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Perturbations of compact foliations II

CEAAPL 4G # 9% ( Kazuhiko Fukui )

Introduction. A compact folliation F is one in which every leaf
is compact. The problem we wish to consider concerns foliations F!
whose plane fields are close, in some Cr—topology, to the plane
field tangent to the leaves of F. Such an F' is called a Cr—per-
turbation. Then the following question arises: When does F' have
a compact leaf ? The first result of this nature ié due to
H.Seifert[ll]. He proved that any Co—perturbation of the Hopf
fibration 53——952 has a compact leaf. In the same paper, he showed
that the theorem is also true for orientable Sl—bundles over surfaces
B of X(B) ¥ 0, where X(B) is the euler characteristic number of E.
The result was generalized by F.Fuiler[B] to orientable circle
bundles over arbitrary closed manifolds B with X(B) ¥ O.
k.Langevin and H.Rosenberg[?] considered a fibration p : E—B with
fibre L, B a closed 2-manifold, E closed. They proved that any
Co—perturbation of this fibration has a compact leaf when ‘Kﬁ(L) is
isomorphic to Z, B is a sueface with X(B) ¥ O and 7ti(B) acts
trivially on 7C1(L). Furthermore the author[4] generalized the
above result to compact codimension two foliations. The purpose
of this note is to give the proofs of the results in [4] and gener-

alize the above result to fibrations with B of general dimensions.

§l. Compact Hausdorff foliations and the generalized first

return map.



57

Let M be a compact m-manifold without boundary and F a compact
foliation of codimension g such that the leaf space M/F is Hausdorff.
Such a foliation F is called a compact Hausdorff foliation. Then
we have a nice picture of the local behavior of F as follows.

Proposition 1 (D.B.A.Epstein{}]). . There is a generic leaf LO
with property that there is an open dense subset of M, where the
leaves have all trivial holonomy and are all diffeomorphic to LO.
Given a leaf 1, we can describe a neighborhood U(L) of L, together
with the foliation on the neighborhood as follows. There is a
finite group G(L) of 0(q). G(L) acts freely on LO on the right
and LO/G(L) = L. Let pY Be the unit g-disk. he foliate L,X p
with leaves of the form LOx{pt}. This foliation is'preserved by .
the diagonal action of G(L), defined by g(k,y) = (x-g—l,g.y) for
and yEEDq. SO we Have a foliation induced oh U =7

g €G(L), xéLO

q - S - _oepd io
LO T8 D=, The leaf ;orrespondlng toly ->O D* is LO/G(L).

Then there is a C -imbedding $: U-—V with ¢(U)

U(L), which
preser?es leaves ahd JP(LO/G(L))“g L. |

Definition 2. A leaf L.is‘called singular if G(L) is not;tfiVial.
The order of G(L) is called the brder of holohomy 6f/L.

Definitidn 3. A singular léaf L is éalled isolated if thevaction
of G(L) haé only the origin of 19 as fixed point..

From Proposition i, we seé that each isolated singular leaf’isr
isolated, hence there are finitelyAmany isoléted singular leaveé in
F because of the compadtness of M. Let S be the set of all non-
isolated singular leaves of F. The leaf space }/F, which we denote
by B, is a compact V-manifold of dimension q and the quotient hap

T : M—>B is a V-bundle( for definitions see I.Satake [10]).
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Let Ll,. "Ln denote all the isolated singular leaves of F with
holonomy of order kl,...,kn respectively. Put p, = EXLi)(izl,...,n)
and Sy = 7(5).  Note that T: ¥ - SU{Li,...,Ln§—>M - SU{Ll,...,Lé/F

z B - SBLQpl,...,pA'is a natural fibration with generic leaf L as
fibre.  Thus T ( B - SBLle,...,pn}) acts on 7¢ (L).

Ve assume that F satisfies the following conditions:

(Cl) 7T1(L) = Z for every leaf L of F,
(CZ) The codimension of each component of S in M is not equal

to two.

Remark 4. From (Cl),G(L)(LeF)iS isomorphic to a finite cyclic
group. Hence S is a compact subwmanifolad of M.

By Proposition 1, for each isolated singular leaf Li’ the restric

tion 70: U(L,) ¥ L .BDq——;aDq/G(Li) is a fibration with compact

G(Li

IN

G(Li) (q 2 3)),

fibre L and 7?1( BDq/G(Li)) :{
Z (q=2).

