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DEFINABILITY IN LP-SPACES

MARTKO YASUGI

MR &3 REIYA
INF R S

This report’consiéts mainly in the excerpts from the
references [61~[10]. It is divided into three pafts; the
introduction, the proof-theoretical background and the

mathematical development.

I.G.Takeuti in his book [5] defined a conservative
extension of Peano arithmetic (with finite predicate types) in
which he déveloped differential and integral calculus. In his
theory, the reals afe.defined as fhevDedekind>cuts of the
rationals, and thé basic logic of the theory is classical.'
The whole universe is restricted to the "arithmetiéally |
definable" world, Where an object is said to be arithmetically
definable if the quantifiers are restricted to the rationals.‘

Since-the union of an arithmetically defiﬁéble sequence
of reals is again an arithmeticaily definable réal, it is
obvious that a bounded increasing'seqﬁence of reals is
convergent. The intermediate value theorem for a continuoﬁs
function, the mean value theorem and all other theorems in

calculus can be stated and proved in the Ciassical mannef.
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Now, we believe that much part of modern analysis can be
naturally interpreted in a modest extension of Peano
arithmetic, whose logic is classical and which has no peculiar
principles specifically designed for such an interpretation.
It is our intention to execute such a program to see (1) what
formal system is necessary for this purpose, (2) which
characterizatipn of a mathematical concept is to be taken and
(3) how fhe ma£hematical objects look like in our formulation.

We employ "definable arithmetic" with "definitions by
definable induction" (which we abbreviate to DDI) as the basis
of our machinery, Along this line, we have worked on a few
areas of analysis as examples.

Here we shall explain how to interpret the abstract

theory of integration in the definable setting.

II. Definition 1. 1) Type. There are two sorts of
atomic types; one for the rationals and the other for the
elements of a space. The compound (predicate) types are
difined as usual.

2) The language consists of the symbols of the arithmeti-
cally definable theory of the reals augmented by the following.

- a) Variables for all types.

b) The special symbols X,L,J and eq.

c) Predicate symbols for definitions by definable
induction (DDI),;IO,Il,Ig,----

. 3) An expression in our language is said to be "definable"

if the quantifiers in it are réstricted to those of atomic

types.
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k) Terms, formulas, abstracts and sequents are defined
as usual. The abstracfs ére restrictéd to tﬁe definable ones.
| 5) The 1ogica1 syétéﬁ L is the predicaté calculus of our
language augmehted by the compréhension rule applied to our
definable abstracts.

6) The sets of axioms.

A: ‘the setvof axioms of arithmétic, where the mathe-
matical induction and thé equality axiom are formulated in
terms of the higher universal quantifiers.

B: Axioms on the abstract theory of Daniell integral,
X=(X,L,J), where X represents a space, L a family of elementary
functions (from X to the reals) and J the integral on L. X is
a set with eq as the equivalence relation.

C: DDI. Let K,(m,$,§,9) be a definable formula which
does not contain any of Ii’ Ii+l’.""’ Wheré m, $, @; )
exhaust all the free variables Ki may contain, thé variables
iﬁ'gfare of atomic types and @ is of appropriate type.

vyl (T, (m,3,9)=K, (m,8,9,1,[m])),
where Ii[m] abbreviates | )
S{n,z}(n<mAIi(n,§,$)).

It is an expirical fact‘that thé mathematical axioms
(such as those in B above) are in the prenex universal form
with respect to higher typés. What is normally assuméd to
exist is regarded as a parameter in our approach

7) A sequent T+A of our languége is éaid to be a theorem
of T if

A,B,C,T~A

is provable in the system L.
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8) Definable instantiation.
,Let.G be one of‘thébaxioms in A, 3,‘C, Since G is
ﬁniversal with respect to higher types, it must be of the form
| Wby VU P, a0, n20,
where ¢,...,y  are of higher types, and F(wl,..w,wn)>is

definable. Let J .,Jrl be any abstracts of appropriate types

15>
which do not contain higher type free variables. -Then

| F': Vop...¥o F(I)",.5d,")
will be called a definable instantiaﬁion of .G, where Ji' is
obtained from Ji by replacing all the free variables (of atomic
types) which do not occur in F(wl,..,,wn) by appropriate bound
‘variables? ¢1,...,¢m.

Henceforth A' will stand for the set of all definable
instantiations of A, and A¥ will stand for a finite sequence
from A'. Similarly for B and C.

9) Systems.

