is homotopic to the vector field $\mathcal{T}_*(X(n_1))$, where n_1 is the integer defined by $[C_1] = n_1[\alpha]$ and [l] denotes homotopy class in $\mathcal{T}_1(T)$. From Proposition 13, $\mathcal{T}_*(X(\alpha))$ is homotopic to the constant vector field, hence deforming X^* along ∂B^* in the homotopy class, we may assume that $\mathcal{T}_*(X^*|_{\partial B^*})$ is a constant vector field on ∂D . Since $\mathcal{T}: C_1 \longrightarrow \partial D \cong S^1$ is a k/r-fold covering, we easily see that the vector field X^* is extended to a vector field X on B^* with exactly r singular points of index $-(\frac{k}{r}-1)$ in $\sum_{l=1}^r D_l^2$.

Now the euler characteristic number of \overline{B}^* is equal to

$$\mathcal{K}(\overline{\mathbb{B}}^*) = -r(\frac{k}{r} - 1) + k \sum_{i=1}^{n} \frac{1}{k_i} I(H(X_i^!)^{k_i}, L_i^!).$$
 On the other hand,

$$\chi(\overline{\mathbb{B}}^*) = \chi(\mathbb{B}^* \cup \mathbb{D}_1^2 \cup \ldots \cup \mathbb{D}_r^2) = k \left\{ \chi(\mathbb{B}) + \sum_{i=1}^n \left(\frac{1}{k_i} - 1 \right) - 1 \right\} + r. \quad \text{Hence}$$
 we have the required relation.

§4. Remarks.

Theorem 14. Let $\pi\colon \mathbb{M} \longrightarrow \mathbb{B}$ be a fibration with B a closed oriented k-manifold and compact fibre L. Suppose that 1) $\mathcal{T}_1(L) \cong \mathbb{Z}$, 2) $\mathcal{T}_1(B)$ acts trivially on $\mathcal{T}_1(L)$, 3) $\pi^*\colon \operatorname{H}^k(B;\mathbb{Z}) \longrightarrow \operatorname{H}^k(M;\mathbb{Z})$ is injective and 4) $\mathcal{X}(B) \not\models 0$. Then any \mathbb{C}^0 -perturbation of the foliation induced from this fibration has a compact leaf.

Proof. Let F' be a small perturbation of F. We assume that F' has no compact leaves. Applying Proposition 5 for such an F', there exists a vector field X on M such that X is orthogonal to F. Let $X \in H^k(B; \mathbb{Z})$ be the euler class of T(B). The image $\pi^*X \in H^k(M; \mathbb{Z})$ is the primary obstruction of a section of the induced bundle $\pi^*T(B)$ over M. $\pi^*T(B)$ has the non-zero section X, so $\pi^*X = 0$. From the condition 3), X = 0, hence X(B) = 0 which contradicts the condition 4).

Now we shall apply Main theorem of Hirsch and Thurston [7] to Theorem 14. First we prepare the following terminology(see [7]).

Definition 15. A smooth bundle $\xi = (\pi, M, B)$ is called a foliated bundle if ξ has a foliation whose leaves are transverse to the fibres and of complementary dimension.

As well-known, a smooth bundle ξ with compact fibre L is a foliated bundle with holonomy group Γ if and only if ξ is a (Γ, L) -bundle with discrete structure group Γ .

Definition 16. A group Γ is called amenable if there exists a left-invariant linear function A on B(Γ), the bounded functions on Γ , such that A(f) \geq O when f \geq O and A(l) = 1.

Remark 17. The class of amenable groups is closed under the operations of taking quotients, subgroups, extensions of amenable groups by amenable groups and direct limits; and contains all abelian groups and finite groups.

Notation 18. We denote by $\mathcal C$ the smallest class of groups that contains all amenable groups and is closed under finite extensions and free products.

Remark 19. $\Gamma \in C$ if Γ is solvable, free or of subexpo-

nential growth(see [7]).

Definition 20. A content on a space V is by definition a linear functional S on the space of continuous real functions on V such that S(c) = c for any constant function c.

Theorem 21. Let $\xi=(\pi,M,B)$ be a foliated bundle with B a closed k-manifold compact fibre L and holonomy group Γ . Suppose that 1) $\pi_1(L) \cong Z$,

- 2) $\mathcal{H}_1(\mathbf{B})$ acts trivially on $\mathcal{H}_1(\mathbf{L})$,
- 3) (a) Γ preserves a content on L or (b) $\Gamma \in \mathcal{C}$ and
- 4) $\chi(B) \neq 0$.

Then any C^0 -perturbation of ξ has a compact leaf.

Proof. Passing to a double covering of B, if necessary, we may assume that B is orientable. From the condition 3) we have Main theorem of Hirsch and Thurston[7]. Hence it follows that $\pi^*: H^k(B;R) \longrightarrow H^k(M;R) \text{ is injective.} \quad \text{Since B is oriented,} \\ H^k(B;Z) \cong Z, \text{ therefore } \pi^*: H^k(B;Z) \longrightarrow H^k(M;Z) \text{ is injevtive.} \\ \text{Hence Theorem 21 is a corollary to Theorem 14.}$

Remark 22. $\mathcal{T}_1(B) \in \mathcal{C}$ implies $\Gamma \in \mathcal{C}$, for Γ is the image of the holonomy homomorphism $\mathcal{T}_1(B) \longrightarrow \mathrm{Diff}(L)$ of the foliated bundle ξ .

References

- [1]: R.Edwards, K.Millett and D.Sullivan, Foliations with all leaves compact, Topology, 16, 13-32(1977).
- (2): D.B.A. Epstein, Periodic flows on three-manifolds, Ann. of Math., 95, 68-82(1976).
- (3): D.B.A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble, 26, 265-282(1976).
- [4]: K. Fukui, Perturbations of compact foliations, Proc. Japan Acad., 58, Ser. A, 341-344(1982).
- (5): F. Fuller, An index of fixed point type for periodic orbits, Amer. J. of Math., 89, 133-148(1967).
- (6): M.W.Hirsch, Stability of compact leaves of foliations, Dynamical Systems, Academic press, 135-155(1971).
- (7): M.W.Hirsch and W.P.Thurston, Foliated bundles, invariant measure and flat manifolds, Ann. of Math., (2)101, 369-390(1975).
- (8): R.Langevin and H.Rosenberg, On stability of compact leaves and fibrations, Topology, 16, 107-112(1977).
- (9): R.Langevin and H.Rosenberg, Integral perturbations of fibrations and a theorem of Seifert, Differential topology, foliations and Gelfand-Fuks cohomology, Lecture notes in Nath., 652, 122-127 (1978).
- (10): I.Satake, The Gauss-Bonnet theorem for V-manifolds, J.M.S. Japan, 9-4, 464-492(1957).
- [11]: H.Seifert, Closed integral curves in 3-spaces and isotopic two dimensional deformations, Proc. A.M.S., 1, 287-302(1950).