Thus we can see that 7Ti(3Dq/G(Li)) acts trivially on 7Zi(L) because
‘that G(Li) is abelian. Furthermore we have 7Ti(B - SB) = 7Ti(B)
from (Cz), hence we may consider that 'ﬂi(B) also acts on ‘ﬁi(L)
under the conditions (Cl) and (02)'

Proposition 5. Let M be a compact manifold without boundary
and F a compact Hausdorff foliation of codimension q with leaf space
B, satisfying the conditions (Cl) and (CZ)' Furthermore we assume
that 7E1(B) acts trivially on ‘ﬁi(L). Let F' be a CO-perturbation
of F. Then there exists a vector field X on M satisfying the
following;

i) X is orthogonal to F except for singular points of X and

ii) if there is a point xé M such that X(x) = O, then the leaf
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L' of F' through x is compact.

Proof. We shall associate to F!' a diffeomorphism f: M—)N
(a generalized first return map) as follows( see §1 of[9]). Fix a
Riemannian métric on ¥ so that F is a Riemannian foliation. Choose

£>0 so that for each x€ M, the geodesics through x, of length € ,
and orthogonal to L(x), form a smoothly imbedded g-disk D(x), where
1.(x) is a leaf through x. We can suppose that for each leaf L,the

disks D(x), x€ L, form a tubular neighborhood T(L) of L. Fix a

generic leaf L and a point x€ L. Let KX be a loop in L at x repre-
- senting a generator of ‘ﬂi(L). Then for F' close to F, & can be

lifted to a path on the leaf of F' through x, to a path starting at

x and ending at a point of D(x). This end point is denoted by
H(F', ot ). H is the perturbed holonomy map(cf. M.W.Hirschl|6]).

ke define f(x) = H(f',d)(x)} Now if y is another point of L,

let B be any path in L from x to y(the length of B 1less than the
diameter of L) and define f(y) = H(F',f&duﬁ-l)(y). This definition
does not depend on ﬁ and defines a smooth map f : L—M.

Next we extend f to a map f : T(L)——M Dby using the product
structure in T(L) ahd transporting o« to each leaf in T(L). Since
T: M - sU{Ll,...,Ln}——»B - 5gU{p;,..-,p} is a fibration with fibre
L and ‘ﬁﬁ(B) acts trivially on 'ﬁi(L), we can extend f to a map

f: M- SU[L LJ-——vM. Now we shall extend to each L,(i=1,...,

AR
n) and S. Let L be a generic leaf in U(Li)(resp. U(Ls), Lsé S)
and K a loop at x in L representing a generator of ‘R&(L). Ve
have a natural projection ji : L-———>Li which is a ki—fold covering

(i=1,...,n and s; k_=2). Let ;= J; (&) be a loop at X = ji(x)

in L. Then we define f(X) = H(F',(gi)(§) for §6Li. This is
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vell-defined since 7Cl(Li) ¥ Z. Then we see that the extended map
f : M—M is a smooth diffeomorphism. Ve can see that if f(x)= x
for some x €V, then the leaf of F' through x is compact(see [8]).

We associate to F a vector field X whose zero's give compact leaves.
We have x and f(x) in the geodesic disk D(x) for x€ M. Let X(x)
bé_the vector tangent to the geodesic in D(x) from to f(x). Note
that X is orthogonal to F. We easily see that if f has no fixed

point, then X 1s never zero. This completes the proof.

$a. Statement of results for compact codimension two foliations.

Let F be a compact codimension two foliation with isolated sin-

10 1o

Furthermore we assume that ﬁi(L) T 7 for every leaf L of F. he

gular leaves L ,Ln of ‘holonomy order k kn'respectively.

let F' be a small.perturbation of F. - Then by the result of )
. - (i:l"'-,n
N;wbHirsch([6J, Theorem 1.1), we have the following: For each U Li)’

F has a coupact leaf Li in U(Li) such that there is a diffeo~

v :
u(L,) | |
morphism hi : Li——aLi. e remark that F' has at least n compact
leaves. Let & be a loop in a generic leaf L representing a gener-
—— - .‘ ’ . ' - : '
ator of /Ll(L) and (Xi(resp. &i hi(m%)) a loop in Li(resp. Li)
representing a generator of ﬂaﬁLi)(resp. 'ﬁi(Li)) such that ji(g)'
= kiu&, where I :-L—~~.vLi is the canonical projection. Let H(u%)
(resp. H(uii§ be the holdnomy map of y%(resp.;xi) for F(resp. F'),
which is a local diffeomorphism of (RZ,O). Thus: if H(U&) has no
fixed point except for the origin 0, we can define the fixed point
index of H(dﬁ) at O in the usual way. We denote it by I(H(&&),Li).