M is obtained from L by suppressing all the variables bf
higher types.

| P is the system M augmented by the following.
1°. Rule of inference: mathematical induction applied

to the formulas of M.

2°. 1Initial sequents: formulas of A' and C'.

Theorem 1. Let I'+A be a sequent which expresses an
elementary theorem of integration. Then it is a theorem of T,
that is,

A,B,C,T>A

is provable in L, hence without cuts.
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The proof of this theorem is our major task.

Theorem 2. P 1is consistent.

The basis of the proof 1s the accessibility of the order

of the system (II,<) defined below. Let (A,<) be an accessible

(ordered) structure.

Then

<.

(1) 1° The symbol 0 is a connected element of II.

2°. If o€h and Be€ll, then (a,B) is a connected element of

30, Sﬁppose Upseen sl are connected elements of I, n>2.
ul#...#an is a non-connected element of II. |
(2) We define the orders < and <' for 1.

(2.1)_If B is not 0, then 0<B and 0<'8B

(2.2) # 1is interpreted as the natural sum for both < and

(2.3) (d,B){'(Y,G)-if a<y, or a=y and B<S .

(2.4) (u,8)<(y,6)v if one of the followiﬁg holds.
(2.4.1) (a,B)<'(v,8) and 8<(y,8). o
(2.4.2) (a,B)<8.

Here we ﬁeed a A whose order type is exp(w, exb(w;E)).

.

Define w ™ ={j~; jew} and Ki={(j,i); Jew”w~}v{wi}, where K,

is ordered so that j<j~<j+1<°°i for every j in w. The order

type

of K, is exp(w,2). The scales we need are r(Ii; A)(the

rank of Ii in A) and n{(A)(the norm of A). r(I.: A) is defined

i®

to be.an element of Ki’ and n(A) is defined to be an element of

exp(w,exp(w,2)). Notice that in our particular case, we need

not worry about comprehensions, since there are none.
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Theorem 3. (Relative soundness) The theory T is sound

relative to definable instantiations of B.

Proof. Suppose B' is consistent (withP). Then {A',B',C'}
is consistent with M, and hence {A,B,C} is consistent with L.
But T is a consequence of A, B and C (in L), and hence is

consistent (since the cut elimination of L can be proved with

exp(w,3)).

Note. In defining subsets, relations and functions, it
1s always required that these notions be closed with respect

to equivalent obJects.

Definition 2.} Two céncepts Y and X2' are said to be
"mutually definably interprétable" if there are definable 0¥
and E¥ such that

T(0)>Z'(E¥(0)) and I'(E)~>Z(0%*(E))

are both theorems of T, where © and E are parameters.

Proposition 1. 1) The definability property and the
subset properfy are both preserved under the basic sét;
theoretical bperétions. |

2) The definability property is preserved under the
following operationﬁ on the reals and the functions; a¢, Z, I,

max, min, limsup, liminf, 1lim, the absolute value, ¢* and ¢~.

TT. Thé proof of Theorem 1.
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Proposition 2. The immediate (mathematical) consequences

of B are the theorems of T.

We shall henceforth state the propositions simply as
mathematical statements, although they should be read as "the

theorems of T".

Definition 3. nls(E,x): ss(X,E)AxcLAVn(x(n)<x(n+1))
AVxeEVr>03an(y(n,x)>r)A1imJ (x(n))eR
(E is a null set by x.)
ae(x,P,E,x): nls(E,X)AVX§EP(x)
itg(f,0,E,x): ocLAae(x,f(x)=Io(n,x),E,x)AZI(|o(n)]|)ER
(f is integrable with respect to &, E and x.) 7
JL(f,0,E,x): limsup{Z{J(a(1i)); i<m}; m=1,2,...}
This may be abbreviated to Jl(f), or even td J(f).i Notice
that the definiens above is an extended real.
(Jl(f) is the Daniell integral of f with réspecﬁ to o, E

and y if f is integrable.)

Proposition 3. 1) J1 is definable, and is independent
of the parameters when itg(f,®,E,x) is assumed.

2) The properties for (L,J) (in B) hold for (itg,J}).

Proposition 4. All the basic properties of the Daniell
integral, such as Fatou's lemma and Lebesgue's dominated
convergence theorem, hold.