Now we are in a position to state our main theorem.

Theorem 6. Let I’ be a compact manifold without boundary and F
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a compact codimension two foliation of M with leaf space B. We
assume that the fundamental groups of all 1eaves of F are isomdrphic
to Z and ﬂi(B) acts trivially on ’ﬂi(L). Let F' be a Co-pertufb—
ation of F. If F' has exacf}y n isolated compact leaves, thén we

have a following relation;

o]

n .
0B+ 31 _}1;; - 1) = %{—; I(H(oq)kl,Li).
The following corollary is an immediate consequence of Theorem 6
and this result is an extension of results of Seifert[ll] and
Langevin and Rosenbergl?].
Corollary 7. Let M be a compact manifold without boundary and

¥ a compact codimension two foliation of M with leaf space B, which

has no isolated singular leaves. Suppose that
1) ﬂi(L) = Z for every leaf L of F,

2) ﬁi(B) acts trivially on 7Tl(L) and

3)  X(B) k O.

Then any Co-perturbation of F has a compact leaf.

Example 8. The Klein bottle K° is an S-bundle over ST with
structure group Z2' Then we can cénstruct a compact codimension one
foliation G of K2ksuch that G is transverse to the fibres and has
two isolated singular leaves. We foliate K%xsl with leaves of the
form L>qpt}, LeagG. This foliation F is a compact codimension two
foliation with no isolated singular leaves and the leaf space
K;xsl/F is homeomorphic to a cylinaer SlX[O,lj. Thus the euler
‘characteristic number of K%(Sl/F is equal to zero. Furthermore there

exists a Co—perturbation F' of F such that ¥' has no compact leaves.

This example shows that the condition 3) of Corollary 7 is essential.

6
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Corollary 9. Under the assumption of Theorem 6, we suppose that
E(di) is expanding or contracting for i=1,...,n. If X(B) ¥ n,
then F' has at least n+l compact leaves.

Proof. Ve assume that F' has exactly n compact leaves. If
H(di) is expanding or contracting, we have I(H(gi),Li) = 1. Thus
from Theorem 6, we have X (B) ¥ n, which contradicts the assumption.

Corollary 10. Under the assumption of Theorem 6, we suppose
that 1 is not an eigenvalue of the linear holonomy LH(d{)k%:GL(Z,R)
for i=1,...,n. If X(B)<L 0, then F' has at least n+l compact
leaves.

Proof. We assume that F' has exactly n compact leaves. From

k .
the assumption, we can easily see that TI(H(«!) * L!) is equal to
i 'y 4

1 or -1. Thus from Theorem 6, we have 7X(B) 2 O, which is a con-
tradiction.
remark 11. Let MB be a closed manifold and F a foliajion induced

3

from a non-trivial Sl-action on M7 with leaf space E. Then every
leaf L of F is homeomorphic to Sl and ﬂa(B) acts trivially on ﬂi(L).

Prcof of Theorem 6. By the results of D.B.A.Epstein[2] and
R.Edwards, K.Millett and D.Sullivan [1], every compact codimension
two foliation is Eausdorff. S is a codimension one submanifola of
M. Hence wve can apply Proposition 5 for a small perturbation F' of
F and the vector field X is defined. Note that S may be empty, but
now we consider the case S % a. For simplicity, we assume that S
is connected. It is proved similarly when S is not connected.

Let U(Li) be the saturated neighborhood of Li(as in Proposition 2)

and Vl(S) the total space of the normal disk bundle of S in M.
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Put Vi ='E(U(Li))(i:1,...,n) which is a neighborhood of Py and VO =
7E(Vl(S)) vhich is a neighborhood of SB:aB. Let D be a 2-disk in B

such that T 'is trivial over and Df\LQéVi}z ®. We identify D with

the unit disk DCR and 71'1(D) = T ¥ DXL. Let k be the least
common multiple of Z,kl,...,kn. Noting that U(Li) is the total space

of the normal disk bundle of Li in M, choose disjoint k/ki disk fibres

wi(j:l,...,k/ki) for i=1,...,n. . Then the restriction
k/ki . 1
T awg———aavi ~ 5* is a k-fold covering for i=1l,...,n. Take
j=1 .
~ L, = ) -1, 4 _ (.1 k 43U
a point b €V, for each i. Put T ~(b,) = {bi,...,bi}, pie W)
for some F()(1 £ j() = k/k;). On the other hand, the restriction
TT: S— IR = S1 is a fibration. Thus we can construct k/2 disjoint
sections of this fibration. We let these sections denote by Tl’
"Tk/Z’ which are identified with those images. The restricted

bundle of Vl(S) to T, is denoted byVTi(izl,...,k/a). Then the

k/2 o . :
restriction Ti: L/ BTi———aaVO > st ig also a k-~fold covering.
i=1

= =l,= (.1 k}
Take a point BEV,. Put T " (B,) —i{bo,...,bo , o€ Ty, for
some r(f)(1 £ r(¥) € k/2). Since B is a compact topological 2-

n
manifold with boundary, there is a cell complex K of B - k¢/int(vi)
i=0

such that 1) D is contained in a 2-cell of K, 2) {gvi}, {Ei}(izO,l,

n
...,k) are 1-cells, O-cells of K respectively and 3) B —\V/int(vi)—idﬁv
i=1

(1)" (1)

is homotopy equivalent to IK where ‘K is the geometric
realization of the l-skeleton of K. Remark thet int(VO) is homeo-

morphic to QBX[O,l). Then we can construct disjoint k sections
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§)5---»5, over lK(l)‘ such that Sl(gi) = b§ (f=1,...,k;i=0,1,...,n).
In fact, for the case of dim L 2 2, it is trivial. For the case of
dim L = 1, that is, L = ST, orienting {bf} (f=1,...,k;i=0,1,...,n)

along the orientations of the fibres, we can construct disjoint k

sections. Furthermore we extend these sections SqseeesS) to a

tubular neighborhood N of |k‘1)| in B - &j int(V.). We denote these

sections by the same letters. Then we ;;S assume, modifying Byseees

Sy if necessary, that each sﬁ(N) meets Wi(f) and T}(f) along a seg-
2)

ment in awi( and BT}(Q) respectively. Thus the union

\J Wy Y o i}
i,Q{SX(N)LJWi LITr(Q) is a compact 2-manifold, transverse to F

n
over Nkﬁ\) Vi}. Since B - int(D) is homotopy equivalent to
i=0

n
NL@kJ Vi}’ we have the following proposition.
i=0

Proposition 12. There exists a compact connected 2-manifold B*,
transverse to F over B - int(D) such that 1) 7. : B*~—B - int(D)
is a k-fold covering except for py,...,p and IB(if JIB X @) and
2) B* meets JT in simple closed curves Ci(izl,...,r), where r is a
divisor of k.

The vector field X projects naturally a vector field X* tangent to
B* since X and B*¥ are transverse to F. If F' has exactly n compact

n n
leaves, X* has kgg%l/ki isolated singular points in Bﬁr\(;réU(Li))

n
and X* is never zero outside of B*/\(\b/U(Li)). Note that the
i=1

sum of indices of singular points of X* is equal to

n K: o
kul—i; I(HX!) *,L!) since H(F',of) = H(«}) on D(X)(x€L,).
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ILet LO =“Kf1(0), 0€D and x'be a loop in Lo representing a gener-
ator of _ni(LO) Y 7. R.Langevin and H.Rosenberg have proved the
following proposition which is essentially due to Seifert[ll],

Proposition 13. I(F', () = O (for definition and proof, see [9]).

We construct a closed 2-manifold E* pasting r disks Df (f=1,...,r)
to B along 3B* = JiC: B* = be@iu...umi. The vector field
ﬁ;(x(ci)) on 2D is homotopic to the vector field ﬂ;(X(nid)), where
n, is the integer aefined by [Ci]: ni@q and[ ]denotes homotopy class
in 7ti(T). From Proposition 13, 7T (X(«X)) is homotopic to the
constant yector field, hence deforming X* along 3B* in the homotopy
class, we may assume that ﬂ;(X*‘aE*) is a constant vector field on
aD. Since Jl: Ci—~9aD E S1 is a k/r-fold covering, we easily see
that the vector field X* is extended to a vector field X on B* with
exactly r singular points of index —(—%f -1) in };&fo,

Now the euler characteristic number of B* is equal tQm

_ n . ks o ; .
X(B*) = -r(—g— -1) + k) L I(H(!) T,L!). On the other hand,
r : k. i i
i=1 :l : .
X(E*) = X(B*UDEU.. . Upf) = k{?c(,B) +.§i_§l(~k; -1) -1j+ r. Hence

we have the required relation.

§4. Rémarks.

Theorem 14. Let &: M——?Bibe a fibration with B avclosed’ofi-
entéd k-manifold and compadt fibre L. Suppose tha£‘4l) 'ﬂi(L) élz,
2) 7[1(B) acts trivially on 7Ti(L),»3)‘E*: Hk(B;Z)——»Hk(M;Z) ?s
injective andvq) X(B) ¥ O. Then ény Co—perturbation of the folia-

tion induced from this fibration has a compact leaf.