Let us state Fatou's lemma as an example;

(Fatou's lemma) There are definable ¥¥, E¥ and x¥ such
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that
Vn itg(F(n),0(n),A(n),2(n)),
Vn aé(x,F(n,x)zO,A(n),E(n)),
1iminfJ (F(n))<e
-> ae(x,limian(n,x)<w;E*,X*)
Alae(x,g(x)=1iminf (F(n,x),E¥,x¥*)
btg(g,¥*,E¥ ,x¥)AJ(g)<1liminfJ(F(n))].

These obJects can be easily obtained through the course

of thevmathematical proof.
[A1] V¢(L(¢)¥L(l§¢)>
ﬁé sﬁall‘wofk‘in @he theory T with BO=B+{[A1]}.
Definition k. 1) mbl(f,0,A,5):
) V@eL(+)itg(mid(—¢,f,¢),e(¢),A(¢),5(¢>>

(f is measurable with respect to the parameters ©, A and

E; the parameters may be abbreviatéd to a single letter W, or

even omitted altogether.)
Note. mbl is not a definablevnotion.
[A2] pcL(+)AYxVr>03mvVnzm(p(n,x)>r).

We shall work under the assumption [A2].

2) u(f,w): 1imsupJ1(mid(—p(n),f,p(n)),W(p)), where W is

a sequence of appropriate parameters.
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Propdsition 5. All the basic properties of measurable
functions are satisfied by (mbl,p). 1 does not depend on the
parameters, presuming that mbl is assumed for a function f.
‘Let us consider the proposition that

(+) a€R, mbl(f)-»mbl(af)
as an example; In proving this, we must demonstrate a more
refined result than just (f). That 1is, (+) automatically
implies that there are definable ¢*¥ amd W* (with appropriate
parameters) such that

- ¢eL(1)>¥Yn(o*(n)eL(+))
and
$€L(+), ¥n itg(mid(-0*(n),r,0*(n)), W(e*(n)))

> itg(mid(-9,af,0), WH(9))
From these, and by thev(definable) comprehehsion~rul¢,\we
obtain

mb1l(f,W)-mbl(af,W¥)

-,Invorderato formulate the theory.of products of{fuhctions
and the Fubini .theorem, we need an alternative‘férmily of
elementary functions which yields the same family of integrable
functions.

Definition 5. We shall use n to denote a natural number
in a specific context.
sqn(g): 'E& is a finite sequence of distinct rationals,
say (rl,...,rﬂ), arrangéd in the natural,
increasing ordéri“
lggg): the length of n; that is, the £ above.

n(k): r, if 1gkgl.
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Sla,n,o,E,x): Vxﬂ!kslg(&)(u(x)=rk)Aitg(u,®,E,x)
(d is a rational-valued simple function
with respect to n, ¢, E, X.)

K(a,gek): the characteristic function of D, where D={x;

u(x)=rk}.
Jola,n,0,E,x): Z{rle(K(our,;g,,k),<I>‘,E,x); k<lg(n)}
We may omit or abbreviate o, E, X, and even‘g\when the

circumstances allow us to.

Proposition 6. 1) The fﬁnctions and the predicates defined
above are definable. In particular, JO is arithmetically
definable. SO and JO have the intended properties.

2) We may assume SO as the class of elementary functions
over the coefficient set Q in developing the theory of

integration in our definable system.

Definition 6. 1) Let J2 be the theory J with the axiom
sets of two integration spaces X=(X,L1,J1) and V=(Y,L2,J2) in
the place of B. 'The properties which are claimed‘subsequently
are the theorems of 12.

2) Z=Xx¥={(x,y); x€X, ye€Y}

(x,y)=(u,v): Xx=uAy=v

3) Sy: ‘the SO for Ly in X
the SO for L, in y
1+ the J4 for S1
the J, for 32
4) S(m,a,g,8,n): Vksm(S,(a(k),&(k))AS,(B(k),n(k))), where

E(k) and n(k) each stands for four parameters.

— 1n —
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5) w(m,a,B,z): Z{a(k,x)e(k,y); k<m}, where z=(x,y).

6) I(m,a,B): 121({y}Il(Ty)), where Tyé{u}ﬂ(m,u,s,u,y).

Proposition 7. 1) The functions and the predicates
defined above are definable.
2) (S,I) satisfies the axioms on integration over the

coefficient set Q.

Proposition 8. (Fubini)
1 1 1 1 1 1
ST(f,W)»I, ({y}Il (fy))-Il ({x}I,7 (£ ))=I"(f,W)ER,
where ny{X}f(x,y) and the unwritten parameters are definable

in W.
Note. We do not take the "quotient" modulo null set.
The mathematical proof goes through.