10
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™

Proof. Let F' be a small perturbation of F. We assume that F!
has no compact leaves. Applying Proposition 5 for such an F!',
there exists a vector field X on M such that X is orthogonal to F.
Let;Xé&Hk(B;Z) be the euler class of T(B). The image q*Xé€ Hk(M;Z)
is the primary obstruction of a section of the induced bundle
J*T(E) over M. 7 *T(B) has the non-zero section X, so 7*X = O.
From the condition 3), X = 0, hence X(B) = O which contradicts
the condition 4).

Now we shall apply Main theorem of Hirsch and Thurston[?]to
Theorem 14. First we prepare the following terminology(see [?]).

Definition 15. A swooth bundle &= (7, M, B) is called a
foliated bunale if % has a foliation whose leaves are transverse
to the fibres and of complementary dimension.

As well-known, a smooth bundle ¥ with compact fibre L is a
foliated bundle with holonomy group (' if and only if g is a
(" ,L)-bundle with discrete structure group [ .

Definition 16. A group [T is called amenable if there exists
a left-invariant linear function A on B(["), the bounded functions
on [, such that A(f) 2 O when f 2 0 and A(l) = 1.

Remark 17. The class of amenable groups is closed under the
operations of taking quotients, subgroups, extensions of amenable
groups by amenable groups and direct limits; and contains all abelian
groups and finite groups.

Notation 18. We denote by 6, the smallest class of groups that
contains all amenable groups and is closed under finite extensions

and free products.

Remark 19. Me ( if [T is solvable, free or of subexpo-

11
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nential growth(see E?]).
Definition 20. A content on a space V is by definition a linear
functional S on the space of continuous real functions on V such
that S(c) = ¢ for any constant function c.
Theorem 21. Let §= (7T, M, B) be a foliated bundle with B
a closed k-manifold compact fibre L and holonomy groupf{ .
suppose that 1) 7r,(L) ¥ 3z,
2) 7fl(B) acts trivially on 'ﬂi(L),
3) (a) |° preserves a content on L or (b) [Te C and
4) X (B) ¥ O.

Then any Co-perturbatlon of E has a conpact leaf.

Proof. Passing to a double covering of B, if necessary, we may
assume that B is orientable. From the condition 3) we have Main
theorem of Hirsch and Thurston[?]. Hence it follows that
7 Hk(B;R)~—+Hk(M;R) is injective. Since B is oriented,

Hk(B;Z) £ Z, therefore x* : Hk(B;Z)——+Hk(M;Z) is injevtive.
Hence Theorem 21 is a corollary to Theorem 14.

Remark 22. 7C,(B) € C implies ["e (?*, for [ is the inage

of the holonomy homomorphism 7Ti(B)—~5Diff(L) of the foliated bundle

.

12



68

References
[l]: R.Edwards, K.Millett and D.Sullivan, Foliations with all leaves
compact, Topology, 16, 13-32(1977).
[2]: D.B.A.Epstein, Feriodic flows on three-wanifolds, Ann. of Math.,
95, 68-82(1976).
[5]: D.B.A.Epstein, Foliations with all leaves compact, Ann. Inst.
Fourier, Grenoble, 26, 265-282(1976).
[u): K.Fukui, Perturbations of cowpact foliations, Proc. Japan Acad.;
58, Ser.A, 341-344(1982).
[5]: F.Fuller, An index of fixed point type for periodic orbits,
Amer. J. of Math., 39, 133-148(1967).
[6]: M.W.Eirsch, Stability of compact leaves of foliations, Dynamical
Systems, Academic press, 135-155(1971).
[?): M.W.Hirsch and W.F.Thurston, Foliated bundles, invariant measure
and flat manifolds, Ann. of Math., (2)101, 369-390(1975).
[8]: R.lLangevin and H.Rosenberg, On stability of compact leaves
and fibrations, Topology, 16, 107-112(1977).
(¢]: R.Langevin and E.Rosenberg, Integral perturbations of fibra-
tions and a theorem of Seifert, Differential topology, foliations
and Gelfand-Fuks cohomology, lecture notes in lkath., 652, 122-127
(1978).
(1Cﬂ: I.Satake, The Gauss-Bonnetktheorem for V-manifolds, J.M.S.
Japan, 9-4, 464-492(1557).
[liI: H.Seifert, Closed integral curves in 3-spaces and isotopic

two dimensional deformations, Proc. A.M.S., 1, 287-302(15950).

13