Definition 7. 1) Let D be the axiom sef B modified as

follows. »

(a) The primitive symbols §, JO+’ JO_ and 1 are édded.

(b) The condition ¥¢€L(+)(J(¢)20) is eliminated.

(¢) The éontinuity property U4° is replaced by a strongér
one: | |

Lr  ye>oveeL(|] ¢ ||<6(e)b]T(e)|<e),

where || ¢ ||=sup{|o(x)]; xeX}.

(d) The axioms on J

N o :
0 > Jq vand 1 are added.

VoeL(+);

ToT(8), T,7(8), 1(4)eR,

—_ 11
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To (9)=sup J(); O0<p<o, YEL(H)},
Jo (9)=-inf{J(y); 0<v<é, YeL(+)},
1(0)=sup {7,  (¥)-7,7(¥); 0<ys<d, veL(+)}.
(Here the sup in the right hand side is not a formal object,
but the entire equation represents a relation which determines
the property ofEJO+(¢)(or 1(¢)). Similarly for inf.)
Let J' be the theory obtained from J by replacing B by D.
J'" will be called thevtheory of signed integral and J will be
called a signed integral on L. |
2) TN 3, eH -3, 07
7T 3,703,787
3) For any two integrals (in the original sense), we say
I1 and I2 are compatible by K if |
VOEL(+) (K($)ERAK($)=sup{I; ($)-T,(¥); 0<¥so, VeL(+)}).
In such a case, define I,AI, to be I{-K (on L(+)).
by Ir IlA12§O on L(+), we Sajrll»and szafé'mutually

singular (with respect to K).

Proposition 9. 1) J+ and J are compatible by 1.
2) 3% and 77 are mutually singular.
3) J=J+—J_ is the UniQue deéompositionvof J by mutually

singular integrals.

: +: -
By virtue of the proposition above, (J ,J ) can be regarded

as the Jordan decomposition of J.

Definition 8. L(p; f£,W;,W,): mbl(f,Wy)AL(1gp<ee

Aitg(exp(lf],p),wl))V(p=wA3r ae(x,|f(x)|<zr, Wl'))],
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where Wl\and w2 stand for finite sequences of parameters and
v s
Wl is a subset of WI'
ess sup(f,W;'): inf{r; ae(x,]f(x)lgr,wlf)}
norm(p,f,wl,t): [l§p<mAt<exp(J1(exp(]f],p),Wl),l/p)]
Vlp=eAt<ess sup(f,W;")]

We write norm(p; f,wl), norm(p; f) or norm(f) for

{t}norm(p; f,wl,t). Notice that norm(p; f,Wl) is definable.

In the following the propositions are meant to be provable

in J.

Proposition 10. ({f,wl,wg}L(p,f,Wl,W2),’{f,wl,t}norm(p,

f,W t)) satisfies the conditions on Lp—spaces, and the basic

13
properties such as HOlder's inequality and the Riesz-Fischer

theorem hold (uniformly in p).

Since the construction.in the proof of the Riesz—FiScher
theorem is the basis of all the subsequent constructions, we

work it as an example.

Proposition 11. (Riesz-Fischer)
Yk L(p; F(k),Vl(k>,V2(k));
lim{norm(p; F(k)-F(£)); k,£}=0

+ L(ps £¥*,W *,W,*)A1lim norm(p; f¥-F(k))=0,

1
for a definable f¥%.

Proof. As applications of DDI, we define v and G as

follows.
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v(1)=min(£,Vm2£(norm(F(m)-F(L)< exp(2,-1))),
v(n+l)=min(£,£>v(n) AVm2L(norm(F(m)-F(L))<exp(2,-(n+1)))),
G(1)=F(v(1)),
G(n+1l)=F(v(n+l))-F(v(n)).
Then {v(n)} is increasing,
norm(F(m)-F(v(n)))<exp(2,-n)
if m>v(n), G(n)eL(p) for each n and
Inorm(G(n))<norm(F(v(1)))+Zexp(2,-(n-1))
=norm(F(v(1)))+1.
Thus, IG(n) is absolutely convergent "almost everywhere". Now
define f¥* by
¥ (x)= [ Z2G(n,x)=1limF(v(n),x)
| if 2|G(n,x)|<w
0 otherwise

This ¥ will do.

Definition 9. 1nfl(p; T): VYIVw, VW,
(L(p; £,W;,W,)FT(£)eR)
AVKYFYV YV, Va(Vi<kL(p; F(1),V,(1),V,(1))
Na€R}FT(aF(1))=aT(F(1))
AT(Z[F(1); icgk])
=2{T(F(1i)); isk}1)
bdf(p; T,a): a>0AVEVW VW,
(L(p; £,W,W5) blT(F) | <a norm(f))
blf(p; T,a): 1nfl(p; T)Abdf(p; T,a)
cntf(p; T,8): VYIVW VW Ve>0
[8(e)>0A(L(p; £,Wy,W,)Anorm(£)<§(e)p|T(£)[<e)]

nfm(p; T,b): bdf(p; T,b)AVa(bdf(p; T,a)lbsga)

1 h
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The representation theorém for the bounded linear

functionals on L2 assumes the following form.

Proposition 11. bl1f(2; T,a), L(2; h,Z,,%2,), T(h)#0,
nrm(2; T,b), VYn(L(2; G(n),V,(n),V5(n))
AT(G(h))=exp(b,2)
Anorm(G(n+1))<norm(G(n))),
VEVW YW, (L(2; £,W,,W,)AT(F)=exp(Db,2)
F3n(norm(G(n))<norm(£)))
> L(2; g¥*,U *,U,*)AT(g*)=exp(b,2)
AVfVWfVWZ(L(Z;vf,Wl,Wz)AT(f)=exp(b,2j
} [norm(g¥*)<norm(f)

A(norm(g#*)=norm(f)
bae(x,f(x)=g*(x),E¥,x¥))
N EVW MW, (L(25 £,W, W) b T(F)=(fg*,W*))])

for some definable g¥, Ul*, Ug*, E¥, x¥ and W¥,

Proof. Put c¢=1im normG(n). Then c¢>0 and c satisfies that
c=inf{norm(f); L(2; f,W;,W,)}.
Also, 0<b<c, and hence c¢>0.
lim{norm(G(k)-G(&L)); k,£}=0,
and hence, by virtue of the Riesz-Fischer theorem, there are
g*, U.*
=0. This g* will do.

and U,* such that L(2; g*’Ul*’UZ*) and 1im norm(g*-G(k))

[Assumption] Let x=(X,L,J) denote a (real) integration
space. We place further conditions on (X,L) as listed below.

ncL (F)AX=" n’

— 15
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where Xn={X; n(n,x)>0}, and n 1s a parameter.
Vo, veL(dpeLA(V#0bo/Yvel)),
where Y#0 means ¥x(P(x)#0).

Definition 10. abscht(J,I; Q):
VEVX(nls(T; E,x)knls(J; E,Q(X)))
1itg(I; h,2): mp(h,X,R)AVeEL 1tg(T; ho,E(d))
r(J,I; h,8): h>0Alitg(T; h,E
NVOEL (T (¢)=I(¢h))
nrm(I; J,a): nrm(2; J,a),
where J is regarded as a linear functional on L(2; K) and nrm(2)

is taken with respect to K, K béing J+T1.,

Proposition 12. (Radon-Nikodym) Let J and I be as in our
[Assumption]. Then (a) and (b) below are "mutﬁally definably
interpretable", provided tﬁat nrm(I; J,ao) is auusmed.

(a) T(J,I; h,E).

(b) abscnt(J,I; Q);

The h in (a) is unique up to the addition of an I-null

function.

Proof. We work on (b)>(a) as an example. It suffices to
deal with the case where 1 is integrable both for J and I.
Define K to be J+I. Due to the assumption nrm(I; J,a,) and
Proposition 11, there is a definable g¥* such that J(f)=K(fg¥)
for feL(2; K). Define D={x; g*(x)>1}, and
h(x)={ Zexp(gh(x),k)  1f x€D,

0 if xeD.
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This h will do.

As a consequence of the Radon-Nikodym theorem, we obtain

the general cases of the Riesz-representation theorem.

As a special topic, we shall present a sufficient condition
for the differentiablility of linear functionals of a certain
kind (under our [Assumption]). It is a modified version of

the implication "B-»C" in [3].

Definition 11. K(h,U,V):
itg(h,U)Aae(x,0<h(x)<1,V)
dsj(F): VWxViVj(i#j+F(1,x)F(1i,y)=0)
cad(T): VFYUYW(Yi(itg(F(i),W(i)))
| ANdsj(F)Nitg({x}Z{F(1,x); i=1,2,...},0).
bT({x}Z{F(i,x); 1=1,2,...})
=2{T(F(1)); i=1,2,..{})
[Assumption] In the following, we assume
b1£(1; T,K)Acad(T).
Recall that norm(1; £)=J(|f]).
A(p,o): VHK(Ol(H),OQ(H),O3(n))
Avn(p(oq(n))>0)
AV xye>03n(o; (n,x)#0Ap(o (n))<e)
sstm(h, p,o,v): "v(h) is a sequence of natural numbers”
AVxVe>0(h(x)#0k3m(o, (v(h,m),x)#0
Ao(oy(v(h,m)))<e))
B(p,0,T): Yh¥U¥YVYuWr>0(K(h,U,V)

NI (h)>0Asstm(h,p,o,v)
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1D.

MWi3m(t(h,r,1i)=v(h,m))
Ndsj ({1}oq (T(h,r,1)))AI(h)
=J(h{X}Z{dl(T(h,r,i),x); 1=1,2,...})

AZ{J(ol(T(h,r,i))}; i=1,2,...}<J(h)+r)

ub(T, p,0; x,2):
lim sup{T(o{(n))/JI(o;(n));
n=1,2,...,cl(n,x)#o,
ploy(n))<1/2}

1A(T, p,0; x,£): 1im inf{T(0;(n))/J(c{(n));
n=1,2,...,0,(n,x)#0,
ploq(n))<1/2}

uD(T, p,0; x): lim{uA(T,p,0; x,£); £=1,2,...}

1D(T, p,03 x): 1im{1A(T,p,0: x,£); £=1,2,...}

We shall abbreviate {x}uD(T,p,0; x) to uD. Similarly for

C(T,p,o,wl,wg,w,e,g): mbl(uD,WlV\mbl(lD,Wz)
AL(e; g,w)Aae(x,uD(x)=1D(x)=g(x){9)
N YU (itg (£, U)NT(£)=T(£(uD))

=J(£(1D))=J(fg))

Proposition 13. DER, heK,
¥x(h(x)#0huD(x)2b)>T(h)>bJ (h)

is "mutually definably interpretable” from A and B.

The mathematical proofs of this proposition and the next

one are more or less due to [4]. The author also owes to

Mamoru Kanda for his comments in this regard.

_ 18 —
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Proof. It suffices to consider the case where J(h)>0,
since uA(x,2) is decreasing with respect to £, uD(x)>b (where
h(x)#0) implies ;

h(x)>0-¥£3n(o;(n,x)>0Ap(0y (n))<1/LAT (0 (n))2bI(a7(n))).
Define v¥ by:
v¥(1)=min(n,G(n)),
v¥(m+1)=min(n,n>v¥(m)AG(n)),
where G(n) stands for
ﬂxaﬁ(h(x)#OAol(n,x)>O
Ap(o;(n))<1/LAT (0, (n))<bI(oq(n))).
Then sstm(h,p,0,v¥) follows. The condition B applied to. this
h and v:v¥ yields
Vr>0[Vidm(t(h,r,i)=v¥(h,m))
Nasj({i}o;(t(h,r,1)))
AT (h)=J(hIw(i))AZT(w(1))<T(h)+r].
£,=I0(1)€K, J(£y)=E3(w(1)) and J(h)<I(fy). "h,f€K" implies
b

that hfo, h-hf —théK. From thesé facts and the complete

0° 0
additivity of T, we can easily obtain; successively,

T(h)=T(th)>T(fO)—Kr
=ZT(w(i))—KerZJ(w(i))—Kr
=bJ(fO)2bJCh)—Kr;

that is, ¥Yr>0 (T(h)>bJ(h)-Kr), from which follows T(h)2bJ(h).

Proposition 14. C(T,p,o,wl,wz,w,e,g) is "mutually
definable interpretable" from r and B.
| Proof. {x}uA(x,£) is measurable if and only if
A(s)ﬁ{X;VuA(x,£)>s} for every rational s. But

A(s)=""{{x; o,(n,x)#0}; p(oq(n))<1/L

— 19 —
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AT(ol(n))/J(cl(n))>s}

and cl(n) is measurable.

By the Riesz-representation theorem for L(1), there is a

definable g*eL(») such that

T(f)=J(fg¥*) for every feL(1l).

So, it suffices to show g¥=uD=1D almost evérywhere. This

follows from the proposition above .-
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